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Pathogens and pests are one of the major threats to agricultural productivity worldwide. For decades, tar-
geted resistance breeding was used to create crop cultivars that resist pathogens and environmental
stress while retaining yields. The often decade-long process of crossing, selection, and field trials to create
a new cultivar is challenged by the rapid rise of pathogens overcoming resistance. Similarly, antimicrobial
compounds can rapidly lose efficacy due to resistance evolution. Here, we review three major areas
where computational, imaging and experimental approaches are revolutionizing the management of
pathogen damage on crops. Recognizing and scoring plant diseases have dramatically improved through
high-throughput imaging techniques applicable both under well-controlled greenhouse conditions and
directly in the field. However, computer vision of complex disease phenotypes will require significant
improvements. In parallel, experimental setups similar to high-throughput drug discovery screens make
it possible to screen thousands of pathogen strains for variation in resistance and other relevant pheno-
typic traits. Confocal microscopy and fluorescence can capture rich phenotypic information across patho-
gen genotypes. Through genome-wide association mapping approaches, phenotypic data helps to unravel
the genetic architecture of stress- and virulence-related traits accelerating resistance breeding. Finally,
joint, large-scale screenings of trait variation in crops and pathogens can yield fundamental insights into
how pathogens face trade-offs in the adaptation to resistant crop varieties. We discuss how future imple-
mentations of such innovative approaches in breeding and pathogen screening can lead to more durable
disease control.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Feeding the world population requires a stable production of
safe food, which is threatened by factors such as climate change,
land degradation and diseases. Pathogens and pests cause signif-
icant reductions in agricultural productivity worldwide, and con-
trol strategies remain ineffective for many pathogens [1–3].
Around 20–30% of the global harvest is lost to plant diseases with
additional post-harvest losses of up to 12% [4]. The two main
approaches to protect crops from diseases are the deployment
of resistant cultivars often carrying specific loci conferring resis-
tance (i.e. R genes) [5] and the application of chemical compounds
(e.g. fungicides, insecticides) [6–8]. Targeted resistance breeding
has been practiced for decades to create cultivars that resist
pathogens but retain desirable agricultural traits. Yet even mod-
ern molecular breeding techniques often involve multiple years
of crossing, selection, and testing to create a new cultivar [9].
At the same time, plant pathogens often rapidly overcome resis-
tance gene mediated immunity defeating expensive breeding
efforts [10,11]. Similarly, the deployment of synthetic chemicals
is often followed by the rise of resistant pathogen populations
[12,13]. Tackling food security risks posed by pathogens will
require bringing together fundamental insights into the biology
of diseases, advancements in high-throughput approaches and
innovations in computational tools.

Sustainable agricultural management practices critically rely on
an understanding of the biology and evolutionary potential of the
major crop pathogens. Emerging or re-emerging pathogens can
only be contained by investigating their origins and migration
Fig. 1. The biology of plant-pathogens interactions. A) A wide range of insects feed on
interactions can have significant effects on the stem phenotype and on the entire plant. F
the acquisition of phosphorus and nitrogen or detrimental effects when confronted by
filamentous fungi. From the left: fungi of the Fusarium, Aspergillus, Magnaporthe and
Filamentous pathogens can penetrate into the mesophyll through stomata. Once inside th
on the lifestyle (biotrophic or necrotrophic), pathogens secrete small proteins (called effec
a hypersensitive response (HR) leading to an autophagy-like cell death prevents the sprea
the reader is referred to the web version of this article.)
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routes, as well as their potential to counter-adapt to deployed con-
trol measures. Advancements in genomics, transcriptomics and
proteomics have been instrumental to elucidate these questions
and unravelled a broad range of molecular mechanisms governing
host-pathogen interactions leading to more effective control
strategies [14–17]. Gene editing and breeding focused on the
exploitation of natural genetic variability provide critical resources
for introducing novel alleles into crop improvement efforts [18,19].
Genetic crop improvement requires though large-scale screening
of thousands of lines grown under different environmental condi-
tions [20,21]. On the pathogen side, the rapid identification of
emerging resistance against chemicals or virulence on previously
resistant crops is of utmost importance [3,22]. Genotyping of
plants and pathogens has reached impressive throughput at low
cost, yet equivalent improvements in high-throughput screening
of phenotypic information are largely lagging behind [20,23]. This
in turn has created a bottleneck for speed breeding efforts and
automated monitoring of the plant health status during agricul-
tural production. To highlight recent developments that have the
potential to remedy these shortcomings, we first discuss crucial
components of host-pathogen interactions that can be targeted.
We then review recent developments in disease-focused plant
phenomics enabled by high-throughput phenotyping platforms.
Following that, we highlight advances in the screening of pathogen
populations to detect early signs of resistance evolution or
increased virulence. We argue that combining the above-
mentioned approaches has yielded impressive insights into the
genetic architecture of crop diseases. Finally, we discuss how inno-
vative approaches can lead to more durable disease control.
leaves as herbivores. B) Longitudinal root section and rhizosphere. Underground
ilamentous fungi and bacteria can have beneficial effects on the plant by facilitating
root pathogens. C) Dorsiventral section of a leaf colonized by different pathogenic
Podosphaera genus. D) Filamentous fungi and oomycetes causing leaf infections.
e mesophyll, pathogens colonize the entire tissue within days or weeks. Depending
tors) to manipulate plant cells. Plants detecting effectors (blue receptors) can mount
d of the pathogen. (For interpretation of the references to color in this figure legend,
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1.1. Knowing the enemy: how pathogens interact with plants to cause
disease

