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ARTICLE

In Silico Approach to Predict Severe Cutaneous Adverse 
Reactions Using the Japanese Adverse Drug Event 
Report Database

Kaori Ambe1, Kazuyuki Ohya1, Waki Takada1, Masaharu Suzuki1 and Masahiro Tohkin1,*

Severe cutaneous adverse reactions (SCARs), such as Stevens–Johnson syndrome/toxic epidermal necrolysis and drug-
induced hypersensitivity syndrome, are rare and occasionally fatal. However, it is difficult to detect SCARs at the drug devel-
opment stage, necessitating a new approach for prediction. Therefore, in this study, using the chemical structure information 
of SCAR-causative drugs from the Japanese Adverse Drug Event Report (JADER) database, we tried to develop a predictive 
classification model of SCAR through deep learning. In the JADER database from 2004 to 2017, we defined 185 SCAR-positive 
drugs and 195 SCAR-negative drugs using proportional reporting ratios as the signal detection method, and the total number 
of reports. These SCAR-positive and SCAR-negative drugs were randomly divided into the training dataset for model con-
struction and the test dataset for evaluation. The model performance was evaluated in the independent test dataset inside 
the applicability domain (AD), which is the chemical space for reliable prediction results. Using the deep learning model with 
molecular descriptors as the drug structure information, the area under the curve was 0.76 for the 148 drugs of the test data-
set inside the AD. The method developed in the present study allows for utilizing the JADER database for SCAR classification, 
with potential to improve screening efficiency in the development of new drugs. This method may also help to noninvasively 
identify the causative drug, and help assess the causality between drugs and SCARs in postmarketing surveillance.

Stevens–Johnson syndrome/toxic epidermal necrolysis 
and drug-induced hypersensitivity syndrome are represen-
tative severe cutaneous adverse reactions (SCARs), which 
are considered to be idiosyncratic adverse drug reactions. 
Although the incidence of SCAR is low, it remains a serious 
problem owing to its high mortality. Many antibiotics, anti-
convulsants, and antipyretic analgesics have been reported 
to be related to SCARs, but all drugs can be potential 

causative agents.1–6 Because SCAR has high species differ-
ences and a low occurrence, prediction of SCAR is difficult 
at the new drug development stage. In other words, SCAR 
is often found for the first time during postmarketing sur-
veillance. In addition, it is extremely difficult to identify the 
causative agent of an SCAR from multiple candidate drugs. 
To overcome these problems, the development of an effi-
cient approach to predict SCAR is very important.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  Severe cutaneous adverse reactions (SCARs) have a 
low incidence, and the mechanism remains unknown. In 
addition, it is difficult to predict the relationship between 
drugs and SCARs at the development stage because a 
wide variety of drugs cause SCARs.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔  Development of an efficient and reliable in silico method 
for predicting SCAR-causative drugs.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  The combination of the Japanese Adverse Drug Event 
Report database, a large-scale postmarketing drug ad-
verse effect database, and deep learning was proven 

to be a new approach that enables evaluating the risk 
of SCAR-causative drugs from only chemical structure  
information.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOL-
OGY OR TRANSLATIONAL SCIENCES?
✔  A rapid and noninvasive identification method of SCAR-
causative drugs by deep learning is considered to be a 
useful technique to evaluate the causal relationship be-
tween the corresponding drug and SCAR. The results of 
this study will therefore help to reduce the risk of SCARs 
in clinical trials and during postmarketing surveillance, in 
addition to improving screening efficiency in new drug 
development.

[Correction added on 22nd January 2021, after first online publication: the term ‘Repot’ has been corrected to ‘Report’ in the article title.]
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Recently, an in silico method has drawn attention as 
a powerful approach for predicting idiosyncratic adverse 
drug reactions, the mechanism of which is unknown 
and complicated. By analyzing a large amount of exist-
ing data, machine learning can help learn certain rules 
and predict new data. Some studies have attempted to 
predict drug-induced liver injury by machine learning.7–9 
Therefore, it is desirable to develop an in silico prediction 
method for SCARs by machine learning using postmar-
keting data.

