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The ABCG1 homodimer (G1) and ABCG5–ABCG8 heterodimer
(G5G8), two members of the adenosine triphosphate (ATP)–binding
cassette (ABC) transporter G family, are required for maintenance of
cellular cholesterol levels. G5G8mediates secretion of neutral sterols
into bile and the gut lumen, whereas G1 transports cholesterol from
macrophages to high-density lipoproteins (HDLs). The mechanisms
used by G5G8 and G1 to recognize and export sterols remain un-
clear. Here, we report cryoelectron microscopy (cryo-EM) structures
of human G5G8 in sterol-bound and human G1 in cholesterol- and
ATP-bound states. Both transporters have a sterol-binding site that
is accessible from the cytosolic leaflet. A second site is present mid-
way through the transmembrane domains of G5G8. The Walker
A motif of G8 adopts a unique conformation that accounts for
the marked asymmetry in ATPase activities between the two
nucleotide-binding sites of G5G8. These structures, along with func-
tional validation studies, provide a mechanistic framework for un-
derstanding cholesterol efflux via ABC transporters.
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Cholesterol is an essential constituent of cell membranes and
can be synthesized from acetate by all nucleated cells in

vertebrates. To maintain cholesterol homeostasis, the amount of
cholesterol acquired by cells through de novo synthesis or lipo-
protein uptake must be tightly coupled to the amount that is lost
through degradation or excretion (1). The pathways by which
cholesterol is synthesized, and the mechanisms by which these
pathways are regulated, have been elucidated in considerable
detail (1). Less is known about the molecular basis of cholesterol
excretion. The observation that cholesterol flips rapidly between
the inner and outer leaflets of phospholipid bilayers suggested
that cholesterol efflux from cells does not require a protein
mediator (2), but studies in humans with rare disorders of cho-
lesterol metabolism provide evidence for active excretion of
cholesterol from cells. Loss-of-function mutations in ABCA1
(adenosine triphosphate [ATP]–binding cassette transporter A1)
cause Tangier disease, a disorder characterized by very low
concentrations of circulating low-density lipoproteins and high-
density lipoproteins (HDLs) and accumulation of cholesterol in
macrophages (3–5). Mutations in ABCG5 (G5) or ABCG8 (G8)
result in an autosomal recessive disorder, sitosterolemia, which is
characterized by accumulation of both plant- (e.g., sitosterol and
campesterol) and animal-derived sterols (e.g., cholesterol) as
well as premature atherosclerosis (6, 7). Subsequently, genetic
manipulation studies in mice indicated that ABCG1 (G1) also
transports cholesterol (8).
Members of the G subfamily of ABC transporters are encoded

as hemitransporters and dimerize in order to function (9, 10). G5
and G8 heterodimerize before exiting the endoplasmic reticulum
and trafficking to the apical membrane, where they mediate
excretion of cholesterol into bile and the intestinal lumen (Fig.
1A) (6, 11, 12). G1 is abundantly expressed in macrophages and
exports cellular cholesterol to extracellular acceptors, especially

HDL (8, 13–15). G1 has been reported to facilitate reverse
cholesterol transport (16, 17), the pathway by which cholesterol
made in peripheral tissues is transported back to the liver or to
the gut for excretion (18).
A schematic of a canonical ABCG half-transporter is shown in

Fig. 1B. Each half-transporter contains a Walker A (P loop), Q
loop, Walker B, and signature motif (Leu-Ser-Gly-Gly-Gln).
After dimerization, the full transporter contains two nucleotide-
binding sites (NBSs) that are formed by the Walker A (P loop),
Q loop, and Walker B motifs from one protomer coupled with
the signature motif from the other (10, 19, 20). In G5G8 only a
single active NBS (NBS2), the one formed by the Walker A and
B motifs of G5 and the signature motif of G8, is required to
support sterol transport; scrambling the consensus motifs of the
other NBS (NBS1) does not impair sterol export (21, 22).
Previously, we determined the X-ray structure of G5G8 in

bicelles at 3.9-Å resolution (23). The transmembrane helices
(TMHs) of G5G8 have a folding pattern that is distinct from all
other families of ABC transporters that have been characterized
structurally (10, 24). No structural information is available for
G1 and the structure of ABCA1, although determined in apo
states at ∼4-Å resolution (25), has not revealed the molecular
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basis of cholesterol transport. Notably, the structure of a multi-
drug exporter, ABCG2 (G2), in nanodiscs, revealed a sterol-like
molecule bound to TMHs (26); however, there is no evidence to
date that G2 can export sterols, so the function of the sterol in
the TMHs remains unclear. Here, we report sterol-bound struc-
tures of G5G8 and apo-, cholesterol-, and ATP-bound structures
of G1 by cryoelectron microscopy (cryo-EM). We have employed
multiple strategies to establish a model of how ABC transporters
mediate the translocation of neutral sterols across cell membranes.