Major crop diseases are caused by pathogens including fungi,
bacteria and viruses (Fig. 1). In addition, insect pests also cause
substantial losses in agricultural production [24,25]. Spores of
fungi and bacteria can be transmitted by wind, rain splash and ani-
mals including humans and insects [26,27]. Some pathogens pen-
etrate plant tissues (Fig. 1B) with the help of vectors and then
are surrounded by cytoplasm, cell membrane, or cell walls
[28,29]. In other cases, the pathogen makes contact with the exter-
nal surface of the plant, and then deploys a penetration mechanism
which can include highly specialized structures (e.g. appressoria)
[30]. After invasion of the host tissue, the success of a pathogen
on a specific host is largely explained by an interaction of gene
products encoded in the host and pathogen genomes [31,32].
Resistance (R) genes in plants encode proteins to directly or indi-
rectly detect the presence of pathogen effectors (also known as
avirulence factors or Avr) and trigger strong immune responses
(Fig. 1B-D). Pathogens can escape recognition through sequence
diversification or deletion of effector genes [33]. Despite the
importance of single loci controlling the infection outcome,
pathogenicity can have a complex and largely quantitative genetic
basis [34–39]. To successfully infect plants, pathogens also need to
tolerate a series of abiotic stress factors (Fig. 1C). Since pathogen
species have an optimal range of environmental conditions (i.e.
temperature, pH, humidity) to thrive, changes in the environment
can alter the pathogen’s ability to cause damage [40]. Environmen-
tal factors such as annual temperature fluctuations, the quantity
and pattern of precipitation, levels of CO2 and ozone can affect
plant disease severity [2,41]. Furthermore, the efficacy of pesti-
cides can be significantly altered by weather conditions (e.g.
wash-off of fungicides following strong rainfall). Hence, the chal-
lenge to contain pathogen damage in agriculture is to predict the
emergence of virulent strains and the rise of fungicide resistance.

Given the possibly severe consequences, the early detection of
resistance breakdowns in crops or loss of sensitivity to pesticides
is critical. Detection early in the growing season and identifying
previously uncharacterized pathogens remain major challenges.
Classic plant disease diagnostics usually relies on visual symptom
scoring by trained individuals categorizing disease severity on lin-
ear scales [42]. However, classic diagnostics is obviously only pos-
sible once symptoms have appeared [43]. Some pathogens (i.e.
biotrophs) can feed on plant nutrients for a long period without
causing apparent infection symptoms [44]. Pathogens killing plant
cells to obtain nutrients are more obvious to detect [45]. Adding to
the complexity of pathogen detection, many pathogens can
undergo temporal shifts in infection lifestyles [46]. Plant infections
often occur in patches with large areas of the field free of disease at
an early stage of infestation. This is due to the short-distance dis-
persal of pathogens around the original disease foci [47,48]. Hence,
efficient, large-scale disease scoring is necessary to detect infec-
tions at early stages before the symptoms even become visible.
Remote imaging and advanced data analysis can be used to identify
disease foci and inform smart applications of chemical control
agents (Fig. 2). The agricultural environment presents many com-
plexities that are often poorly captured in greenhouse experi-
ments. In fields, plants face fluctuating environmental conditions
and are competing for light, water and nutrients. Hence, high-
throughput phenotyping and analytical tools are largely subdi-
vided into field-applicable approaches and laboratory/greenhouse
setups.