Postmarketing safety information is one of the main 
sources of SCARs because these reactions may only ap-
pear after a drug is already approved and used by a large 
number of patients. In recent years, the number of reports 
for spontaneous reporting systems (SRSs) has been in-
creasing, offering an important source of information as a 
large-scale database for the detection of rare and severe ad-
verse events.10 The Pharmaceuticals and Medical Devices 
Agency (PMDA), the Japanese regulatory authority, has ac-
cumulated comprehensively adverse event reports related 
to pharmaceuticals and has been published in the Japanese 
Adverse Drug Event Report (JADER) database. Many stud-
ies have investigated the relationship between a drug and 
adverse drug events using the JADER database.11–14 In the 
SRS database, information on the possibility of a causal re-
lationship between adverse events and drugs that have not 
been known so far could be detected using signal detection 
approaches.15–17

In this study, we focused on developing an SCAR classifi-
cation model using drug structure information from the JADER 
database. First, datasets from the JADER database were 
obtained using signal detection. Thereafter, we calculated mo-
lecular descriptors as the structure information of drugs and 
developed classification models using deep learning. Hence, 
our in silico prediction model could improve screening efficiency 
at the developmental stage of new drugs. This method may 
also support the identification of causative agents of SCARs 
from multiple medications both rapidly and noninvasively.

METHODS
Definition of SCARs
Adverse event reports from the first quarter of 2004 to the 
second quarter of 2017 were obtained from the JADER 
database, a drug adverse effect database constructed by 
the PMDA (https://www.pmda.go.jp/safet​y/info-servi​ces/
drugs/​adr-info/suspe​cted-adr/0003.html, accessed on 
February 6, 2018). The JADER database contains infor-
mation on adverse drug reactions and patients in Japan 
accumulated during postmarketing surveillance from April 
2004, and the database structure is compiled based on the 
international safety reporting guidelines of the International 
Council for Harmonization of Technical Requirements for 
Pharmaceuticals for Human Use (ICH) E2B (https://www.
ich.org/produ​cts/guide​lines/​effic​acy/artic​le/effic​acy-guide​
lines.html, accessed on July 6, 2019). The JADER database 
includes four data tables: (1) patient demographics infor-
mation (DEMO), (2) drug information (DRUG), (3) adverse 
events (REAC), and (4) primary disease information (HIST). 
Data were combined using the ID numbers of the respec-
tive tables, and necessary data extraction was performed. 

Although the drugs were classified into three groups, “sus-
pected drug,” “interacting drug,” and “concomitant drug,” 
in the DRUG file, our analysis was conducted on only the 
“suspected drug” group. In addition, because SCARs are 
based on systemic adverse effects, drugs that are known to 
hardly migrate to the blood and unknown route drugs were 
eliminated considering the administration route.

Adverse event names are registered based on the 
Preferred Term of Medical Dictionary for Regulatory Activities 
(MedDRA) compiled by the ICH (https://www.meddra.org/, 
accessed on February 21, 2018). SCARs were defined ac-
cording to Standardized MedDRA Queries severe cutaneous 
adverse reactions/20000020, described in MedDRA/J ver-
sion 20.1, and 14 preferred terms included in a narrow area 
were used (Table S1).

To detect drugs that were likely to cause SCARs, the pro-
portional reporting ratio (PRR) was used as a signal detection 
method. A signal was detected if the PRR was 2 or more, the χ2 
value was 4 or more, and the number of co-occurrences of in-
terest was 3 or more.15 PRR and χ2 values were calculated from 
two-by-two contingency tables relating the presence of a par-
ticular drug and the presence of SCAR (Table 1). Furthermore, 
in the SRS database, the effects of concomitant drugs need 
to be considered.18–20 In other words, the 10 most frequently 
reported SCAR-positive candidate drugs may increase the sig-
nal of other SCAR-positive drugs. Therefore, we selected the 
10 most frequently reported SCAR-positive candidate drugs, 
which were considered to have a large impact. Among other 
SCAR-positive candidates that were not selected as the 10 
most reported, we calculated the reporting odds ratio (ROR) 
and its 95% confidence interval (CI) from two-by-two contin-
gency tables of the presence or absence of combined use with 
the 10 most reported SCAR-positive candidate drugs and the 
presence or absence of SCAR.17 If the lower limit of the 95% 
CI was > 1, it was regarded as a drug affected by the com-
bined use of the 10 most reported drugs. We excluded these 
drugs and created another new list considering the effects of 
concomitant drugs. SCAR-negative candidate drugs were ex-
tracted according to the following criteria: (1) no SCAR reports 
and (2) the total number of reports is ≥ 20.