Sterol Binding Site 1 of G5G8
G5G8 exhibits pseudosymmetry, which complicates structural
determination by cryo-EM. To break this pseudosymmetry and
capture the sterol-bound state of G5G8 in solution, we devel-
oped a series of monoclonal antibodies that bind human G5 or
G8 in its native state. We identified an antibody (2C7) that
bound G8 and inhibited ATP hydrolysis by G5G8 in vitro (Fig.
1C). We then incubated the Fab fragments of 2C7 (Fab2C7) with
purified G5G8 and subjected the mixture to gel filtration (SI
Appendix, Fig. S1A).
The structure of G5G8 expressed in HEK293 cells in complex

with Fab2C7 was determined at 2.7-Å resolution. The trans-
porter is in an inward-facing conformation that is free of bound
nucleotides, which is similar to that observed previously (23)
(Fig. 1D and SI Appendix, Figs. S1 B–E and S2A and Table S1).
Fab2C7 binds the nucleotide-binding domain (NBD) of G8 (SI
Appendix, Fig. S2B) and restrains the conformational changes
required for ATP hydrolysis. G5 and G8 share a similar confor-
mation with an rmsd of 1.6 Å, but only G5 has an intramolecular

disulfide bond (Cys587–Cys600) in its extracellular region (Fig. 1E
and SI Appendix, Fig. S1E). TMH1, TMH2, and TMH5 of G5 and
G8 form the interface between the two transmembrane domains
(TMDs) (Fig. 1E). Connections between the NBDs and TMHs of
G5G8 are formed by two three-helix bundles that include the
connecting helix (CnH), coupling helix (CpH), and E helix (a helix
after the Q loop). Both bundles in G5 and G8 contain two buried
salt bridges, presumably to confine the TMHs and NBDs in a
conformation conducive to engagement of substrate (Fig. 1F). The
salt bridges between CpH and CnH of G8 had not been observed
in the X-ray crystal structure (23).
A sterol-like molecule was observed within the cytosolic leaf-

let, between the TMDs of G5 and G8, parallel to the TMHs
(referred to as “site 1”) (Fig. 2A). The 3′-hydroxyl group of the
sterol, which was presumed to be cholesterol, faces the central
portion of the interface of G5 and G8, while the isooctyl side
chain of cholesterol faces the cytoplasmic region of the protein
(Fig. 2A). The cavity is large enough to accommodate other
substrates of G5G8, such as campesterol or sitosterol (27), which
both have a ring structure identical to that of cholesterol but
have modifications in the side chains. Notably, the cavity has
amphiphilic features (Fig. 2A), with the top being negatively
charged and the bottom being hydrophobic. The cholesterol in
site 1 is close to Ile529 in TMH5 of G5 and to Ile419 and Leu465
in TMH1 and TMH2 of G8, respectively.
The structure of G5G8 purified from Pichia pastoris was de-

termined at 2.7-Å resolution (SI Appendix, Figs. S2 C andD and S3
and Table S1). A sterol-like density was observed in site 1, which
we assigned to be ergosterol, the most abundant endogenous sterol
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in yeast. To validate site 1, we took advantage of an in vivo func-
tional reconstitution assay that was established in our laboratory
(28). Inactivation of G5G8 in mice (G5−/−G8−/− mice) results in a
marked reduction in the cholesterol content of bile (Fig. 2B).
Biliary cholesterol secretion can be reconstituted by expressing