Disease symptoms may include any range of changes in the
color, shape or functioning of the plant as it responds to a pathogen
and can be visualized at specific wavelengths (Fig. 2A). Depending
on the pathogen, the disease symptoms can range from leaf spots,
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chlorosis, necrosis, wilting or overgrowth [49,50]. However, plant
stress beyond infections can activate protective mechanisms lead-
ing to suboptimal growth, chlorophyll loss or changes in surface
temperatures [51,52]. Such changes produce detectable shifts in
the spectral signature compared to a healthy plant and can be mea-
sured by different methods (Fig. 2A-B, Table 1) [53]. Imaging sys-
tems rely on the quantification of absorption, transmission, or
reflectance characteristics of the electromagnetic radiation inter-
acting with the plant surface (Fig. 2A-B) [54]. We provide a set of
specific disease-related phenotypes, which can be captured by dif-
ferent camera sensors across the wavelength spectrum in Table 1.
For example, in the shortwave infrared spectrum (1000–3000 nm)
water and biomolecules show characteristic reflectance patterns
(Fig. 2A). A shortwave infrared sensor can detect an infected region
based on differences in water content due to the disease (Fig. 2B).
Computational algorithms can then highlight contrasts between
infected and healthy areas to estimate disease severity at the leaf
level (Fig. 2B). The various algorithms available for plant pheno-
type assessments have recently been reviewed in more detail
[55]. Disease phenotype scoring is also largely dependent on the
experimental setup. Plant disease phenotyping under greenhouse
or growth chamber conditions largely eliminates fluctuations due
to the environment and experiments can easily be replicated for
the same genotypes. Such end-point experiments also allow inva-
sive assessments of pathogen colonization on the surface and
inside plant tissues using cross-section imaging of entire organs
(e.g. leaves, Fig. 2C), wide-field and confocal microscopy (Fig. 2C),
as well as various polymerase chain reaction (PCR) and
sequencing-based methods to estimate abundance. Such well-
controlled measurements from mostly greenhouse experiments
have been used to perform QTL mapping and genome-wide associ-
ation studies (GWAS) to detect markers associated with resistance
and inform breeding programs.

1.2. High-throughput plant health assessment under field conditions

Technologies suitable for screening plant diseases even in early
infection stages have become widely deployed [20]. Phenotyping
platforms integrating such technology allow both proximal and
remote monitoring of single plant leaves (or other organs), individ-
ual plants as well as entire fields (Fig. 2C). Capturing plant pheno-
types under field conditions consists either of measurements from
space or the air with cameras mounted on satellites (WorldView-3,
www.digitalglobe.com), unmanned aerial vehicles (UAVs), para-
chutes, blimps, manned rotocopters or fixed-wing systems
[20,56,57]. Satellite imaging can provide multi-spectral images
with a resolution ranging from meters to hundreds of meters
[57]. However, there are major limitations due to weather condi-
tions, the frequency of image capture, and overall costs. Satellite
imaging is also most useful for regional or continental scale assess-
ments of vegetation cover rather than crop breeding trials in indi-
vidual fields. Recent improvements in high-resolution satellite
imagery, e.g. GF-1 from China or SPOT from Europe, can provide
time-resolved phenotyping of individual fields at the meter scale
[58,59]. Such resolution is able to capture transitions in reflectance
due to senescence or pathogen outbreaks. Unmanned aerial vehi-
cles (UAV) have become popular in recent years because of the
ease of deployment and possibilities to mount high-resolution
image capture systems [56,60]. A range of sensors can be installed
on UAVs depending on the payload capacity and type of data
required. Based on the spectrum and number of bands, the sensors
can be classified into several types including visible light (RGB)
[61–63], multispectral, hyperspectral [64–67], thermal infrared
[68,69] and 3D laser imaging [70,71]. As an application example,
a commercialized quadrotor UAV mounted with digital and multi-
spectral cameras enabled the detection and monitoring of rice



Fig. 2. High-throughput phenotyping techniques for plants and pathogens. A) Light in the visible spectrum can be used to detect changes in color and morphology of infected
plant tissue. Infrared and short-wave infrared enable to record changes in water content, leaf thickness and photosynthetic efficiency. Long-wave infrared allows assessments
of plant surface temperatures. Hyperspectral sensors capture multiple images across the range of 300–2500 nm. B) Imaging systems assess absorption, transmission, or
reflectance characteristics of the incident electromagnetic radiation interacting with the plant surface. Diseased plant tissue often differs in reflectance compared to healthy
tissue. Image analysis algorithms define contrasts between diseased and non-diseased leaf areas. C) Spatial scales of plant phenotyping approaches. D) Screening of pathogen
populations can be performed in liquid cultures or on solid media. The most common experiments monitor growth rates by assessing culture densities over time or estimate
the dose–response curves when exposed to antimicrobial compounds. Co-cultures of multiple microbes may be analyzed using two distinct emission/excitation pairs specific
for each the co-cultured species.

