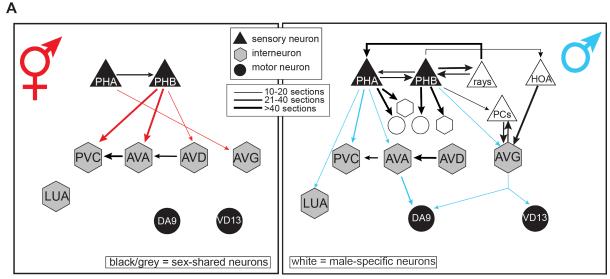
Current Biology, Volume 30


Supplemental Information

Synaptic Protein Degradation

Controls Sexually Dimorphic Circuits

through Regulation of DCC/UNC-40

Yehuda Salzberg, Vladyslava Pechuk, Asaf Gat, Hagar Setty, Sapir Sela, and Meital Oren-Suissa

red: hermaphrodite-specific chemical synapse between shared neurons blue: male-specific chemical synapse between shared neurons

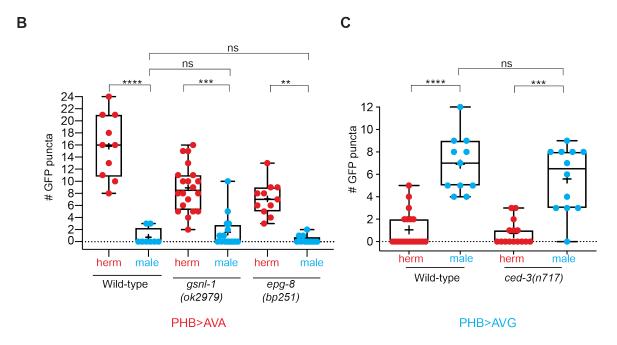


Figure S1. Connectivity of selected neurons at the adult stage, and pathways found to be dispensable for sex-specific synapse elimination. Related to Figure 1.

(A) Inferred from serial section reconstructions of electron micrographs (www.wormwiring.org) [S1-S3]. Chemical synapses between sensory (triangles), inter-(hexagons) and motor (circles) neurons are depicted as arrows. Thickness of arrows correlates with degree of connectivity (number of sections over which en passant synapses are observed).

Quantification of synaptic puncta of (B) PHB–AVA GRASP in the background of gsnl-1(ok2979) and epg-8(bp251) mutant hermaphrodites and males, (C) PHB–AVG GRASP in the background of ced-3(n717) mutant hermaphrodites and males. GSNL-1/gelsolin was shown to be regulated by the caspase CED-3, which cleaves GSNL-1 and enables its actin-filament-severing activity required for selective synapse elimination [S4]. EPG-8/Atg14 is part of the autophagy nucleation complex and was shown to affect synaptic vesicle clustering [S5]. We performed Kruskal–Wallis test with Dunn's multiple comparison test. ****P < 0.0001, ***P < 0.001, NS; non-significant.

In B wild-type herm n=10; males n=8, *gsnl-1* herm n=20; males n=16, *epg-8* herm n=11; males n=12. In C wild-type herm n=19; males n=11, *ced-3* herm n=15; males n=12.