recombinant G5 and G8 in G5−/−G8−/− mice using adenoviral
expression vectors. G5−/−G8−/− mice were infected with adenovi-
ruses expressing both wild-type G5 protein (G5WT) and G8WT or
mutant G5(WT) and G8(mutant) (or vice versa). After 3 d, bile
was collected, and the sterol content was quantified using liquid
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chromatography–mass spectrometry. Expression of G5WT and
G8WT resulted in a >20-fold increase in cholesterol content in bile
(Fig. 2B). When we disrupted the hydrophobic character of site 1
by introducing the I419E mutation into G8 or when we substituted
a bulky residue for residue Ile529 (I529W) in G5 to provide steric
hindrance, biliary cholesterol levels decreased by over 50 to 80%.
The levels of expression of both the precursor (pG5, pG8) and
mature, fully glycosylated forms of G5G8 (mG5, mG8) were sim-
ilar between all groups of mice (Fig. 2C). Thus, the mutations do
not interfere with the folding, heterodimerization, or intracellular
trafficking of G5G8 to the biliary membrane. Furthermore, we
purified G5I529WG8 and G5G8I419E from HEK293 cells and de-
termined their structures at 3.5- and 3.1-Å resolution, respectively
(SI Appendix, Fig. S4 and Table S2). Although the cryo-EM maps
of the sterol-like molecule that is attached to the protein surface in
the vicinity of residue Phe433 of G8 are similar to the WT protein,
no sterol-like density is present in site 1 of G5I529WG8 and
G5G8I419E (Fig. 2D). These results confirm the important roles of
G5-I529 and G8-I419 in substrate binding and provide further
support for the premise that sterol binding to site 1 is required for
sterol transport by G5G8.

Sterol Binding Site 2 of G5G8
To further dissect the molecular mechanisms of G5G8-mediated
sterol export, we supplemented purified recombinant G5G8
expressed in yeast with cholesterol (0.5 mM) to saturate the
sterol-binding sites. The structure of cholesterol-bound G5G8
was determined at 3.0-Å resolution (Fig. 3A and SI Appendix,
Fig. S5 and Table S1). Two sterol molecules were identified: one
in site 1 and the other buried in a more hydrophobic cavity lo-
cated midway through the TMHs and oriented in a plane that
was parallel to the membrane (referred to as “site 2”) (Fig. 3B).
Since no sterol molecule was identified in site 2 without cho-
lesterol supplementation (Fig. 2A and SI Appendix, Fig. S2C), we
assigned a cholesterol molecule to this position. One part of site
2 is hydrophilic, comprising the side chains of Gln425 in TMH2,
Ile539 of TMH5 in G5, and Asn568 in TMH5 of G8, while the
other part is hydrophobic, formed by the Ile395 and Phe399 of
TMH1 and Tyr432 of TMH2 in G5 and the residue Phe561 of
G8-TMH5 (Fig. 3C).
To further validate that site 2 is a bona fide sterol-binding site,

we performed more extensive mutagenesis. Substitution of G5-
I395 and G8-F561 with alanine resulted in an ∼50% reduction in
cholesterol export into bile. Substitution of both residues to-
gether resulted in almost complete inhibition of sterol transport
(Fig. 3D). Neither of these mutations altered the expression or
trafficking of G5 or G8 (Fig. 3E). Previously, we have found that
substitution of alanine for tyrosine in position 432 of G5 (Fig.
3C) dramatically impaired cholesterol transport into bile (23).
These experiments are consistent with the notion that site 2 plays
a key role in cholesterol efflux.

Structure of Cholesterol-Bound G1
To further investigate how ABCG transporters mediate choles-
terol efflux, we expressed G1WT in Sf9 cells and a catalytic mu-
tant isoform E242Q (G1EQ) in HEK cells. The E242Q mutation
abolishes ATP hydrolysis without interfering with ATP binding
(29, 30). Basal ATPase activity of purified G1 was comparable to
that seen for other ABC transporters (31–34). ATPase activity
was stimulated by cholesterol but not its diastereomer, epi-
cholesterol. This result is akin to other ABC transporters like
G2 (33), ABCC1 (32), and NaAtm1 (35). As expected, no ATPase
activity was detected for the catalytic mutant G1EQ (Fig. 4A).
The structure of the G1WT homodimer was determined at 3.7-

Å resolution with C2 symmetry in an inward-facing conformation
(Fig. 4 B and C and SI Appendix, Fig. S6 and Table S3). The
overall fold of G1 is similar to that of G2 with an rmsd of 1.7 Å
(SI Appendix, Fig. S7A) and G5G8 with an rmsd of 2.2 Å (SI