Nikhil Kumar Singh, A. Dutta, G. Puccetti et al. Computational and Structural Biotechnology Journal 19 (2021) 372–383

375



Table 1
Disease assessments enabled by high throughput sensors.

Image sensor
type

Examples of
measurable
phenotypes

Disease/pathogens Reference

RGB � Color
� Morphology
� Biomass
� Physiology
� Disease
symptoms

� Germination
rate

� Potato late
blight

� Citrus canker
� Cercospora
leaf spot

� Sugarbeet rust
� Anthracnose
� Septoria tritici
blotch

[60,89,95,180–
187]

Multispectral
and
hyperspectral
sensors

� Nutrient status,
� Water content
� Senescence
� Photosynthetic
efficiency

� Laurel wilt
� Powdery
mildew

� Cercospora
leaf spot

� Rusts
� Fusarium
Head blight

[67,93,94,188–
192]

Thermal sensors � Transpiration
� Heat stress
� Senescence
� Leaf/canopy
temperature

� Downy
mildew

� Wilt
� Scab disease

[193–195]

Infrared sensors � Phenotypes
measured with
thermal and
hyperspectral
sensors

� Leaf water
content

� Photosynthetic
efficiency

� Powdery
mildew

� Net blotch
� Brown rust
� Fusarium
Head blight

[51,190,196–
199]
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sheath blight [66]. A hexacopter mounted with RGB cameras
enabled wheat plant height measurements matching well manual
and ground-based LiDAR sensor measurements [72]. Monitoring
the progression of late blight disease in a potato field was possible
using an aerial RGB camera [60]. Thermal infrared sensors have
also been successfully used to quantify plant responses towards
drought stress in Black Poplar [73], ground cover in sorghum,
canopy temperature in sugarcane and crop lodging in wheat [74].
A major limitation of aerial camera based phenotyping is errors
introduced while generating orthomosaics, which are composite
images of stitched and geometrically corrected photographs
[57,75]. Inaccuracies in orthomosaics can be introduced by low
camera sensor resolution, altitude and how the camera positioning
was determined during capture [76]. However, improvements in
rectification algorithms and drone technologies have reduced
orthomosaic errors significantly [77]. Orthomosaic inaccuracies
can also be remedied by supplementing imagery captured by prox-
imal phenotyping platforms [78,79].
1.3. Proximal plant phenotyping

Proximal phenotyping is mostly deployed in greenhouse exper-
iments or in well-controlled field experiments. Sensors covering a
broad range of spectra can be mounted on stationary platforms or,
for outdoor use, on suspension cables, robots and tractors
[20,23,80–84]. A fixed framework over a large field has advantages
over both vehicle- and UAV-based phenotyping and is not limited
by sensor payloads and battery capacity [85]. For example, the
Field Phenotyping Platform (FIP) established at the ETH Zurich uses
a suspended cable setup to move sensors over a large experimental
field site [84]. Similar setups exist at the University of Nebraska to
phenotype maize and soybean cultures [86]. These proximal phe-
376
notyping platforms benefit from having multiple mounted sensors
capturing phenotypic trait information over a wide range of wave-
lengths. For example, a proximal hyperspectral sensor platform
was capable to detect powdery mildew infections based on barley
canopy surveys only [67]. Imaging based on fluorescence is often
used for proximal phenotyping to quantify phenotypic changes
related to photosynthesis, nitrogen content and diseases like Sep-
toria tritici blotch (Fig. 2A-B) [42,87–89]. Proximal phenotyping
platforms can measure canopy temperature, nitrogen content, as
well as phenotypic traits including leaf area and plant height
[90]. Such efficient, whole-plant phenotyping helped accelerate
the selection of drought-resistant rice plants [89]. The platform
was designed for imaging in the visible spectrum to record mor-
phological features. The system also included infrared and near-
infrared imaging to quantify water content, as well as temperature
and fluorescence measures to quantify photosynthesis efficiency
[89]. The platform could accurately distinguish tolerant and sus-
ceptible plants and thus enabling rapid selection for speed breed-
ing. Downstream applications included functional genetic studies
for drought tolerance and GWAS applications, which in turn can
feed into marker-assisted breeding efforts. In a different applica-
tion, chlorophyll fluorescence and thermal (infrared) phenotyping
of ~300 Iranian wheat cultivars combined with GWAS revealed
adaptive alleles for drought stress useful for marker-assisted selec-
tion [91].