Predictive model development
To develop a classification model for SCARs, we focused 
on deep learning.21 Deep learning is an effective tool for 

Table 1  A two-by-two contingency table

With SCAR Without SCAR

With a drug of 
interest

n11 n12

Without a drug of 
interest

n21 n22

n11, the number of reports with a particular drug and SCAR; n12, the number 
of reports with a particular drug, but without SCAR; n21, the number of re-
ports without a particular drug, but with SCAR; n22, the number of reports 
with neither a particular drug nor SCAR; SCAR, severe cutaneous adverse 
reactions.
The proportional reporting ratio value was calculated as n11/(n11 + n12) di-
vided by n21/(n21 + n22). The χ2 value was calculated as (n11 + n12 + n21 + n22) 
(|n11n22 – n12n21| – (n11 + n12 + n21 + n22)/2)2 divided by (n11 + n12) (n21 + n22) 
(n11 + n21) (n12 + n22).

https://www.pmda.go.jp/safety/info-services/drugs/adr-info/suspected-adr/0003.html
https://www.pmda.go.jp/safety/info-services/drugs/adr-info/suspected-adr/0003.html
https://www.ich.org/products/guidelines/efficacy/article/efficacy-guidelines.html
https://www.ich.org/products/guidelines/efficacy/article/efficacy-guidelines.html
https://www.ich.org/products/guidelines/efficacy/article/efficacy-guidelines.html
https://www.meddra.org/
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modeling complex nonlinear relationships, such as the rela-
tionship between SCARs and various causative drugs.

To create a dataset for the model, any mixtures, large 
peptides, herbal products, bacterial preparations, in-
organic compounds, organometallic compounds, and 
unspecified names or abbreviated drugs were removed. 
Furthermore, if the same generic name existed for 
SCAR-positive and SCAR-negative candidate drugs, 
both drugs were excluded. With the help of a PubChem 
search (https://pubch​em.ncbi.nlm.nih.gov/, accessed on 
February 21, 2018) and the Kyoto Encyclopedia of Genes 
and Genomes DRUG database (https://www.genome.
jp/kegg/drug/, accessed on February 21, 2018), the ca-
nonical Simplified Molecular Input Line Entry System was 
collected, and all salts were removed and then the main 
structures were neutralized whenever possible. In addition, 
the Anatomical Therapeutic Chemical (ATC) classifica-
tion information of drugs was extracted using the Kyoto 
Encyclopedia of Genes and Genomes DRUG database. 
ATC is an international classification of drugs devised by 
the World Health Organization (https://www.whocc.no/atc/
struc​ture_and_princ​iples/, accessed on July 6, 2019). We 
used the second-level therapeutic subgroup of the ATC 
classification.

Following the curation of drugs, the SCAR-positive and 
SCAR-negative drugs in the original dataset were repre-
sented by two-dimensional molecular descriptors calculated 
using Dragon 7 software (Talete srl., Milano, Italy). Molecular 
descriptors represent structured data that facilitate calcula-
tion and offer the additional advantage of versatility. Dragon 
7 can calculate up to 5,270 molecular descriptors consisting 
of 30 blocks, such as atom type and functional group/frag-
ment count. After preprocessing the descriptors, they were 
used in the model. The original dataset was randomly di-
vided at a 1:1 ratio into a training dataset and a test dataset, 
comprising the same proportion of positive and negative 
drugs as the original. In addition, the balance of the ATC 
classification was also maintained to eliminate bias in drug 
efficacy. The training dataset was used for model construc-
tion and the independent test dataset was used for model 
evaluation.

Furthermore, the applicability domain (AD), which is the 
drug structure space that is reliably predicted, was de-
fined in the test dataset for evaluating the model using a 
distance-based method.22 First, the average distance 
of all data in the training dataset was calculated from the 
Euclidean distance, and then a threshold was set. If the dis-
tance between a drug in the test dataset and all training data 
was within the threshold, it was considered to be inside the 
AD.23,24 Euclidean distance, as the distance between any 
two drugs, was calculated from the descriptors used for the 
model.25

The balanced accuracy, sensitivity, specificity, positive 
predictive value, negative predictive value, and area under 
the receiver operating characteristic curve (AUC)26 were cal-
culated as the performance indices.

