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Abstract

To date all public records of F. carica SSR profiles are from NCGR Davis. Prior studies of

this data have not been received well because several of the stated relationships do not

match what is observed in the field. Upon examination of the prior authors methods it is

found that the 1979 Nei similarity measures are not valid distance metrics for the profiles

thus invalidating their analysis of genetic distance. Further, the data are tensor in nature and

it is shown here that "flattening the data" for use in a vector method will change the problem

under study. Consequently the present analysis focuses on geometric, statistical, and bio-

statistical tensor-based methods–finding that only the latter produces results matching what

is manually observed among the profiles. Combining this with historical breeding records

and morphologic observations reveals that a modest portion of the profiled accessions are

mislabeled–and also reveals the existence of previously undocumented close relations.

Another area of concern in the prior studies is the statistical partitioning of the complete

graph of distances to define clades. In the present analysis it is shown that genetic clades

cannot be defined in this profile collection due to lack of cohesion in nearest neighbor com-

ponents. It is also shown that it is presently intractable to significantly rectify gaps in the sam-

ple population by profile enrichment because the number of individuals in an entire

population within the estimated profile distribution exceeds 1014. The profiles themselves

are found to have very few occurrences of common values between the 15 loci and thus

according to Fisher’s theory of epistatic variance no correlation to phenotype attributes is

expected–a result verified by the original investigators. Therefore further discovery of appro-

priate markers is needed to fully capture geno- and pheno-type characteristics in F. carica

and F. palmata SSR profiles.

Introduction

Identifying plant varieties is an age-old human endeavor. Historically morphological traits

were used to categorize specimens [1] into families, genera, species, and cultivars (for perenni-

als: a plant selected from seedlings and asexually re-propagated for its desired characteristics).

In the present day it is now possible to discern differences in plant cultivars via genetic mea-

sures. Some of these are “whole genetic sequence” while others focus on subsequences termed
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genetic profiles or “fingerprints”. One of these latter methods utilizes genetic profiles based on

repeating values in the plant genome, termed SSR for “simple sequence repeats” [2]. So for

example, if someone wishes to determine if two individual apple trees are the same cultivar,

they can submit leaf samples to a plant ID lab and obtain an answer. In fact for some economi-

cally important crops, databases of SSR fingerprints have been established–so a plant ID lab

can sometimes also determine which apple tree cultivar(s) the leaf specimens are from [3]. In

addition to plant ID, those involved with plant breeding and germplasm repositories wish to

determine the relationships among cultivars in a given collection, if not all cultivars worldwide

[4]. For this application, a measure of “distance” between SSR profiles is needed, and it is help-

ful to have some reliable breeding records to establish ground truth and a scale of distance.

Genetic distance measures can be roughly classified into 4 categories: dynamic, statistical,

geometric, and biostatistical. Dynamic methods use knowledge of linkage locations of loci

along a genetic sequence to produce simulations of genetic crossovers in breeding, then ana-

lyze allele values to compute probabilities of relationships. Centimorgans are an example mea-

sure produced by dynamic simulation [5]. In contrast, static statistical and geometric

measures do not require linkage data–which is a simplification in data acquisition, computa-

tion, and cost. Care however must be taken to determine which measures–if any, are relevant

to the data. Statistical measures of genetic distance have their roots in comparing differences

in populations, mostly originating in Fisher’s 1930 treatise on genetic variance [6]. Geometric

measures use norm and norm-like measures to compute distances between spatial or spectral

values. Biostatistical measures incorporate allele pattern matching to determine likely ancestral

relations among cultivars and hybrids [7]. The technique of simple exclusion is one such

approach applied to SSR profiles [8]. A similar method based on alleles patterns is introduced

here.

Of interest in the present study are SSR profiles taken circa 2009 of the Ficus carica (fig)

and F. palmata (Indian fig) collection at NCGR Davis [9]. The data are housed online at the

USDA GRIN-Global site [10]. Structurally the profiles are 2×15 tensors of spatial data repre-

senting the total number of repeats of the dominant type per allele of 15 loci with 2 alleles

each. An example is given in Table 1.

Results and discussion

In the original published analyses of the NCGR profiles [9,11] the authors report using the

1979 Nei similarity measure [12]–i.e. Nei’s Eq. 8 or its isomorph Eq. 9 with proportion S given

by Eq. 26. Both are vector in nature and thus inappropriate for the tensor data (see Methods

section). Further, Eq. 8 fails metric requirements numerous times in the spatial and frequency

domains of the SSR profiles (Table 2) and thus so will Eq. 9. All failures have magnitude of

error equal or greater than the magnitude of minimum distance, and all were well above a

numerical error tolerance of ε = 2×10−9.