Current plant phenotyping technologies and image processing
algorithms struggle to reliably differentiate disease symptoms
originating from multiple or unknown pathogens [92,93]. This is
partially due to the complexity of fungal and bacterial disease
symptoms on crops, but is also due to the fact that disease symp-
toms during early infection stages are hardly diagnostic for specific
pathogens. Nutrient or water deficiencies (in the absence of patho-
gens) can produce symptoms that are difficult to differentiate from
disease phenotypes. Molecular detection methods (i.e. qPCR) are
often required to clearly establish what is likely to cause a disease.
Interesting developments to overcome these limitations are e.g. the
differential reflectance spectra (400–1050 nm) of sugar beet leaves,
which helps distinguish three different fungal pathogens including
Cercospora beticola, Erysiphe betae, and Uromyces betae [94]. Com-
bined thermal and visible light image data was fed to a machine-
learning algorithm to differentiate infections by the tomato pow-
dery mildew fungus Oidium neolycopersici [95]. One major limita-
tion of plant disease high-throughput phenotyping is the
timeframe of disease detection. Imaging which relies on reduced
photosynthesis as a proxy for disease progression can only detect
symptoms once the pathogen invades the plant tissue and reduces
chlorophyll activity (Figs. 1, 2). Hyperspectral or multispectral sen-
sors can distinguish diseased leaves from healthy ones much ear-
lier than imaging in the visible spectrum only. Abdulridha et al.
[96] were able to detect and distinguish the onset of target spot
caused by the fungus Corynespora cassicola and bacterial spot
caused by Xanthomonas perforans on tomato in the asymptomatic
phase. The multi-spectral imaging approach was successful both
under laboratory and field conditions. Such robust phenotyping
methods could make it possible to detect infection foci in the field.
Emerging infections could then be isolated and treated individually
by the deployment of specific fungicides.

Plant phenotyping technologies have generated data to popu-
late public image databases (summarized in [97]). Such data can
be used for machine learning and shows promising results in pre-
dicting disease onsets and identifying the pathogen species
[95,98,99]. Using a public dataset of 54,306 images of healthy
and diseased plant leaves, a deep learning network could identify
26 different diseases with 99.35% accuracy [99]. The advancement
of machine learning applied to the problem of plant phenotyping
has been limited mostly by two factors: i) the limitation of publicly
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available image databases of crop disease phenotypes under a vari-
ety of environmental conditions and ii) poor annotation of image
data and the captured symptoms [100,101]. The lack of robust
training datasets has forced researchers to use suboptimal data-
bases leading to ambiguity in distinguishing disease phenotypes
from senescence or other environmental factors [99,100,102].
Thus, despite the enormous potential of machine learning for plant
disease scoring, the current implementations will need to be
improved with large reference datasets.
1.4. Pathogen screenings to improve the durability of plant resistance

Plant-microbe interactions are often subject to rapid co-
evolutionary dynamics altering the genetic make-up of both the
host and the pathogen [103]. Evolving pathogens make breeding
for resistance obviously challenging. In addition, outbreaks of
new pathogens have significantly increased [104] including e.g.
recent outbreaks of Magnaporthe oryzae and Puccinia graminis f.
sp. tritici in Bangladesh and Italy, respectively, endanger wheat
production [104–107]. Rapid change in crop pathogen populations
is most evident through the rise of fungicide resistance [108,109]
but many other phenotypes show high variability as well
[110,111]. Some pathogens gained virulence traits by acquiring
genetic material through horizontal transfer. A striking example
includes the gain of virulence on wheat by transferring a key
toxin-encoding gene between fungal species [112]. Among the
most diverse pathogens is the cosmopolitan fungus Zymoseptoria
tritici attacking wheat. Cultivar resistance has been largely broken
down and some new virulence arose within the span of a few years
[35,113]. Z. tritici populations are genetically and phenotypically
highly diverse with intra-field diversity approaching levels of
diversity at the continental or global scale [114–116]. To counter
highly diverse and rapidly evolving pathogens, breeding programs
often attempt to prevent resistance breakdowns by combining
(‘pyramiding’) several resistance genes [35,117].