Deep learning was run through the package “h2o” (3.16.0.2) 
in R (version 3.4.4) software (h2o: R Interface for “H2O.” 
https://CRAN.R-proje​ct.org/packa​ge=h2o, accessed on 
July 6, 2019), which is based on a multilayer feedforward 

artificial neural network. Our classification model consists 
of four layers: the input layer, two hidden layers, and the 
output layer. We fixed two layers as hidden layers because 
three or more did not improve the accuracy, and the model 
including more layers took a long time to run. Using the 
training dataset, we optimized the activation functions and 
regularization of l1 and l2. For the activation function, we 
examined the functions of Tanh, TanhWithDropout, Rectifier, 
and RectifierWithDropout, which can be selected in h2o 
for deep learning. We also examined an activation function 
that implements dropout to avoid overfitting. The Gedeon 
method was used to calculate the variable importance.27 
Details of the preprocessing of descriptors and evaluation 
methods are provided in Supplementary Material S1. The 
codes for setting the AD and SCAR prediction models for 
new data are provided in Supplementary Material S2. The 
training and test datasets are provided in Supplementary 
Material S3.

Patient characteristics
Patient characteristics associated with SCAR-positive and 
SCAR-negative drugs in the original dataset were examined 
using data from the JADER database from the first quarter 
of 2004 to the second quarter of 2017. The characteristics 
investigated were sex and age. Patient age was divided 
into four groups (0–9, 10–19, 20–59, and ≥  60  years). To 
determine if the patient characteristics affected the onset 
of SCAR, we compared the characteristic factors of the 
SCAR-positive and SCAR-negative groups. The stan-
dardized difference was used to compare the mean of 
categorical baseline variables between the SCAR-positive 
and SCAR-negative treatment groups28 using the following 
formula:

where Ppositive and Pnegative denote the proportion of the 
variable of interest in the SCAR-positive and SCAR-
negative group, respectively. The standardized difference 
is the comparison of the mean difference in accumulated 
standard deviation units. Moreover, regardless of the sam-
ple size, the standardized difference can be compared 
with variables measured in different units. If the absolute 
value of the standardized difference is <  0.1, the differ-
ence between the treatment groups is considered to be 
negligible.29

Software
JADER database management and analyses were per-
formed using SAS (version 9.4; SAS Institute, Cary, NC). 
Mathematical processing of the data and model construc-
tion were performed using R (version 3.4.4).

RESULTS
Curated dataset
The extraction process of SCAR-related reports and drugs 
is shown in Figure 1. The JADER database contained 
3,908,356 combination unit reports from the first quarter of 
2004 to the second quarter of 2017. The combination unit 
consists of the common name of the drug and an adverse 

d =
(

Ppositive − Pnegative

)

∕
√

(Ppositive ( 1 − Ppositive ) + Pnegative ( 1 − Pnegative ) ) ∕2

https://pubchem.ncbi.nlm.nih.gov/
https://www.genome.jp/kegg/drug/
https://www.genome.jp/kegg/drug/
https://www.whocc.no/atc/structure_and_principles/
https://www.whocc.no/atc/structure_and_principles/
https://CRAN.R-project.org/package=h2o
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event in a one-to-one correspondence. The total number 
of drugs excluding common name duplication was 7,070. 
Furthermore, only “suspected drugs” were selected and 
limited only to the administration route that is likely to be 
transferred to the blood. Subsequently, 294 SCAR-positive 
candidate drugs were detected using PRR criteria,15 and 
433 SCAR-negative candidate drugs were detected using 
2 criteria: no SCAR reports and ≥ 20 total reports. Other 
conditions were tested, including 3 total reports or more 
and 10 total reports or more, but setting the condition of 
a total of 20 reports or more was well balanced with the 
number of SCAR-positive drugs (data not shown).

Among SCAR-positive candidate drugs, the 10 most fre-
quently reported drugs were selected (Table 2), which are all 
known to cause SCARs.1–6,11–14,30 Furthermore, in the SRS 
database, the effects of concomitant drugs need to be con-
sidered.18–20 To investigate the influence of the combined 
use of the 10 most frequently reported drugs, SCAR-positive 
candidate drugs affected by the combination were extracted 
using ROR as the risk ratio. For 284 unselected drugs, ex-
cluding the top 10 drugs, cross tables were created for the 
presence or absence of combined use with the 10 most fre-
quently reported drugs and for the presence or absence of 
SCAR (Figure 2). The lower limit of the 95% CI for ROR ex-
ceeded 1 for 22 drugs. These 22 drugs were then excluded 
from the list of candidate SCAR-positive drugs as they were 

found to be affected by the combination with the 10 most 
frequently reported drugs (Table S2).