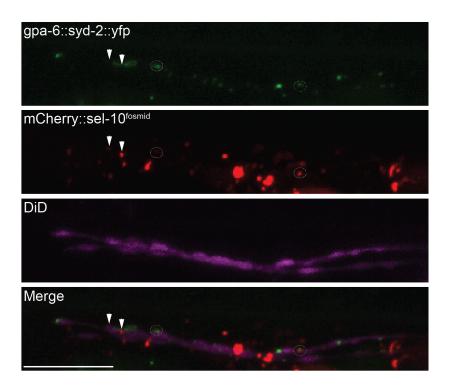
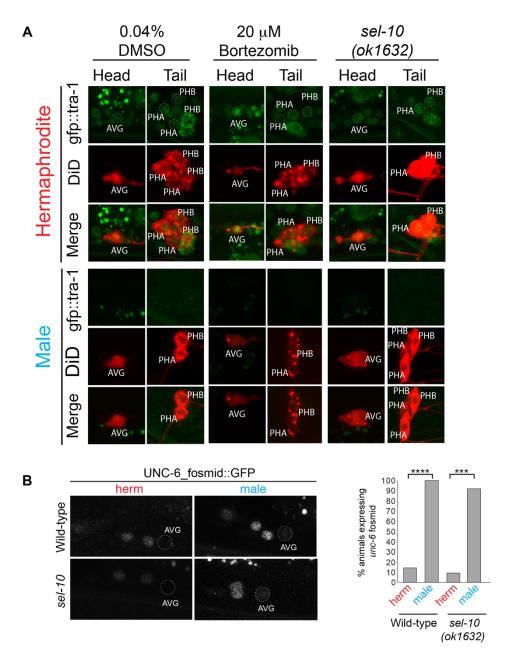
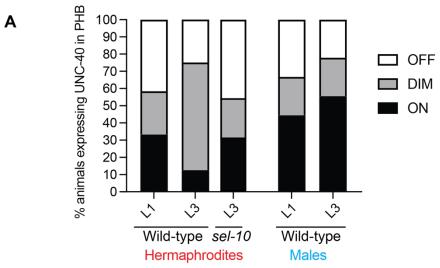
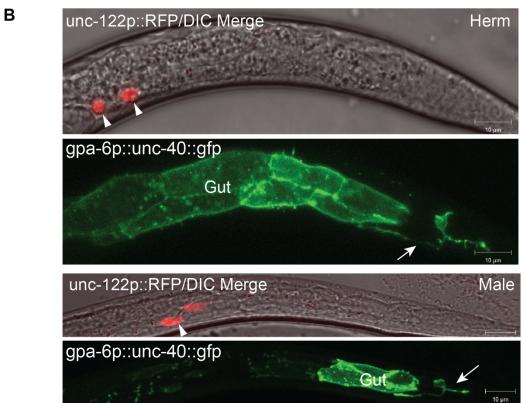
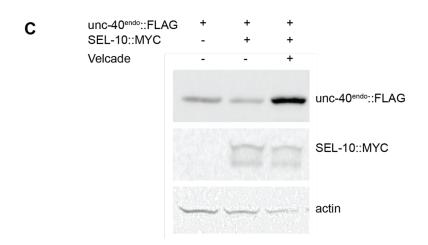


Figure S2. Some SEL-10 puncta co-localize with PHB synapses. Related to Figure 2.

Localization of mCherry::sel-10 puncta in PHB neurite. Synaptic sites are labeled with syd-2::yfp (green in figure), and Phasmids (PHA and PHB) are Dye stained (DiD, magenta in figure). Some SEL-10 puncta (Red) colocalize with SYD-2 (dashed circles, n=20 animals) and some SEL-10 puncta are found in close proximity to the YFP synaptic puncta (arrowheads). We note that PHB makes many connections with additional cells in the pre anal ganglion (Figure S1A).


Figure S3. sel-10 deletion animals do not show masculinization phenotypes. Related to Figures 2 and 3.

(A) Fluorescent micrographs of animals with a gfp-tagged *tra-1* locus (*tra-1(ez72)*), treated with Bortezomib or crossed to *sel-10* loss of function mutants. To identify AVG neurons an AVG::mCherry transgene was used, and to label the sensory phasmid neurons animals were stained with the lipophilic stain DiD. TRA-1 levels stay on in hermaphrodites and off in males upon inhibition of protein degradation (middle panel) and in the absence of *sel-10* (right panel), compared with controls (left panel). At least 15 animals were scored for each background. The *sel-10* allele analyzed here is a predicted null. Previously reported sexual phenotypes were based on a mis-sense change of function mutation in the WD repeat domain [S6].

(B) *unc-6* expression is unaffected in *sel-10* mutants and remains dimorphic. *unc-6* levels are measured using a fosmid reporter (otls638). Statistics were calculated using Fischer's Exact test. ****P < 0.0001, ***P < 0.001.Wild-type hermaphrodites n=14; males n=11, *sel-10* herm n=11; males n=12.

Figure S4. Developmental analysis of UNC-40 expression levels in PHBs. Related to Figure 4.

- (A) Quantification of fluorescence intensity in both sexes at L1 and L3 developmental stages, binned as high expression (on), low expression (dim) or no expression (off). Hermaphrodites: L1 n=12; L3 n=8, *sel-10* L3 n=13, Males: L1 n=9; L3 n=9. (See Figure 4A).
- (B) Fluorescence micrographs of UNC-40::GFP expression in hermaphrodites of the designated genotypes and developmental time points (arrows). Expression was driven by a PHB-specific promoter in a multi-copy array. Scale bars represent 10 μm. To distinguish between the sexes at the L1 stage, coelomocyte position (arrowheads) with respect to the gonadal primordium was imaged and scored [S7, S8]. (See Figure 4A).
- (C) Inhibiting the UPS suppresses sel-10-mediated degradation of UNC-40/DCC. Western blot on transfected HEK293t cells, showing that SEL-10 mediated degradation of an UNC-40 intracellular fragment (UNC-40^{endo}, residues 1108-1415) is blocked upon addition of the proteasome inhibitor velcade (10 μ M for 16 hours). SEL-10 was tagged with a myc tag and UNC-40^{endo} with a FLAG tag. (See Figure 4E).