Despite the challenges associated with rapidly evolving patho-
gen species, heritable trait variation can be exploited to identify
mechanisms underlying virulence [38,118]. A number of major
crop pathogens are readily culturable under sterile laboratory con-
ditions allowing reproducible assessments of trait expression. The
clonal propagation in sterile medium allows the efficient replica-
tion of phenotypes expressed by different genotypes. A major
application of high-throughput pathogen screenings are measure-
ments of fungicide sensitivity, which is relevant for the early detec-
tion of resistance mutations at the regional or continental scale
[119]. More broadly, stress response assessments of fungal and
bacterial pathogens can provide important clues about the expres-
sion of virulence factors, multi-drug resistance, biofilm formation,
and antimicrobial resistance [117,120]. This is because stress
induced in in vitro setups can share similarities with infection
stress conditions. During infection stages, pathogens have to cope
with various host defense responses including nutrient depriva-
tion, pH variation, etc. Hence, in vitro conditions can be useful trig-
gers to express virulence-related proteins. Beyond measuring
growth rates as a proxy for the physiological state, phenotypic
screens can be extended to measurements of spore shape hetero-
geneity [121], cell viability, as the percentage live cells, or cell
vitality, defined as the physiological capabilities of a cell
[122,123] and can be assessed with flow cytometry and fluores-
cence readouts. More detailed analyses focus on variation in the
infection life cycle on the host [124]. Finally, assessing temperature
adaptation can provide important clues about the adaptive poten-
tial and the ability of pathogens to cope with future climates
[124,125]. However, manual handling procedures will need to be
replaced by robotization to improve throughput.
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High-throughput phenotyping platforms for microbial organ-
isms have dramatically advanced in automating cell culturing, liq-
uid handling, spotting on culture medium as dense arrays and
integration of fluorescence measurements and microscopy [126–
129]. Such technologies were often first applied for active com-
pound screens in drug discovery programs of the pharmaceutical
industry [130]. In the last years, several pipelines have been devel-
oped for high-throughput in vitro screening to investigate drug tol-
erance genes and to elucidate aspects of pathogenicity [128,129].
High-throughput pipelines benefit from robotics, such as Rotor-
HDA, which can duplicate and back up large strain libraries in solid
or liquid media in the format of 96–6144 isolates per plate. Growth
and fungicide susceptibility can be assessed using optical density
(OD), colony size, or the fluorescence of liquid cultures (Fig. 1D)
[131]. Moreover, culture colors are powerful proxies for the pro-
duction of melanin or other secondary metabolites [132]. Other
high-throughput platforms incorporate multiplexed microfluidic
cell culture, automated programmable fluid handling for cell per-
turbation, quantitative time-lapse microscopy, and computational
analysis of time-lapse movies [133]. Such platforms are most use-
ful for perturbation experiments (e.g. osmotic shock or exposure to
a drug) with a fluorescent readout sensitive to changes in gene
expression or subcellular localization. The main goal of the tech-
nology is to accelerate drug discovery by screening large antimi-
crobial compound libraries at a rate of thousands of compounds
per week. Efforts are as well made in the development of high-
throughput approaches to generate mutated versions of drug tar-
gets [128]. High-throughput screening methods are further used
to characterize metabolic, pharmacokinetic and toxicological data
about new drugs and reduce the costs of antimicrobial compound
development [129,134]. During the development of a new pesti-
cide, field trials can be extremely costly. Therefore, high-
throughput in vitro screening of diverse pathogen population scans
is very informative about possible standing resistance, which can
prevent rapid efficacy failures under field conditions [135].

The wealth of information on phenotypic trait variation in
pathogen species combined with low-cost sequencing can be
exploited for GWAS [136]. Since the debut of the technique in
2005, GWAS revealed hundreds of thousands of single nucleotide
polymorphisms (SNPs) and structural variants associated with
thousands of different phenotypes mainly focused on humans
[136–138]. Plant pathogens populations often harbor both virulent
and avirulent strains. Hence, with reliable and robust phenotyping,
GWAS analyses can identify genes underlying specific gains in vir-
ulence. Mapping populations of ~100 strains were sufficient to
identify key virulence factors [139–141] and fungicide resistance
loci in fungal pathogens [135,139,140,142,143]. Genetic mapping
studies can also inform the development process of new fungicides
by the early identification of resistance ‘‘hotspot” genes [135]. A
critical factor for successful GWAS applications is the availability
of high-quality genomic resources representing the genetic diver-
sity of the pathogen species. Recent pangenome analyses of plant
pathogens have laid the foundation for such work [144].