The chemical structures of the SCAR-positive and SCAR-
negative candidate drugs were confirmed. The original 
dataset of the SCARs classification predictive model con-
sisted of 380 unique drugs, comprising 185 SCAR-positive 
drugs and 195 SCAR-negative drugs, and the model dataset 
considering the effects of concomitant drugs consisted of 

Figure 1  Extraction process of SCAR-related reports and drugs. Using the JADER database, 185 SCAR-positive drugs and 195 
SCAR-negative drugs were extracted as the original dataset based on the PRR and the number of total reports, respectively. The 
number of reports reflects the combination unit reports, which include the common name of the drug and the adverse event at a one-
to-one correspondence. The number of reports of “suspected drugs” is limited to routes of administration that are transferred to the 
blood. JADER, Japanese Adverse Drug Event Report; PRR, proportional reporting ratio; SCAR, severe cutaneous adverse reaction.

All Reports in the JADER database
(N = 3,908,356)

drugs (n = 7,070)

Reports of “suspected drugs” 
(N = 1,117,533)

drugs (n = 3,337)

SCAR reports (N = 33,493)
drugs (n = 1,333)

SCAR-positive candidate drugs (n = 294)

SCAR-positive drugs
(n = 185)

SCAR-negative candidate drugs 
(n = 433)

SCAR-negative drugs
(n = 195)

Chemical structure curation

Signal detection (PRR)

No SCAR reports.
The total number of reports 
was greater than 20.

Table 2  The 10 most frequently reported drugs as SCAR-positive 
drugs

SCAR-positive drugs n11 PRR χ 2 value

1 Carbamazepine 1,741 6.98 8,707.73

2 Lamotrigine 1,337 4.54 3,647.27

3 Allopurinol 1,309 7.88 7,776.16

4 Loxoprofen 832 3.68 1,626.61

5 Acetaminophen 785 7.81 4,683.53

6 Clarithromycin 597 5.18 2,037.47

7 Amoxicillin 569 8.44 3,773.43

8 Celecoxib 479 4.20 11,85.59

9 Cold agent 465 9.73 3,692.90

10 Lansoprazole 456 3.22 707.98

n11, the number of reports with a particular drug and SCAR; PRR, propor-
tional reporting ratio; SCAR, severe cutaneous adverse reactions.
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360 unique drugs, comprising 165 SCAR-positive drugs and 
195 SCAR-negative drugs. The generic names of SCAR-
positive drugs and SCAR-negative drugs, ATC classification, 
calculated PRR, χ2 values, and the number of reports are 
summarized in Table S2.

Patient characteristics
The characteristics (sex and age) of patients in the da-
tabase that had used the 185 SCAR-positive and 195 
SCAR-negative drugs among the 380 drugs classified as 
“suspected drug” from the original dataset were inves-
tigated (Table 3). A difference in patient characteristics 
between the SCAR-positive and SCAR-negative groups 
could be a potential factor affecting SCARs development. 
The total number of reports was 71,277 for SCAR-positive 
drugs and 13,650 for SCAR-negative drugs. When the 
standardized difference between SCAR-positive and 
SCAR-negative groups was determined for each variable, 
the value for sex was 0.02 and that for age was in the range 
of 0.03–0.07. The difference between groups was consid-
ered to be insignificant when the absolute difference was 
< 0.1; thus, there was no difference between SCAR-positive 
and SCAR-negative groups with respect to sex and age.

Model performance
The test dataset was evaluated using the drugs that were 
inside the AD, which is considered to be a reliable chemical 
space for prediction.22 The coverage reflects the percent-
age of drugs inside the AD of the test dataset. Among the 
total 380 drugs in the original dataset of the SCARs clas-
sification model, there were 191 training drugs, comprising 
93 positive and 98 negative drugs. The test dataset for the 

AD included 148 drugs, and the coverage was 0.78. The 
dataset of the model considering the effects of concomi-
tant drugs included 360 drugs, comprising 181 drugs in the 
training set (83 positive and 98 negative), and 144 drugs in 
the test set for the AD, with a coverage of 0.80. As a prelim-
inary analysis, we performed an exploratory search for the 
number of nodes and regularization of l1 and l2. We per-
formed a random search in various ranges and evaluated 
the logloss function of cross-validation. We found a narrow 
range for the regularization of l1 and l2, where performance 
improvement was expected; however, the number of nodes 
did not show any performance improvement in a specific 
range (data not shown). Therefore, the number of nodes in 
the hidden layer was adopted as the default value (200). 
The number of descriptors with preprocessed and predic-
tion categories was used as the number of nodes in the 
input layer and the output layer, respectively. Therefore, the 
final SCARs classification model consisted of 656 nodes for 
the input layer, 200 nodes for each of the 2 hidden layers, 
and 2 nodes of the output layer. The model considering the 
effects of concomitant drugs consisted of 647 nodes for 
the input layer, 200 nodes for each of the 2 hidden layers, 
and 2 nodes of the output layer. Finally, we optimized the 
activation functions (Tanh, TanhWithDropout, Rectifier, and 
RectifierWithDropout) and regularization of l1 (0–0.00001) 
and l2 (0–0.001) by 3-fold cross-validation using AUC as the 
evaluation criterion (Table S3). Other parameters were set 
to the default values. Different molecular descriptors were 
used in the SCARs classification model and in the model 
considering the effect of concomitant drugs (Table S4).