Appendix, Fig. S7B), but very different from the folding pattern
found in the A, B, and C subfamilies of ABC transporters, such
as ABCA1 (25), P-glycoprotein (ABCB1) (36), and CFTR
(ABCC7) (37) (SI Appendix, Fig. S7C). Residues Cys611 and
Cys617 in the extracellular loop of each G1 protomer form an
intramolecular disulfide bond (Fig. 4C). Similar disulfide bonds
are present in the extracellular regions of G2 and G5, but not in
G8. Unlike G2 (SI Appendix, Fig. S7A), G1 does not contain an
intermolecular disulfide bond. The CnH, CpH, and E helix of
each protomer form a three-helix bundle, as demonstrated pre-
viously in the other ABC transporters (Fig. 4D) (24). The
transmembrane helices TMH2 and TMH5 of each G1 half-
transporter form a hydrophobic cavity that is accessible to the
cytosol (Fig. 4B).
We then determined the structure of G1EQ after incubating

the protein with cholesterol, ATP, and MgCl2 prior to grid
preparation. Two states of G1EQ were determined: One is inward-
facing, similar to the conformation of G1WT (no nucleotide bound
to NBSs), and the other is outward-facing and has ATP bound to
both NBSs (SI Appendix, Fig. S8). A sterol-like density was present
in the hydrophobic cavity of the inward-facing G1EQ (Fig. 5A and
SI Appendix, Fig. S8D and Table S2). Since there is no notable
density in the same position of G1WT, we assigned it as the cho-
lesterol substrate. The residues Phe455, Met459, and Leu463 in
TMH2 and residues Phe555, Pro558, Val559, and Ile562 in TMH5
of the other G1 molecule engage the putative cholesterol substrate
(Fig. 5B). We tentatively built the 3′-hydroxyl group of cholesterol
facing the center of G1, consistent with its orientation in G5G8
and G2 (Fig. 2A and SI Appendix, Fig. S9A) (26). The cholesterol-
binding site in G2 accommodates a chemically similar modulator,
thus preventing the binding of other substrates in the central site
(SI Appendix, Fig. S9B) (38). We also observed a fatty acid chain-
like density in the same cavity in cholesterol-bound G1EQ (SI
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Appendix, Fig. S9C); however, the identification and function of
this molecule remain unclear.
To validate the roles of key residues in cholesterol recognition,

we assayed the ATPase activities of purified G1 mutants expressed
in Sf9 cells to determine whether their activity is stimulated by
cholesterol. Each mutant showed a similar behavior in solution
during purification as G1WT (SI Appendix, Fig. S10). The results
showed that mutations in the cholesterol-binding site, including
F455A, F555A, and P558A, decrease the basal activity of G1
(Fig. 5C), which is consistent with the finding that some mutations
in the substrate-binding site of G2 also decrease basal ATPase
activity (33, 39). Unlike G1WT, the ATPase activities of G1F455A
and G1F555A are not enhanced by cholesterol. A significant in-
crease in ATPase activity was seen only in G1P558A upon incuba-
tion of the protein with 0.25 mM cholesterol (Fig. 5C).
To assess the effects of these mutations on G1-mediated sterol

transport, we took advantage of an established assay that mon-
itors the effect of G1 expression on cells: G1 expression in cells
results in a redistribution of intracellular cholesterol and acti-
vation of the cholesterol-regulated transcription factor sterol
regulatory element binding protein (SREBP)-2 (40). We used an
SREBP-dependent luciferase assay to monitor the intracellular
cholesterol export activity of G1. Luciferase activity of cells
expressing G1WT was threefold higher than cells that were
transfected with the empty vector, or with G1EQ, G1F455A, and
G1F555A (Fig. 5D). The luciferase activity of cells expressing
G1P558A decreased slightly; this result is consistent with the
findings that the ATPase activity of G1P558A is stimulated with
addition of cholesterol in an in vitro assay (Fig. 5C).

Structure of ATP-Bound G1
The structure of ATP-bound, outward-facing G1EQ was determined
at 3.7-Å resolution (Fig. 6A and SI Appendix, Fig. S8 F–H and Table
S3). Two ATP molecules were identified in the cryo-EM map.
Residues Lys124, Thr126, Gln164, and Gln242 (Glu242 in G1WT)
plus residues Ser216 and Gln221 of the contralateral G1EQ interact
with ATP (Fig. 6B). In the ATP-bound form of G1, the cavity in the
cytosolic leaflet is closed and another cavity appears in the extra-
cellular leaflet (Fig. 6C). The distances between Cα of Leu463 and
Gln551 change from 12 to 7 Å, while the distances between Cα of
Gly444 and Phe571 increase by ∼2 Å to open the extracellular
cavity (Fig. 6C). In the cholesterol-bound state, Phe447 in TMH2
and Phe570 and Phe571 in the C terminus of TM5Ha pack together
through π–π interactions with the same residues of the contralateral
G1 to form a plug that blocks the central conduit.
When ATP binds the NBS, the residues move ∼4 Å away from

the core, opening an extracellular cavity (Fig. 6D). After binding
ATP, the E helix of G1 is in the center of the protein, causing a
6-Å shift of the CnH (Fig. 6E). Residue Gln164 triggers the
movement of β5, inducing an ∼3-Å shift of the CpH, which in
turn results in movement of TMH3 into the center (Fig. 6F).
These changes prompt TMH5a to move toward the center, thus
closing the cavity in the cytosolic leaflet (Fig. 6D). ATP binding
induces the extracellular regions of G1 to move 4 Å away from
the center to the edge of the transporter (Fig. 6G).