1.5. Deciphering complex host-pathogen interactions – a way forward

The application of imaging combined with computational tech-
niques enabled enormous progress in breeding resistant crops and
detecting the emergence of new pathogen threats. To reduce com-
plexity, most studies until now focused either on variation on the
plant or the pathogen side. However, the nature of host-
pathogen interactions can vary across space and time [145,146].
In addition to such genotype-by-genotype interactions, environ-
mental conditions (humidity, temperature, competing microbes,
etc.) influence the outcome of infections. The complexity arises in
part from complex pathogen infection cycles starting from initial



Fig. 3. A comprehensive framework for determining the genetic basis of crop-pathogen interactions. Genetically diverse pathogen populations and crop cultivars from
different geographies form the basis of the screening. Genome sequencing enables to conduct joint genome-wide association studies (GWAS) to determine the genetic
architecture of virulence (in pathogens) and resistance (in crops). Global populations of both pathogen and crop will capture most relevant genetic variation. Beyond
virulence, pathogen populations can be screened for loci underlying pesticide resistance, thermal adaptation and metabolite production (e.g. melanin). Identifying genetic
correlations among pathogen traits facilitates the identification of pleiotropic genes governing trade-offs. Some illustrations were provided by biorender.com according to
their usage conditions.
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host contact to transmission to new hosts [147,148]. Each infection
stage is likely governed, to some extent, by distinct genes. Improv-
ing our abilities to predict infection outcomes across many differ-
ent plant-by-pathogen interactions and environments is therefore
a critical step in improving crop resistance and controlling disease
outbreaks in the long term.

Integration of different omics datasets to build biological net-
works (e.g. gene co-expression or protein–protein interaction net-
works) has become a powerful approach to unravel genetic factors
controlling biological interactions [149–151]. Beyond this, innova-
tive applications of GWAS can help to identify causal genes by
studying host and pathogen genotypes simultaneously in an infec-
tion matrix [152,153] (Fig. 3). Applying such an approach to the
Arabidopsis thaliana - Xanthomonas arboricola interaction, Wang
et al. [152] identified specific genes for quantitative disease resis-
tance in the host that are effective only against a specific set of
pathogen strains. Studying crop diseases as an infection matrix
can help to identify genomic regions underlying host-pathogen
co-evolution and genes responsible for specific phenotypes [154–
378
156]. However, applications in the agricultural context are largely
missing for now as such approaches are experimentally demanding
and costly. Improved pathogen inoculation techniques such as
detached leaf assays [157–159] or head assays [160] combined
with automated image analysis [161] will reduce the experimental
burden. Consequently, collecting precise phenotypic data from a
large infection matrix of hosts and pathogens has become increas-
ingly accessible [157]. Beyond increased sample sizes of the ana-
lyzed host and pathogen genotypes, special care is required to
adequately cover host and pathogen genetic diversity. Using a glo-
bal set of populations of the major wheat pathogen Z. tritici, a large
set of loci associated with pathogen virulence and reproduction on
different hosts were identified [38,162]. A large infection matrix of
98 strains of Botrytis cinerea and 90 plant genotypes of eight spe-
cies revealed a highly polygenic architecture of pathogen virulence
and host specialization [163]. Hence, simultaneously extending
genetic diversity screens of the host and pathogen provides a pow-
erful approach to comprehensively map the genetic architecture of
virulence and resistance. Particularly relevant pathogens to inves-
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tigate are the ones capable of infecting multiple plant organs (e.g.
blackleg in canola) or at different growth stages. Bigger sample
sizes in both host and pathogen will also improve heritability esti-
mates (e.g. as shown in human studies [164]). Overall, expanding
the breadth of host and pathogen genetic diversity in screenings
will help to identify previously unknown resistances/susceptibili-
ties in crop germplasm.
1.6. Exploiting pathogen weakness driven by trade-offs