The prediction performances are summarized in Table 4. 
For the SCARs classification model, the test dataset inside 

Figure 2  Construction process of the dataset considering the effects of concomitant drugs. A total of 22 SCAR-positive candidate 
drugs that were affected by the combined use of the 10 most frequently reported drugs were excluded from the original dataset, and a 
new SCAR-positive list was created considering the effects of concomitant drugs. CI, confidence interval; ROR, reporting odds ratio; 
SCAR, severe cutaneous adverse reaction.

SCAR-positive 
candidate drugs 

(n = 294) 

The 10 most frequently 
reported drugs

Unselected drugs
(n = 284)

SCAR-positive 
candidate drugs

(n = 272)

95% CI lower limit 
(ROR) > 1 (n = 22)

SCAR-positive drugs
(n = 165)

SCAR-negative drugs
(n = 195)

+
Chemical 
structure 
curation

Table 3  Patient characteristics by groups

SCAR-positive  
N = 71,277

SCAR-negative  
N = 13,650

Standardized differencen % n %

Men 35,890 50.4 6,992 51.2 0.02

Age

≤ 9 3,639 5.2 492 3.6 0.07

10–19 2,730 3.8 432 3.2 0.04

20–59 25,238 35.4 4,660 34.1 0.03

≥ 60 39,670 55.7 8,066 59.1 0.07

Standardized difference shows absolute value.
SCAR, severe cutaneous adverse reactions.
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the AD had an AUC of 0.76. In the deep learning SCARs 
classification model, the five most important descriptors 
extracted were “C-005: CH3X,” “VE1sign_Dz(p): coefficient 
sum of the last eigenvector from Barysz matrix weighted by 
polarizability,” “nRCOOH: number of carboxylic acids (ali-
phatic),” “B05[O-O]: presence/absence of O-O at topological 
distance 5,” and “SpMin2_Bh(m): smallest eigenvalue n. 2 of 
Burden matrix weighted by mass” (https://chm.kode-solut​
ions.net/produ​cts_dragon_descr​iptors.php, accessed on 
June 10, 2020). There was no improvement in prediction 
performance using the model in which the effect of concom-
itant drugs was considered, with an AUC of 0.73.

The 380 drugs in the original dataset were aggregated 
by ATC classification. These were divided into 62 ATC 
classifications. The largest number was 57 drugs in the clas-
sification “J01 Antibacterials for systemic use” (Table 5). 
There were 199 drugs included in the 10 most frequently 
classified ATC classifications. The remaining 181 drugs 
were classified into 52 ATC classifications; therefore, vari-
ous medicinal effects were included in the original dataset. 
The prediction results of the 148 test datasets inside the AD 
were then evaluated for each ATC classification (Table 5). 
“J01 Antibacterials for systemic use,” “L01 Antineoplastic 
agents,” “A02 Drugs for acid related disorders,” “M01 Anti-
inflammatory and antirheumatic products,” “R05 Cough 
and cold preparations,” and “R06 Antihistamines for sys-
temic use” had high accuracy rates, ranging from 0.75 to 
1.00. Except for “L01 Antineoplastic agents,” these ATC 
classifications included more SCAR-positive drugs than 
SCAR-negative drugs. “C01 Cardiac therapy” and “N07 

Other nervous system drugs” had an accuracy rate lower 
than 0.5. There was a tendency for the prediction of nega-
tive drugs to be incorrect.