Structural Comparison of G1, G5G8, G2, and ABCA1
Sterol-binding site 1 of G5G8 is similar in position to that of G1
(Fig. 7A). Taken together with the finding of a sterol-like lipid or
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detergent in the cytosolic leaflet of ABCA1 (SI Appendix, Fig.
S7C), it is tempting to speculate that the three cholesterol ex-
porters are loaded with cholesterol in a similar fashion. In G1,
TM1 does not engage the sterol substrate. In G5G8, TM1 of G8,
but not of G5, engages the sterol substrate (Fig. 7B). Notably,
there is no substrate-binding site in G2 that is equivalent to site 1
in G1 or G5G8 (SI Appendix, Fig. S9 B and D), presumably
because G2 transports hydrophilic molecules that can access G2
directly from the cytosol. In contrast, neutral sterols require a

binding site that is accessible to the cytosolic leaflet of the
membrane so that it can physically engage with the transporter
without contacting water or hydrophilic molecules. Although
cholesterol can flip spontaneously between the inner and outer
leaflets of membranes, even in the absence of proteins (2), it is
not clear how the cholesterol in the bilayer would enter site 1.
Alternatively, a carrier protein may deliver the sterol into the
sterol-binding site. Like G2 and G5G8, G1 and ABCA1 might
have a central cavity that serves as a midpoint along the
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cholesterol efflux pathway, although no such sites have been
captured in the structural models available to date (SI Appendix,
Fig. S9 D–F). In G5G8, the 3′-hydroxyl group of the sterol
substrate is oriented toward the hydrophilic regions of sites 1 and
2 (Figs. 2A, 3B, and 7B). Sterols in site 1 may pivot to the
midpoint of the translocation pathway (site 2) without flipping
during the export process.
G5G8 and G1 share structural features in common, suggesting

that these two transporters translocate sterols across membranes
using similar mechanisms. First, they both have similarly posi-
tioned aromatic plugs, which in G1 modulates the core size of
the cholesterol translocation pathway (Figs. 6D and 7C). Second,
they have four buried salt bridges among the CnH–CpH–E helix
bundles, which are required for coupling the energy generated
from ATP hydrolysis to the conformational changes of TMDs
(Fig. 7D).

Unique Features of G8
Our previous study revealed a striking asymmetry in the ATPase
activities of the two NBSs: Only the Walker A (P loop) and
Walker B motifs of G5 and the signature motif of G8 are re-
quired for ATP-driven cholesterol export in vivo (22). Notably, a
conserved lysine in the P loop, which is essential for engaging
ATP (Lys124 of G1 and Lys92 of G5), is substituted by an ar-
ginine (Arg111) in G8. This mutation is not present in the de-
generate sites of any of the other mammalian ABC transporters
that have been sequenced (Fig. 8A).

The P loop of G8, which is located in NBS1 of G5G8, is shifted
laterally by ∼10 Å relative to the P loops of G5 or G1. This shift
is predicted to introduce a steric hindrance for ATP binding
(Fig. 8 B and C). A broader comparison of this degenerate
ATPase with other ABC transporters supports the notion that
the change seen in NBS1 of G5G8 is distinct (Fig. 8D). Of the
other 29 full-length or heterodimeric ABC transporters in the
mammalian genome, 21 have one active and one degenerate
NBD. In almost all cases, the glycine in the signature sequence is
mutated or the “catalytic” glutamate in the Walker B motif is
changed to aspartate (e.g., TAP1 and MRP1) or serine (e.g.,
CFTR) (41). These changes do not alter the overall structure of
the NBS; ATP binding is retained but ATP hydrolysis is abol-
ished (37). The changes are highly conserved in these trans-
porters, indicating ongoing evolutionary pressure on the
sequence of the degenerate NBD. In contrast, the sequence
change in the P loop of the degenerate NBS of G5G8 dramati-
cally alters the fold (Fig. 6B) and results in a marked decrease in
ATP binding (22).