The tensor measures Alleles Mask, Spectral 2, and Spectral Radius Angle were further ana-

lyzed for applicability to the profiles. The first is biostatistical and the others geometric. No

static statistical tensor metric could be located. The computed distances were compared with

Table 1. Spatial SSR profile from NCGR 2010 for F. carica cultivar Kadota.

C22F1 C24H1 C26N1 C31F1 C35H1 C37N1 LM12H1 LM14H1 LM30N1 LM36N1 M1F1 M2H1 M3N1 M4F1 M8N1

283 272 234 224 254 204 214 200 243 248 172 153 120 194 171

283 272 234 239 254 208 243 200 245 248 189 167 132 218 175

Locus names are across the top. Values are the total number of repeats of the dominant type per allele (nomenclature: BP).

https://doi.org/10.1371/journal.pone.0263715.t001
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measurements of allele similarities obtained from manual evaluation of the profiles. Results in

the spatial domain edged out those in the alleles frequencies followed in turn by loci and popu-

lation frequencies. However, neither geometric measure could completely resolve observed

relations between all profiles–instead producing a few anomalies each due to their reliance on

normative computations between numerical allele values (Tables 3 and 4). Hence the Alleles

Mask metric is used for the remainder of the study.

The Alleles Mask distances were then compared with breeding records documented by

NCGR Davis (GRIN pedigree data), information from accession donor sites (GRIN passport

data), and historical accounts [13] to determine label accuracy and ancestral relations among

the NCGR Ficus collection. Seventeen were found incorrectly labeled, either due to being too

distant according to breeding records or too close (sometimes identical!) to specimens docu-

mented as morphologically different. This is to be expected at a large repository with many

donors over decades of operations without reliable means of authentication. As for ancestry,

nine descendants listed in breeding records were identified but several more were also discov-

ered including: Archipel! Encanto Brown Turkey, Genoa! San Pietro, Hearty Chicago!

Abruzzi, Italian 281! Chater Green, San Joao Branco! Santa Cruz White, and also San

Joao Branco! Karimabad Black (repository accession DFIC 147). Although breeding records

indicate that Excel is an offspring of Kadota, the profiles of these two demonstrate that the

"Kadota" at NCGR Davis differs moderately from the parent of Excel. In addition, historical

accounts and examination of profiles indicate that “Adriatic” (repository accession DFIC 32)

is likely “Milco’s Adriatic” [13, p.407]. A graphic of these relations is provided in Figs 1 and 2.

Table 2. Metric test results of selected distance measures applied to 125 NCGR 2010 Ficus sp. SSR profiles.

δ Type Domain Property Failed Failures per

Domain

Tests per

Domain

Maximum |error| Minimum |δ(a,b)|

Alleles Mask tensor,

biostatistical

spatial none n/a n/a n/a n/a

Spectral 2 tensor, geometric all none n/a n/a n/a n/a

Nei vector, geometric spatial 4 10569 317750 10−4 10−7

Nei vector, geometric alleles frequencies 4 9145 317750 10−1 10−6

Nei vector, geometric loci frequencies 4 17428 317750 10−1 10−5

Nei vector, geometric population

frequencies

4 10277 317750 10−1 10−5

Spectral Radius

Angle

tensor, geometric spatial none n/a n/a n/a n/a

Spectral Radius

Angle

tensor, geometric alleles frequencies 4 2 317750 101 100

Spectral Radius

Angle

tensor, geometric loci frequencies 4 6 317750 101 100

Spectral Radius

Angle

tensor, geometric population

frequencies

4 3 317750 101 100

https://doi.org/10.1371/journal.pone.0263715.t002

Table 3. Distance partition key for selected metrics.

δ Domain Units closest #1 closer #2 average #3 farther #4 farthest #5

Alleles Mask spatial Loci mismatches [0., 2.) [2., 3.5) [3.5, 7.) [7., 9.) [9., 13.]

Spectral 2 alleles frequencies BP frequencies [0.008, 0.2) [0.2, 0.54) [0.54, 1.3) [1.3, 1.5) [1.5, 2.4]

Spectral Radius Angle spatial μradians [0.594, 11.06) [11.06, 21.514) [21.514, 31.957) [31.957, 42.387) [42.387, 52.807]

https://doi.org/10.1371/journal.pone.0263715.t003
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The linear density of profiles within their esoteric space was estimated by computing ρl�
0.733 the ratio of mean displacement đ to profiles perimeter radius rp from central feature

DFIC 32 Adriatic. For comparison, a “cannonball” packing of identical spheres in 3 dimen-

sions has ρl� 0.61 This demonstrates how dense SSR packings can be. In fact, any specific spa-

tial profile in this set is distance 0 from the others in an average of 54.6% of alleles (identical

allele value). Together these statistics demonstrate that the use of clustering techniques based

on distance radii are inappropriate for this dataset. Nearest neighbor relations are necessary to

overcome the high packing density. This is accomplished here by using Least Bridges Graphs

as structural representations of profile relations.