DISCUSSION

In this study, we developed a deep learning prediction 
model to classify SCARs caused by a variety of drugs using 
only drug structure information. Prediction results with 148 
test drugs in the test dataset inside the AD demonstrated 
an AUC of 0.76. In addition, the sensitivity was 0.81 and the 
negative predictive value was 0.76, indicating few false neg-
atives (Table 4). This acceptable prediction performance 
indicates that this is a suitable model for reducing over-
looked SCAR-positive drugs and excluding SCAR-negative 
drugs. With our model, it is possible to predict SCAR for 
drugs not only within the JADER database but also out 
of the JADER database if the structural information of the 
drugs is available. In addition, we set the AD as the chem-
ical space in our model, which can provide highly reliable 
prediction results if the drug is inside the AD. Therefore, our 
model can be applied at the global scale even though we 
used the Japanese adverse effect database for the present 
model development and assessment.

Because it is difficult to obtain the exact SCAR risk from 
the JADER database, we used the presence or absence 
of a signal to calculate the risk of SCAR for a given drug. 
The PRR has been widely used for the signal detection of 
adverse drug reactions in adverse reaction reporting da-
tabases.15 Therefore, we regarded drugs that showed an 

Table 4  SCAR prediction performance

Model Number of drugs (test dataset 
inside AD) Balanced accuracy Sensitivity Specificity PPV NPV AUC

SCAR classification model n = 380 (148) 0.69 0.81 0.58 0.64 0.76 0.76

Model considering effects of 
concomitant drugs n = 360 (144)

0.65 0.63 0.66 0.62 0.67 0.73

AD, applicability domain; AUC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value; SCAR, 
severe cutaneous adverse reactions.

Table 5  Prediction results and ATC classification

ATC classification of 380 drugs in the dataset Results of SCAR classification of test dataset inside AD (n = 148)

ATC classification
Number of drugs (positive/

negative) Positive Negative Accuracy

J01 Antibacterials for systemic use 57 (53/4) 19/20 0/1 0.90

L01 Antineoplastic agents 33 (3/30) 0/1 9/9 0.90

N05 Psycholeptics 20 (7/13) 2/2 3/7 0.56

A02 Drugs for acid related disorders 16 (15/1) 4/5 - 0.80

M01 Anti-inflammatory and 
antirheumatic products

14 (14/0) 6/6 - 1.00

R05 Cough and cold preparations 13 (12/1) 3/4 - 0.75

C01 Cardiac therapy 12 (2/10) - 2/5 0.40

R06 Antihistamines for systemic use 12 (10/2) 4/5 0/1 0.80

N02 Analgesics 11 (4/7) 0/2 2/4 0.50

N07 Other nervous system drugs 11 (3/8) 1/1 0/2 0.33

Others 181 (62/119) 19/26 28/47 0.64

AD, applicability domain; ATC, Anatomical Therapeutic Chemical; SCAR, severe cutaneous adverse reactions.

https://chm.kode-solutions.net/products_dragon_descriptors.php
https://chm.kode-solutions.net/products_dragon_descriptors.php
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adverse reaction signal based on the PRR as SCAR-positive 
drugs. There is a known risk of PRR value inflation, which 
may cause false signal detection if the number of reports 
is very small.31 However, the maximum PRR value in this 
study was 33 (Table S2) because the number of reports of 
other drugs was high even if the number of SCAR reports for 
the drugs of interest was small. This result suggested that 
PRR value inflation was not occurring in our SCAR-positive 
dataset, and that the PRR-based criterion for SCAR-positive 
definition was appropriate in this case. We also considered 
the potential risk of SCARs in drugs that are specifically 
known to be related to the onset of SCARs, even if the total 
number of reports was small. Therefore, the total number of 
reports was not taken into consideration for SCAR-positive 
drug selection (Figure 1). By contrast, we defined SCAR-
negative drugs as those with no SCAR-related reports and 
20 or more of the total number of reports.

The 10 most frequently reported drugs among the SCAR-
positive candidate drugs included carbamazepine and 
lamotrigine as anticonvulsants, allopurinol for hyperuricemia, 
loxoprofen and acetaminophen as antipyretic analgesics, 
clarithromycin and amoxicillin as antibacterial drugs, cele-
coxib as a nonsteroidal anti-inflammatory drug, cold agent, 
and lansoprazole as a proton pump inhibitor (Table 2). All 10 
drugs have been previously reported to be related to SCARs, 
which is also included in the package inserts.1–6,11–14,30 This 
concordance suggests that our criteria for SCAR-positive 
candidate drugs was appropriate for model construction.

Using the standardized difference, we compared the pa-
tients’ general demographic characteristics in the original 
dataset (Table 3). Because the standardized difference was 
<  0.1, it indicated a negligible difference in the mean be-
tween two groups,28,29 indicating that any bias of patient sex 
and patient age did not affect the construction of the model.