Cholesterol Transport by G1 and G5G8
How do rigid hydrophobic sterols get exported across the mem-
brane by these two ABC transporters? Molecular dynamics sim-
ulations predicted that within 100 ns of simulation, sterol leaves
site 2 of G5G8 in an orientation such that the 3′-hydroxyl group
faces the extracellular space (Movie S1). When the transporter is
in the inward-facing conformation, a cavity in the cytosolic leaflet
engages the sterol substrate (site 1). The substrate may traffic from
site 1 to the more hydrophobic site 2 in the center of the TMHs
(Figs. 3A and 8E). It remains unclear how sterol trafficking in the
channel in the TMHs is related to ATP binding or hydrolysis. G1
assumes a closed conformation when ATP binds the NBS, which
collapses site 1 while simultaneously pushing the neutral sterol
substrate to the extracellular cavity, where it binds extracellular
lipid acceptors or enters the outer hemileaflet of the bilayer. Upon
extracellular cholesterol release and ATP hydrolysis, the trans-
porter returns to the resting state, ready to transport another
cholesterol molecule (35, 42–44). Further structural analysis of
G5G8 will be required to determine how ATP hydrolysis can
rearrange the TMHs so that it flips from an inward- to an
outward-facing state, as has been found to occur in other ABC
transporters.

Materials and Methods
Generation of Anti-Human G5G8 Antibody. Immunoglobulin G (IgG)-2C7, a
mouse monoclonal anti-human G5G8 antibody, was prepared by fusion of
SP2-mIL6 mouse myeloma cells with splenic B lymphocytes obtained from
BALB/c mice (n = 2). Mice were immunized with one primary and eight
boosts of purified recombinant human G5G8 heterodimers (50 μg) in 10 mM
Hepes (pH 7.5), 100 mM NaCl, 0.1% n-dodecyl-β-D-maltopyranoside (DDM),
0.05% cholate, and 0.1 mM tris(2-carboxyethyl)phosphine (TCEP) combined
with the Sigma Adjuvant System. Hybridoma culture supernatants were
screened by enzyme-linked immunosorbent assay (ELISA) and coun-
terscreened by dot blot to select ELISA-positive, dot blot–negative clones.
One such hybridoma, designated IgG-2C7 (subclass 1, k), was subcloned by
serial dilution three times and purified from hybridoma culture supernatant
by gravity-flow affinity chromatography on protein G Sepharose 4 Fast
Flow columns.

Protein Expression and Purification. The complementary DNA (cDNA) of hu-
man ABCG1 (GenBank accession no. BC029158.1) was cloned into pFastBac
with an N-terminal Flag tag. The G1WT protein was expressed using
baculovirus-mediated transduction of Sf9 insect cells (ATCC). At 48 h post
infection, the cells were disrupted by sonication in buffer A, containing 20 mM
Hepes (pH 7.5), 150 mM NaCl, with 1 mM phenylmethanesulfonylfluoride and
5 μg/mL leupeptin. After low-speed centrifugation, the resulting supernatant
was incubated in buffer B with 1% (weight/volume; wt/vol) lauryl maltose
neopentyl glycol (LMNG; Anatrace) for 1 h at 4 °C. The lysate was centrifuged
at 18,000 rpm for 30 min, and the supernatant was loaded onto a Flag-M2
affinity column (Sigma-Aldrich). After washing three times, the protein was
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eluted in 20 mM Hepes (pH 7.5), 150 mM NaCl, 100 μg/mL 3×Flag peptide, and
0.01% LMNG and concentrated. The concentrated protein was purified by a
Superose 6 Increase size-exclusion chromatography column (GE Healthcare) in
a buffer containing buffer A and 0.06% (wt/vol) digitonin (ACROS Organics).
The cDNA of the E242Q mutant was generated using the primers 5′-AGTCAT-
GTTCTTCGATCAGCCCACCAGCGGCCT-3′ and 5′-AGGCCGCTGGTGGGCTGATCG-
AAGAACATGACT-3′ and cloned into pEG BacMam with an N-terminal Flag
tag. The protein was expressed using baculovirus-mediated transduction of
mammalian HEK-293S GnTI− cells (ATCC). The cells were harvested at 48 h post
infection and the protein was purified the same as G1WT.