The maximal Laplacian eigenvalue [14] λmax� 11.63 was computed for the connected

Least Bridges Graph of distances. The maximal Laplacian is an upper bound on the number of

edge frequencies and hence varieties of substructures within the graph. Organization of the

SSR profiles into distance classes (hierarchies of nearest neighbor distances) demonstrates the

infeasibility of large-scale biological clades that would span the collection. Specifically the lack

of cohesion in the shortest distance classes prohibits larger scale aggregations of close relations.

The result is that when the graph of connected components of profiles is restricted to using

edge lengths with distance measure less than 3.5 Loci mismatches, no more than half of the

profiles are used and the remaining are essentially cladeless. Also, most components con-

structed in this manner have the poor quality of containing 1 to 2 edges (Fig 3). Note that it is

intractable to significantly rectify gaps in the sample population by profile enrichment because

the number of individuals in an entire population within the estimated profile distribution

exceeds 1014 (see Methods section). So although it is possible to apply partitioning software to

the complete topological graph of the NCGR F. carica and F. palmata profiles, the majority of

resulting clusters do not conform to expectations for biological clades.

An examination of frequencies of spatial values revealed only a few that occur in multiple

loci (Table 5). If Fisher’s theory of epistatic variance [6] is correct then little correlation of

these profiles with morphology data is expected–a result empirically determined in Aradhya’s

study. Therefore a “whole genome” investigation of several cultivars will be necessary to deter-

mine a more exacting set of markers. If such an effort is undertaken it would also be helpful to

secure Loci to identify the various odd sexual states of Ficus carica.

Methods

Vectors vs. tensors

Few purely tensor genetic distance measures exist in the literature. As such it is a common but

dubious practice among practitioners to “flatten” tensors (string out in single vector) for use in

vector measures. Consider for a moment though the p×q non-trivial tensors A, B, A 6¼ B,

and C = B—A, which in our Euclidean minds we would like to think of as edges of "triangle"

Table 4. Example distances computed by 3 tensor measures, highlighting differences between geometric and pattern matching methods.

C1 DFIC, Label C2 DFIC, Label μr BP f Loci mismatches Profile Analysis

7. Archipel 261. Encanto Brown Turkey #1 #2 #1 14 ~ 0 ~ 0

102. Gulbun 126. Capri Q #2 #3 #2 10 ~ 5 ~ 0

66. Kadota 20. Excel #3 #3 #3 8 ~ 6 ~ 0

10. not Saleeb 205. LSU Hollier #1 #4 #4 5 ~ 5 ~ 1

155. not California Brown Turkey 218. Fico Nero #3 #4 #5 2 ~ 5 ~ 0

DFIC = accession #. Profile Analysis Key: (# exact loci matches) ~ (# single allele matches) ~ (# likely intra-loci crossovers).

https://doi.org/10.1371/journal.pone.0263715.t004
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A,B,C. Now compute the angle

cosy A;Bð Þ ¼ A � BTk k2
= Ak k

2
� Bk k

2
ð Þ

which we would like to think of as opposite of C. But since perpendicularity (a restricted form

of orthogonality) is ill-defined with tensors, we discover that the law of cosines almost always

Fig 1. Determined genetic relations among NCGR accessions, part 1. Labels are only provided for verified accessions. Known/discovered

descendants (if any) are denoted by arrows, not vertical hierarchy.

https://doi.org/10.1371/journal.pone.0263715.g001
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fails for our "triangle" because it depends on a non-existent “edge” perpendicular to B:

Ck k2
6¼ Ak k2

2
� 2 � A � BTk k2

þ Bk k2

2
:

To make matters worse, we also discover that with few exceptions:

y A;Bð Þ þ y B;Cð Þ þ y C;Að Þ 6¼ p:

Hence tensors are different from vectors and “flattening” tensors into vectors changes the

problem under study. Further: any values computed by nontrivial δ in the vector space are use-

less because an inverse to translate them back to corresponding δ values in the original tensor

space is infeasible due to the nature of the projection. Consequently the practice of flattening

tensors for the purpose of vector computation should be avoided.