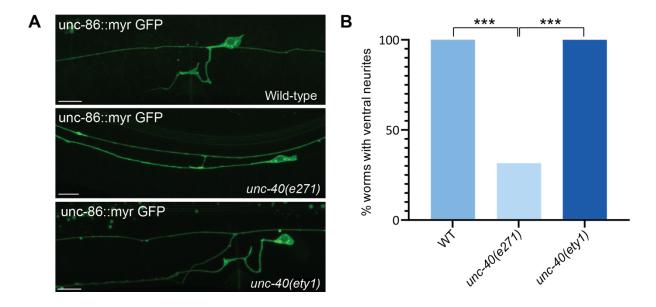
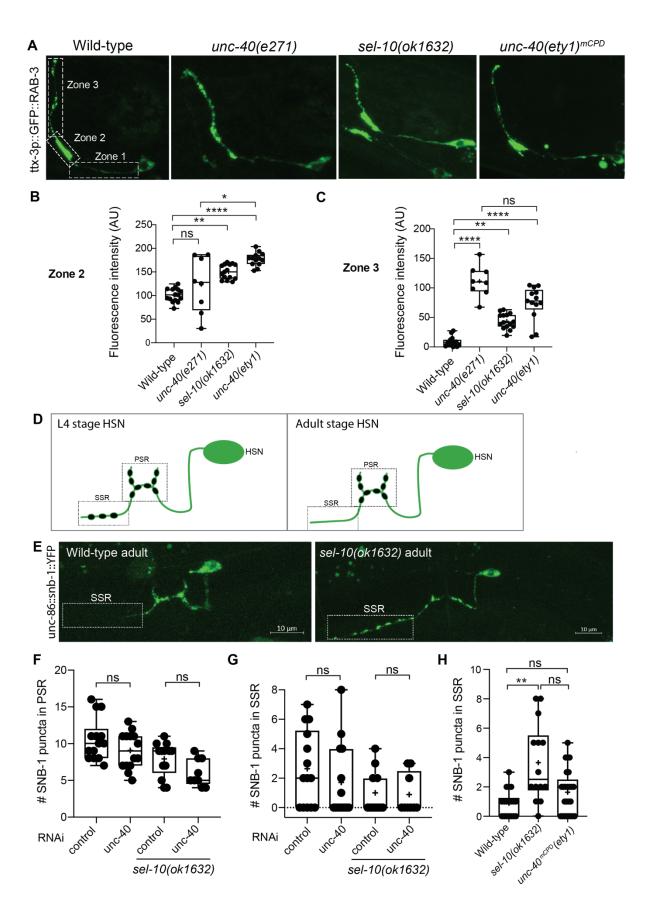



Figure S5. CPD-mutated *unc-40* animals do not show guidance defects in HSN neurite. Related to Figure 5.

- (A) Fluorescence micrographs of unc-86::myr::GFP in wild type, unc-40(e271) and unc-40(ety1) CPD mutant animals. Scale bars represent 10 μ m.
- (B) Percentage of animals with ventral HSN neurites in wild-type, unc-40(e271) and unc-40 CPD mutant (ety1) animals. Wile-type n = 20; unc-40 (e271) n = 19; unc-40(ety1) n = 30. In panel B we performed Fisher's exact test followed by Benferroni correction for multiple comparisons. ***P < 0.001.

Figure S6. Interaction between *sel-10* and *unc-40* in other synaptic contexts. Related to Figure 3.