The cloning and expression of recombinant human G5G8 in P. pastoris
were performed as described previously (23). The expression of human G5G8
in mammalian HEK-293S cells was performed by cloning the cDNAs for hu-
man ABCG5 (National Center for Biotechnology Information [NCBI] acces-
sion no. NM_022436) and ABCG8 (NCBI accession no. NM_022437) into
separate pEG BacMam, respectively, and they were coexpressed using
baculovirus-mediated transduction of mammalian HEK-293S GnTI− cells
(ATCC). A tandem tag of six histidines separated by glycine (His6GlyHis6) was
added to the C terminus of G5, and a tag encoding a rhinovirus 3C protease
site followed by a calmodulin-binding peptide was added to the C terminus
of G8, for purification purposes. At 72 h post infection, the cells were col-
lected by centrifugation and the recombinant protein was solubilized and
purified as previously described (23). The expressed human G5G8 was puri-
fied as described (23) except that cholesteryl hemisuccinate Tris was not
added to any buffer, and one more purification step was added using
Superdex 200 Increase 10/300 GL for gel filtration with a buffer containing
20 mM Hepes (pH 7.5), 150 mM NaCl, 2 mM MgCl2, 2 mM ATP, and 0.06%
(wt/vol) digitonin (Calbiochem).

ATPase Assays. The ATPase activity of purified G5G8 was determined as
described (23, 45). Briefly, 4 to 10 μg proteins was mixed with 100 μg liver
polar lipids (Avanti), 5 mM dithiothreitol (DTT), and 1% sodium cholate for
10 min at room temperature. Reactions were carried out in a final volume of
100 μL containing 50 mM Tris·HCl (pH 7.5), 60 mM NaCl, 30 mM KCl, 2.5 mM

MgCl2, and 2.5 mM γ-[32P]ATP at 37 °C for 30 min. Released inorganic [32P]
phosphate was extracted by molybdate and the radioactivity was measured
to calculate its specific activity in three independent experiments.

The ATPase activity of G1 was measured using an NADH consumption-
coupled method (46, 47). The assay was performed at 37 °C in a 96-well plate
with a total reaction volume of 100 μL. Absorbance at 340 nm was moni-
tored to measure the concentration of NADH which was coupled to that of
ATP. The final reaction included 0.3 to 0.5 μM G1, 0.2 mM NADH, 4 mM
phosphoenolpyruvate, 60 μg/mL pyruvate kinase, 33 μg/mL lactate dehy-
drogenase, 1 mM DTT, 2 mM MgCl2, 0.06% digitonin, 150 mM NaCl, and
20 mM Hepes (pH 7.5). For the ATP titration assay (Fig. 4A), 0.5 to 20 mM
ATP was included in the final reaction, with the presence of 0.25 mM cho-
lesterol and 0.25 mM epi-cholesterol or an equal volume of ethanol. For
measuring the effect of cholesterol ATPase activity (Fig. 5C), 8 mM ATP and
0.5 μM G1 protein were supplemented across all reactions. Due to its in-
stability, NADH was dissolved and added right before the start of the re-
action. The plate and reaction stock solution were prewarmed before the
different reacting components were mixed. The absorbance was measured
every 20 s for 60 min using a BioTek Synergy Neo plate reader. The Vmax of
absorbance change (min−1) was calculated by the built-in software using 20
to 30 points in the linear region, which was converted to the rate of ATP
hydrolysis (nmol ATP·min−1·mg protein−1) by dividing the product of the
extinction coefficient of NADH, the length of the light path, and the con-
centration of G1. An identical reaction containing buffer instead of G1
protein was measured in the same plate and was deducted from the
corresponding experimental group.

In Vivo Functional Reconstitution Cholesterol Transport Assay. Point mutations
were introduced into the human G5 and G8 cDNAs using the QuikChange II
Site-Directed Mutagenesis Kit (Agilent). The recombinant adenoviruses
expressing human WT or mutant were generated using the AdenoVator
Adenoviral Vector System (QBioGene). Eight- to 12-wk-old total knockout
(G5−/−G8−/−) mice were maintained on a regular chow diet (48). Adenoviral
particles (5 × 1012 particles per kilogram), containing no external gene (RR5)
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or WT or mutant human G5G8, were injected into the tail veins of the mice.
After 72 h, the mice were fasted for 4 h, anesthetized with halothane, and
killed by exsanguination. Bile was collected, and neutral sterol levels were
measured using gas liquid chromatography and mass spectrometry as de-
scribed (23). Liver tissue was snap-frozen in liquid nitrogen and stored at −80
°C. All animal experiments described in this manuscript were approved and
conducted under oversight of the UT Southwestern Institutional Animal
Care and Use Committee.