Comparable distances

The values produced by a distance measure δ are not considered valid for comparison unless δ
is a qualified metric [15]. For the general case of a complete directed graph this means:

1. δ(a, a) = 0 for every profile a

2. δ(a, b)> 0 for all profiles a with single edge path to b and a 6¼ b

3. δ(a, b) = δ(b, a) for all single undirected edges between profiles a, b

4. δ(a, c)� δ(a, b) + δ(b, c) for all profiles a, b, c having single edge path a to b, b to c, and a

to c.

Some measures come “pre-proven” for undirected graphs, e.g. Euclidean. Having a pre-

proven measure does not mean that numerical instability or ill-conditioning [16] will not

cause your data to fail. The Mahalanobis measure is a prime example of where this can occur.

Fig 2. Determined genetic relations among NCGR accessions, part 2.

https://doi.org/10.1371/journal.pone.0263715.g002
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Fig 3. Components present in Least Bridges Graph when edge lengths are restricted to less than 3.5 Loci mismatches. Numbers refer to DFIC

accessions.

https://doi.org/10.1371/journal.pone.0263715.g003

Table 5. Spatial values found in multiple loci.

C22F1 C24H1 C26N1 C31F1 C35H1 C37N1 LM12H1 LM14H1 LM30N1 LM36N1 M1F1 M2H1 M3N1 M4F1 M8N1

200

210

214

233

243

200

210

233

243

155 155 214

https://doi.org/10.1371/journal.pone.0263715.t005
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Tensor metrics

Alleles mask. A measure with units of Loci mismatches. Denote Fi(An, Am) = a full Loci

match between profiles An and Am at locus i. Likewise denote Si,j(An, Am) = a single allele

match at allele j of locus i in An and Am, but not “double counting” those in full Loci matches.

And finally denote Ci,j(An, Am) = an intra-loci crossover match from allele j to allele ~j of locus

i in An and Am−but not double counting those from full Loci matches of identical values, and

also not counting those where the target allele is one of the high frequency (e.g.� 84%) values

in the sample population (Fig 4). Note that this criteria can cause Ci,j(An, Am)6¼ Ci,−j(Am, An),

thus producing a directed graph.

To compute, begin with a profile mask containing all 1’s:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

then set locations to 0 wherever F, S, or C occur and divide the total by 2 to produce units of

Loci mismatches.

For example, consider the profile of DFIC 66 Kadota:

283 272 234 224 254 204 214 200 243 248 172 153 120 194 171

283 272 234 239 254 208 243 200 245 248 189 167 132 218 175

Fig 4. Counting of common allele values. The back allele of C24H1 commonly has the value 272.

https://doi.org/10.1371/journal.pone.0263715.g004
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and the profile of DFIC 20 Excel:

283 272 234 224 254 204 214 200 243 248 189 153 124 218 171

285 272 234 239 254 208 214 200 247 248 189 167 132 218 171

The mask produced for the distance Kadota to Excel is

0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

1 0 0 0 0 0 1 0 1 0 0 0 0 0 1

with computed distance 4.0 Loci mismatches.

Spectral 2. Here, the spectral radius [17] order 2 tensor norm for positive rational values

rðAÞ � max
i2Np

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
li A � ATð Þ

p��
�

�
�
�; A 2 Qþp�q
� �

^ p � qð Þ

is used to induce a Euclidean-like metric for tensors

S2ðAn;AmÞ � r An � Amð Þ:

Spectral Radius Angle. In this application of the spectral radius norm a spatial tensor

metric with units of radians is obtained

SRA An;Amð Þ � cos� 1 r An � Am
Tð Þ= r Anð Þ � r Amð Þ½ �½ �:

Breeding records

Also available at the USDA GRIN-Global site are breeding records for Ficus sp. from historical

USDA and UC breeding programs. These were downloaded and assembled into the diagrams

of Figs 5–7. The records were used to guide manual side-by-side profile analysis along with

comparisons of distance measure results presented in this article.

Historical accounts

Ira Condit’s voluminous monograph of fig varieties was published by the UC research periodi-

cal Hilgardia in 1955 [13]. It is in some respects a massive review of the fig variety literature,

spanning centuries of publications. It also contains Condit’s own anecdotes and observations,

plus those of his predecessor Gustav Eisen. Although Condit’s analysis of cultivar synonyms is

based on the questionable practice of morphology ID, the historical phenotype observations

are useful for ferreting out what a cultivar is not. For example, Condit (and others) considered

the Osborn Prolific cultivar to be identical to Archipel [13, p.414]. However, the SSR profiles
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Fig 5. Diagrams of breeding records for fig accessions at NCGR Davis, part 1. Arrows point to progeny. Shaded names are NCGR accessions with

matching labels and genetic data. Some labels were found to be inaccurate after genetic profile analysis. Color indicates breeding location. Gold = UC