- (A) Distribution of presynaptic sites of AIY in wild-type, *unc-40(e271)*, *sel-10(ok1632)* and *unc-40(ety1)* CPD mutant animals. Confocal fluorescent micrographs of GFP::RAB-3 demonstrate the distribution pattern of presynaptic vesicles in AIY. Electron microscopy reconstructions have shown that AIY has three anatomical distinct regions along its process; zone 1 has no synapses, the dorsal turn of AIY (zone 2) and the distal axon segment within the nerve ring [S9, S10]. Diagrams below micrographs depict the three different zones in the different genetic backgrounds.
- (B-C) Quantification of the fluorescence intensity (arbitrary units, AU) of synaptic vesicles in zone 2 (B) and zone 3 (C). Wild-type n=15, *unc-40(e271)* n=8, *sel-10(ok1632)* n=15, *unc-40 (ety1)* n=13.
- (D) Schematic of HSN neuron and its synapses in L4 and adult stages [S11]. Shown in the scheme are synapses of the primary synaptic region (PSR, dashed square) and the secondary synaptic region (SSR, dashed rectangle).D
- (E) Fluorescence micrographs of SNB-1::YFP in WT animals and in *sel-10(ok1632*) mutants. SSR is shown in dashed rectangle. Scale bars represent 10 μm.
- (F-G) Quantification of SNB-1::YFP synaptic puncta in the PSR (C) and in the SSR (D) in animals fed control empty RNAi plasmid or RNAi plasmid targeting *unc-40*, in a wild type or *sel-10(ok1632)* mutant backgrounds. Wild type ctrl n=14; *unc-40* RNAi n=14, *sel-10* ctrl n = 13; *unc-40* RNAi n=9.
- (H) Quantification of SNB-1::YFP synaptic puncta in the SSR in wild type, sel-10(ok1632) mutants and unc-40(ety1) CPD mutants. Wild type n=18; sel-10 n=14; unc-40 CPD n=25. In B, C, H we performed Kruskal–Wallis test followed by Dunn's multiple comparison test. In F-G we performed One-way ANOVA test followed by Sidak's multiple comparison test. In panel E we performed Kruskal–Wallis test followed by Dunn's multiple comparison test. ****P < 0.0001, **P < 0.01, *P < 0.05, NS; non-significant.

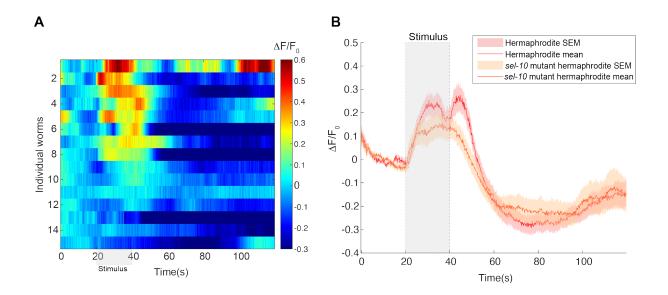


Figure S7. *Sel-10* loss of function attenuates the hermaphrodite response to glycerol. Related to Figure 6.

- (A) Individual worms' AVG calcium traces of *sel-10* mutant hermaphrodites in response to 2 M glycerol. Normalized GCaMP6s signal Δ F/F0 is color-coded (Color bar shows color range according to normalized fluorescence intensities). Stimulus was delivered at 20 to 40 sec, total imaging duration was 2 min.
- (B) Average GCaMP6s signals of AVG neurons of wild-type hermaphrodites (red), and sel-10 mutant hermaphrodites (orange) in response to the stimulus. The colored lines and shaded area surrounding them indicate the mean values of $\Delta F/F0$ and SEM, respectively.