How successful pathogens cope in diverse environments
depends on life-history trade-offs, which arise from resource allo-
cation dilemmas and antagonistic gene actions. A trade-off indi-
cates that an increase in one trait is associated with a decrease in
another trait. Such trade-offs are typically dependent on the host
genetic background and abiotic conditions. Some pathogen strains
have evolved specialization on certain hosts or climatic conditions
to maximize their performance. Classic examples include the wild
pathosystem of Plantago lanceolata-Podosphaera plantaginis inter-
actions [165,166]. Trade-offs are likely a key factor maintaining
polymorphisms in pathogen populations [167,168]. Studies have
already identified trade-offs between foliar damage and asexual
transmission [169], sporangia size and number [170], latency in
spore production, size and sporulation rates [171]. Analyses of
demethylation inhibitors (DMI) fungicide-sensitive and resistant
isolates of the sugar beet pathogen C. beticola have shown that
resistant isolates have significantly lower virulence and spore pro-
duction than sensitive isolates [172]. No differences were found for
incubation periods, mycelial growth, germination of conidia and
germ tube length. Similarly, in the bacterial pathogen Ralstonia
solanacearum mutants lacking the gene for synthesizing an
exopolysaccharide virulence factor show increased growth rates
compared to the wild-type strain [173,174]. Besides, agricultural
pathogens likely face many additional, yet unknown trade-offs
because pathogens must also survive outside of annual crop hosts
[175,176]. The genetic basis of trade-offs remains largely unknown
hindering the exploitation of inherent pathogen weaknesses. This
is partly because trade-offs are generally expressed by phenotypic
trait correlations, which are often confounded by environmental
variation and genetic substructure. Identifying genetic correlations
among traits can circumvent the above challenges as it reflects the
direct effect of genetic factors controlling trade-offs and are robust
to confounding factors [177]. A recent study investigated genetic
trade-offs based on genetic correlations in the wheat fungal patho-
gen Z. tritici. Performance of a global strain collection on twelve
wheat varieties and in various abiotic conditions revealed a broad
pleiotropic control of pathogen performance on and off the host
[162]. Weaknesses of pathogens in specific environments will
inform more efficient designs of disease control and prevent future
resistance breakdowns. Hence, comprehensive maps of genetic
trade-offs will possibly enable innovative disease control strategies
(Fig. 3). Beyond revealing trade-offs, correlated traits can be com-
bined to perform multi-trait GWAS to pinpoint pleiotropic genes
and determine causality among traits in specific environments
[178,179] (Fig. 3).
2. Summary and outlook

Technological progress in assessing susceptibility of large col-
lections of crop plants to pathogen damage is crucial for modern
resistance breeding efforts. A variety of image capture techniques
allow to monitor plant damage at the cellular, leaf, whole plant
or field level. Most applications focus on the visible spectrum but
hyperspectral imaging platforms have recently gained the ability
to detect pathogen infestation even before the appearance of
379
symptoms. A major area of going research is to improve image
analyses algorithms to detect and classify pathogen damage. Vari-
ation within individual pathogen species can be highly informative
about the rise of new virulence or pesticide resistance. Robotics
applied to automate the culturing of thousands of pathogen strains
enables screening for metabolic variation, drug susceptibility and
production of secondary metabolites improving our understanding
how pathogens cope with the agricultural environment. Both high-
throughput plant and pathogen phenotyping efforts can be com-
bined with genome sequencing and GWAS applications. Unravel-
ing the genetic basis of host resistance helps to speed up
breeding efforts through marker-assisted selection. Analysis of
pathogen populations can be informative about possible trade-
offs in the emergence of virulence or pesticide resistance.

Future directions of research should focus on a set of comple-
mentary research areas.

- Create efficient pipelines merging imaging and molecular
assays for pathogen detection. Such integrated systems could help
farmers deploy appropriate counter-measures in the field prior to
widespread damage and reduce overall pesticide application.

- The susceptibility of crop cultivars to major pathogens should
be re-assessed continuously to detect changes in the virulence pro-
file of the prevalent pathogens. Rapid evolution in pathogens can
lead to catastrophic resistance breakdowns and must be detected
early enough. High-throughput imaging systems capturing disease
symptoms should be combined with machine learning to effec-
tively recognize changes in virulence profiles. The lack of curated
and open access disease image databases is currently slowing
progress.

- Regional monitoring efforts of resistance breakdowns or the
loss of pesticide efficacy can be achieved by high-throughput geno-
mic screening of infected leaf material. Efficient genotyping assays
focusing on major genes are likely to scale well to broad applica-
tions. Bioinformatic procedures for such genomic data analyses
are largely in place. A successful implementation of such genomic
monitoring will also help to detect the arrival of new pathogens
early enough to deploy resistant cultivars or implement changes
in pesticide application regimes.

- The systematic identification of trade-offs faced by pathogens
adapting to pesticides and resistant crop cultivars could lead to
more durable control measures.
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