In the JADER database, it is important to consider whether 
the reported adverse event is due to a drug or only appears 
with the combination of other drugs. Although analyses of 
drug interactions in the SRS database have been performed, 
there is no established method.18–20 Therefore, to examine 
whether the SCAR-positive drugs in the dataset used for the 
prediction model were appropriate, we built a model con-
sidering the effects of the concomitant drugs (Figure 2). It 
was hypothesized that if the predictive performance of this 
model was improved over the original model, the 22 drugs 
excluded would be less likely to cause SCARs. Interestingly, 
the prediction performance of the model in which the ef-
fects of combinations were considered (AUC  =  0.73) did 
not improve compared with the performance of the original 
model (AUC = 0.76). Although the 22 drugs excluded may 
be affected by the combination of the 10 most frequently re-
ported drugs, these drugs are highly likely to cause SCARs. 
In conclusion, our analysis suggests that SCAR-positive 
drugs in the original dataset are appropriate.

The efficacy of the 380 drugs in the original dataset was 
confirmed using the ATC classification (Table 5). The pre-
diction result of “J01 Antibacterials for systemic use,” which 
had the largest number of drugs, was almost perfectly in 
line with the candidate SCAR-positive drugs. This is con-
sidered to be due to the large number of cephem antibiotics 
having a β-lactam structure in the drugs included in the 

ATC classification “J01 Antibacterials for systemic use.” 
Therefore, there is a possibility that the prediction of SCAR-
negative drugs belonging to “J01 Antibacterials for systemic 
use” by our model has not been correctly evaluated. The 
ATC classification that classified the second highest number 
of drugs was “L01 Antineoplastic agents.” Antineoplastic 
agents are associated with numerous adverse effects, and 
there are many such reports in the JADER database. As a 
result, antineoplastic agents tend to be extracted as SCAR-
negative drugs because they easily meet the criteria.

In the SCARs classification model, “nRCOOH” was se-
lected as one of the most highly important descriptors. 
This descriptor belongs to the functional group count and 
indicates the number of carboxylic acids (aliphatic). Of 
the 53 SCAR-positive drugs in the ATC classification “J01 
Antibacterials for systemic use,” 19 drugs contain aliphatic 
carboxylic acids, and 18 drugs contain aliphatic carboxylic 
acids and a β-lactam structure.32 However, of the 53 SCAR-
positive drugs in the ATC classification “J01 Antibacterials 
for systemic use,” 28 drugs contain a β-lactam structures. 
Because the variable importance of “nBeta-Lactams: num-
ber of β-lactams” ranked 28th, “nRCOOH,” which ranked 
third, may be a key functional group for discriminating 
SCAR-positive drugs and SCAR-negative drugs among 
drugs with various chemical structures.

In studying adverse effects based on the SRS database, 
it is necessary to interpret the results carefully owing to 
reporting biases, such as under-reporting and the impact 
of safety information.33 In addition, the frequency of oc-
currence of adverse events cannot be determined using 
SRS databases, including the JADER database. Although 
SRS databases are subject to a large amount of noise, 
most of the information is available as real-world data, in-
cluding a vast amount of accumulating information about 
the spontaneous reporting of adverse effects. Thus, an 
SRS database offers a good source of information for 
SCARs owing to its low incidence and the fact that it often 
is only detected during postmarketing surveillance. The 
combination of machine learning and an SRS database 
to construct a predictive model of SCARs will be an im-
portant approach for further research on adverse effects. 
Moreover, the JADER database contains well-validated 
information because it examines the reported adverse ef-
fects information to identify suspected drugs. Therefore, 
it is considered that the accuracy of the relationship be-
tween the drug and the adverse effect is relatively high. 
We considered that this advantage of the JADER database 
was important for training data of the model.

In conclusion, we developed a classification model of 
SCARs in humans based on the chemical structure infor-
mation of SCAR-causative drugs in the JADER database. 
Although this model is not suitable for the quantitative 
risk assessment of SACRs, we consider that the model 
constructed in this study is useful for qualitative risk as-
sessment. This prediction model is a noninvasive and highly 
efficient support method for clinical trials and postmarketing 
surveillance. Furthermore, utilizing the JADER database and 
the machine learning method is expected to promote the 
use of SRS databases in the research on adverse effects, 
such as drug-induced liver injury.
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