identifier	sequence	purpose
GRASPbb F1u	GAATTCCAACTGAGCGCCGGTCG	Gibson cloning of
GRASPbb R1u	GCTAGCCAAGGGTCCTCCTGAA	sel-10 cDNA under
sel10 F1	TTCAGGAGGACCCTTGGCTAGC	PHB or AVG
30110_11	ATGTGGCCACGAAATGATGTAC	promoter (sel-10
sel10_R1	CGACCGGCGCTCAGTTGGAATTC	sequence in red)
SCITO_ICI	TTAAGGGTATACAGCATCAAAGTCG	sequence in rea;
pCDNA3.1 R1u	GGATCCGAGCTCGGTACCAAGC	Gibson cloning of
pCDNA3.1 F1u	GAATTCTGCAGATATCCAGCACAGTGGC	UNC-40 ^{endodomain}
unc-40dNtFLAG	GCTTGGTACCGAGCTCGGATCC	into pcDNA3.1
F1	ATGCATCAAGTCAGCAATTTACTTC	•
unc-40dNtFLAG	GCCACTGTGCTGGATATCTGCAGAATTC	
R1	TTACCTTCGAACCGAGGG	
dpy-10 crRNA	GCUACCAUAGGCACCACGAGGUUUUAG	Co-CRISPR for
	AGCUAUGCUGUUUUG (dpy-10 sequence in	unc-40 CPD
	red)	mutagenesis (with
unc-40 CPD1	GCAUUUGCAGCUGAUGAAUUGUUUUA	dpy-10 as marker,
crRNA	GAGCUAUGCUGUUUUG (unc-40 sequence	see Paix et al, 2015
	in red)	[S12])
dpy-10 ssODN	CACTTGAACTTCAATACGGCAAGATGAGAATGACTGG	
	AAACCGTACCGCATGCGGTGCCTATGGTAGCGGAGCT TCACATGGCTTCAGACCAACAGCCTAT	
unc-40 ssODN	CCTACAGTAATCGATGGATACCGTACTCTACGTGGAG	
	CACCCCGAATGCATCAGCTGCAAATGCTCTTCGGTC	
	ATTCACTCAATTGG (CPD mutations in red, silent mutations for PAM erasure and restriction site in yellow)	
CPDm val f1	GGCATCAGGTTGGAGTCATT	Genotyping of unc-
CPDm val r1	TCTCTCCATTCGATGAACCA	40 ^{mCPD} crispr allele
CPDm val f2	CTACGTGGAGCACCCCGAATG	•
MVC6-CPD-F	GGAaCACCtCCaAATtCATCAGCTGCATA	Cloning of UNC-40
	AGAATTCCAACTGAGCGCCGGTCG	CPD peptide (12aa)
MVC6-CPD-R	AGCTGATGaATTtGGaGGTGtTCCACGTA	under PHB
	GCATGCTAGCCAAGGGTCCTCCTG	promoter using site
		directed
		mutagenesis
RH-inx-18b A	TATGTGATAAGAAGTTCTGAGAAG	PCR fusion to
Inx-18b R1	CTTCTACTTGAATCAACCATTTCTACCG	generate inx-
	GTACCGTCGACG	18b::GCaMP6s
GCaMP6s F1	ATGGTTGATTCAAGTAGAAG	fragment
GCaMP6s R1	CCGTACGGCCGACTAGTAGGAA	
RH-inx-18b A-	TTCTCTACTTTTTCAGCGGG	
nes		
GCaMP6s nested	GAAACAGTTATGTTTGGTATATTGG	
R1		

 $\begin{tabular}{ll} Table S1. List of DNA and RNA oligonucleotides used in this study. Related to STAR \\ Methods. \end{tabular}$

Figure 1C	PHB>AVA males n=17 DMSO treated; n=16 Bortezomib treated,	
	PHB>AVG hermaphrodites n=13 DMSO treated; n=17 Bortezomib treated,	
	PHA>AVG males n=11 DMSO treated; n=11 Bortezomib treated	
Figure 1E	<i>uba-1</i> 15°C n=16, <i>uba-1</i> 25°C L3 shifted n=12, <i>uba-1</i> 25°C L1 shifted n=16,	
	uba-1 25°C PHB-UBA-1 rescue n=15, uba-1 25°C AVG-UBA-1 rescue	
	n=14, wild-type males n=14, <i>uba-1</i> 25°C L1 shifted males n=10	
Figure 2A	Wild-type herm n=11; males n=11, sel-10(ok1632) herm n=15; males n=12,	
	sel-10 PHB rescue herm n=16, sel-10 AVG rescue herm n=16	
Figure 2B	Herm n=17, males n=10, herm expressing AVG::UNC-6 n=8	
Figure 2C	Control herm n=12; males n=12, <i>skr-1</i> herm n=16; males n=13	
Figure 2D	Herm n=13; males n=21, sel-10(ok1632) herm n=15; males n=15	
Figure 3C	Wild-type herm n=11; males n=11, unc-40(e271) herm n=11; males n=16,	
	sel-10;unc-40 herm n=14; males n=8	
Figure 3D	Wild-type herm n=11; males n=11, sel-10(ok1632) herm n=17; males n=11,	
	unc-6(ev400) herm n=16; males n=10, sel-10; unc-6 herm n=10; males n=13	
Figure 3E	unc-6 DMSO n=17, unc-6 with Bortezomib n=22	
Figure 3G	DMSO treated herm n=12, Sulfopin fed herm n=15, pinn-1(tm2235) herm	
	n=15, <i>unc-40</i> n=15, <i>unc-40</i> ; <i>pinn-1</i> n=16	
Figure 3I	DMSO treated herm n=19, GSK-3 treated animals n=19, unc-40 DMSO	
	n=12, <i>unc-40</i> treated with inhibitor n=16	
Figure 4A	Hermaphrodites: Wild-type L4 n=15; adult n=12; sel-10 L4 n=10; adult n=12,	
	Males: Wild-type L4 n=10; adult n=11; sel-10 L4 n=9; adult n=10; unc-6 L4	
	n=10; adult n=14	
Figure 4D	Wild-type herm n=19; males n=12, unc-40(ety1) herm n=20; males n=25,	
	unc-6(ev400) herm n=14; males n=12, unc-6:unc-40 mCPD herm n=14;	
	males n=8	
Figure 4F	Control n=16, CPD peptide n=8	
Figure 5A-C	n=20 animals per group	
Figure 5D	Wild-type herm n=25; males n=23, unc-40 CPD herm n=28; males n=27,	
	unc-40(e271) herm n=23; males n=12	
Figure 6B-D	n = 15 per each group	
Table S2 Departing an number of animals used in each experiment. Deleted to STAD		