Riverside, Green = Kearney Ag Center, Purple = Louisiana State University, Maroon = Texas A&M University.

https://doi.org/10.1371/journal.pone.0263715.g005

Fig 6. Diagrams of breeding records for fig accessions at NCGR Davis, part 2.

https://doi.org/10.1371/journal.pone.0263715.g006
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of accessions with those labels in the NCGR collection are not similar–placing the labels of

those accessions in question. Alternately there is historical precedence that California Brown

Turkey (aka San Piero) is different from a cultivar named Brown Turkey imported from

Europe [13, p.428]. But the genetic profiles of the accessions with these labels at NCGR Davis

are identical–putting the accuracy of those two labels in question as well. Several discrepancies

were discovered in this manner, leading to a puzzle of question marks. Many of these were

half-way resolved (one of the pair but not the other) with the aid of breeding records and

matching profile comparisons. A few were taken on faith in the passport data of the accession–

including Archipel. Questionable accessions that could not be resolved are among those

labeled “not” in Figs 1 and 2.

Least Bridges Graph construction

Least Bridges Graphs are a method of visualizing nearest-neighbor relationships in abstract

spaces. They are constructed by first considering the vertices (e.g. genetic profiles) as

Fig 7. Diagrams of breeding records for fig accessions at NCGR Davis, part 3.

https://doi.org/10.1371/journal.pone.0263715.g007
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disconnected components, then incrementally adding the shortest available edge connection

(i.e. edge representing distance between the two components). Edges are only added between

disconnected components and thus termed "bridges" [14]. A new component is created each

time an edge is added, replacing the prior two. If there are multiple edges of the same distance

that qualify then the entire set is added, possibly engulfing multiple components. This latter

requirement ensures edge multiplicity is not ignored–an error in many cluster algorithms

used for distances (e.g. the underlying k-neighbors function in Mathematica1 v12.1 Nearest-

NeighborGraph [18] for small k). The distances among components must be re-evaluated after

Fig 8. Connected Least Bridges Graph produced by Alleles Mask metric. Distance class hues = {∎, ∎, ∎, ∎, ∎, ∎, ∎}, distance class partitions (loci

mismatches) = {0.5, 2., 3.5, 4.5, 6., 7.5, 8.5, 13.}. Numbers refer to DFIC accessions. Arrowheads denote directed edges produced by the Alleles Mask

metric.

https://doi.org/10.1371/journal.pone.0263715.g008
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an edge or edge set is added. Inter-component distances are determined by selecting the short-

est vertex-to-vertex distance between them. The process is continued recursively until a pre-

scribed limit is reached (e.g. a maximum distance) or a connected graph is achieved. Having

only 26 unique distances within this dataset, the Alleles Mask metric produces a connected

graph in 14 iterations (Fig 8). In contrast, all distances produced by the Spectral Radius Angle

metric were unique and required 1866 iterations to achieve a connected graph.

The intractability of profile enrichment

The fig collection from NCGR Davis is not a random sample of individuals from the world-

wide population, but mostly a selection of preferred cultivars from commercial production

and private collections [19]. As such the allele frequency distribution is somewhat representa-

tive of “desirable” figs. A reasonable question is: what is the largest possible collection of these

“desirable” profiles having the same distribution?

As a first estimate consider the product of the number of unique alleles values per loci

C ¼ 8; 709; 120; 000

This assumes the frequencies are accurate with no multiplicities. To include multiplicity

and uncertainty in the estimate, introduce a 2% frequency variation in numerator values that

conserves probability so the sum of frequencies per loci still adds to 1. In particular, numera-

tors of alleles frequencies of each loci are permitted to vary by {-2,-1,0,+1+,2} provided the

sum of the frequencies per loci adds to 1. (The denominator is held constant at N = 125.) Now

check the numerators per loci and count the greatest common divisors. Selecting the min,

median, and max produces

C ¼ 2:85� 1014 minð Þ; 4:18� 1022 medianð Þ; 3:16� 1030 maxð Þ:

The purpose of going to this trouble is to demonstrate that sample sizes of 1000, 2000, or

even 200000 are insignificant [20] when compared to the vast number of possibilities that

occur for this distribution. If the goal of a profile enrichment exercise is to fill in gaps between

nearest-neighbor components then at least 1010 (more likely 1018) profiles will be needed for a

statistically significant sample. This is an intractable situation unless someone can express it as

a satisfiability problem for quantum computing.
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