Immunoblot Analysis of Expression of G5G8 in Mouse Liver and G1 in CHO-K1
Cells. Mouse livers were cut into small pieces, washed with ice-cold buffer
containing 0.2 M sucrose, 50 mM Tris-4-morpholineethanesulfonic acid
(MES) (pH 7.0), and 0.1 M NaCl, and homogenized in a 3× volume of buffer.
The homogenate was centrifuged at 1,500 × g for 10 min. The resulting
postnuclear membrane was centrifuged at 100,000 rpm in a TLA100.4 rotor
for 15 min at 4 °C. The pellets were resuspended in the same buffer and
protein concentration was measured. For Western blot, 25 μg protein of
pooled membranes for each group of samples was used for each lane. An-
tibodies (Abs) used were as follows: for human G5: monoclonal Ab 13H11,
10 μg/mL (made in-house); for human G8: monoclonal Ab 8E3, 10 μg/mL
(made in-house); and for calnexin (CNX), polyclonal Ab (Enzo; ADI-SPA-860-
F), 4,000× dilution.

To detect expression of G1 in CHO-K1 cells, a total of 2.5 × 105 cells were
resuspended in RIPA buffer. After a high-speed centrifugation, the super-
natant was incubated with solubilization buffer (62 mM Tris·HCl, pH 6.9,
15% sodium dodecyl sulfate, 8 M urea, 10% glycerol, and 100 mM DTT, at a
1:1 volume ratio) at 37 °C for 30 min. After electrophoresis the proteins were
transferred to nitrocellulose filters. The filters were incubated with anti-G1
rabbit polyclonal antibodies (1:500; Novus Biologicals; NB400-132) at 4 °C
overnight, followed by horseradish peroxidase (HRP)–linked anti-rabbit IgG
(1:5,000; Cell Signaling Technology) at room temperature for 30 min. HRP-
conjugated β-actin antibody (1:5,000; Cell Signaling Technology) was used to
visualize the proteins using a SuperSignal West Pico PLUS Chemiluminescent
Substrate Kit (Thermo Fisher Scientific). Images were scanned and analyzed
using an Odyssey Fc Imaging System (LI-COR Biosciences).

Luciferase Reporter Assay. The cDNA of human ABCG1 was cloned into
pcDNA3.1 without a tag. Cells were transfected using FuGENE HD (Promega)
according to the manufacturer’s instructions. On day 0, CHO-K1 cells were
maintained in medium A, a 1:1 mixture of Ham’s F-12 medium and Dul-
becco’s modified Eagle’s medium (DMEM) containing 2.5 mM L-gluta-
mine,100 U/mL penicillin, 100 μg/mL streptomycin sulfate, and 5% fetal calf
serum (FCS) at a density of 8 × 104 cells per well on 24-well plates. On day 1,
monolayers were replaced with medium A and each well was transfected

with 100 ng pSynSRE (Addgene), plus 5 ng of each expression plasmid, and
50 ng pRL-TK (Promega) as a control to normalize for changes in transfection
efficiency according to a previously published protocol (40). After 5 h, the
culture medium was switched to medium A with 10% FCS. On day 3, after
being cultured for 22 h, cells were washed with phosphate-buffered saline.
Firefly and Renilla luciferase activities were measured using the Dual-
Luciferase Reporter Assay System (Promega). The data analysis was per-
formed using Prism 7 (GraphPad Software). Results are shown as mean ± SD
from three biologically independent experiments.

EM Imaging Processing, Three-Dimensional Refinement, and Molecular
Dynamics Simulation. The details are in SI Appendix.

Reproducibility. All animal experiments were repeated at least two times on
different days. All cell biological and biochemical experiments were repeated
at least three times on different days. Similar results were obtained.

Data Availability. The three-dimensional cryo-EM density maps reported in
this article have been deposited in the Electron Microscopy Data Bank under
the accession nos. EMD-24315 (G1WT), EMD-24316 (cholesterol-bound G1EQ),
EMD-24317 (ATP-bound G1EQ), EMD-24313 (HEK-expressed G5G8), EMD-
24311 (HEK-expressed G5I529WG8), EMD-24310 (HEK-expressed G5G8I419E),
EMD-24312 (yeast-expressed G5G8), and EMD-24314 (cholesterol-bound
G5G8). Atomic coordinates for the atomic model have been deposited in
the Protein Data Bank under ID codes 7R8C (G1WT), 7R8D (cholesterol-bound
G1EQ), 7R8E (ATP-bound G1EQ), 7R8A (HEK-expressed G5G8), 7R88 (HEK-
expressed G5I529WG8), 7R87 (HEK-expressed G5G8I419E), 7R89 (yeast-expressed
G5G8), and 7R8B (cholesterol-bound G5G8). All study data are included in the
article and/or supporting information.
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