Table S2. Reporting on number of animals used in each experiment. Related to STAR Methods.

Supplemental references

- S1. White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1986). The structure of the nervous system of *Caenorhabditis elegans*. Philos. Trans. R. Soc. Lond. B Biol. Sci *314*, 1–340.
- S2. Jarrell, T. A., Wang, Y., Bloniarz, A. E., Brittin, C. A., Xu, M., Thomson, J. N., Albertson, D. G., Hall, D. H., and Emmons, S. W. (2012). The connectome of a decision-making neural network. Science *337*, 437–444.
- S3. Cook, S. J., Jarrell, T. A., Brittin, C. A., Wang, Y., Bloniarz, A. E., Yakovlev, M. A., Nguyen, K. C. Q., Tang, L. T.-H., Bayer, E. A., Duerr, J. S., et al. (2019). Whole-animal connectomes of both *Caenorhabditis elegans* sexes. Nature *571*, 63–71.
- S4. Meng, L., Mulcahy, B., Cook, S. J., Neubauer, M., Wan, A., Jin, Y., and Yan, D. (2015). The Cell Death Pathway Regulates Synapse Elimination through Cleavage of Gelsolin in *Caenorhabditis elegans* Neurons. Cell Rep *11*, 1737–1748.
- S5. Stavoe, A. K., Hill, S. E., Hall, D. H., and Colon-Ramos, D. A. (2016). KIF1A/UNC-104 Transports ATG-9 to Regulate Neurodevelopment and Autophagy at Synapses. Dev Cell *38*, 171–185.
- S6. Jäger, S., Schwartz, H. T., Horvitz, H. R., and Conradt, B. (2004). The *Caenorhabditis elegans* F-box protein SEL-10 promotes female development and may target FEM-1 and FEM-3 for degradation by the proteasome. Proc Natl Acad Sci USA *101*, 12549–12554.
- S7. Sulston, J. E., and Horvitz, H. R. (1977). Postembryonic cell lineages of the nematode *Caenorhabditis elegans*. Dev. Biol. *56*, 110–156.
- S8. Sulston, J. E., and White, J. G. (1980). Regulation and cell autonomy during postembryonic development of *Caenorhabditis elegans*. Dev. Biol. *78*, 577–597.
- S9. White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1983). Factors that determine connectivity in the nervous system of *Caenorhabditis elegans*. Cold Spring Harbor Symp. Quant. Biol. *48*, 633–640.
- S10. Colón-Ramos, D. A., Margeta, M. A., and Shen, K. (2007). Glia promote local synaptogenesis through UNC-6 (netrin) signaling in *C. elegans*. Science *318*, 103–106.
- S11. Wanner, N., Noutsou, F., Baumeister, R., Walz, G., Huber, T. B., and Neumann-Haefelin, E. (2011). Functional and spatial analysis of *C. elegans* SYG-1 and SYG-2, orthologs of the Neph/nephrin cell adhesion module directing selective synaptogenesis. PLoS ONE *6*, e23598.
- S12. Paix, A., Folkmann, A., Rasoloson, D., and Seydoux, G. (2015). High Efficiency, Homology-Directed Genome Editing in *Caenorhabditis elegans* Using CRISPR-Cas9 Ribonucleoprotein Complexes. Genetics *201*, 47–54.