
Epigenetic mechanisms inf luence gene expression 
and function without modification of the base sequence of 
DNA and may be reversible, heritable, and influenced by 
the environment [1,2]. They include DNA methylation, post-
translational histone modifications, chromatin remodeling, 
and deployment of non-coding RNA [1-3]. Epigenetic mecha-
nisms play a role in the pathogenesis of major human diseases 
[4] such as cardiovascular disease [5], diabetes [6], neuro-
degenerative disease [7], and cancer [8,9]. Breakthroughs 
in epigenetics will help us understand complex biologic 
phenomena associated with development [10,11], inflam-
mation [12-14], aging [15], stem cell biology [16], immunity 
[17], and angiogenesis [18]. This review provides evidence 
that the pathogenesis of complex eye diseases such as corneal 
dystrophy, glaucoma, uveitis, cataract, diabetic retinopathy, 
and age-related macular degeneration (AMD) is regulated 
by epigenetic mechanisms. Ultimately, these basic studies 
will be translated into novel therapies; epigenetic drugs are 
currently in clinical trials, most notably in treating cancer 
[19,20].

Factors mediating epigenetic regulation: The chromatin 
structure provides the context for gene expression: transcrip-
tional activity diminishes with increased chromatin density, 
while enhanced transcriptional activities are associated with 
a loosening of chromatin structure [1]. Such changes in the 
state of chromatin are affected by DNA methylation, histone 
modification, and non-coding RNA.

DNA methylation is catalyzed by DNA methyltransfer-
ases (DNMTs), which have an additional methyl group at the 

5-position of cytosine that converts the cytosine to 5-meth-
ylcytosine (5-mc) [1]. 5-mc is known as the fifth base of the 
genome. More recently, 5- (hydroxymethyl) cytosine (5-hmc), 
the sixth base of the genome [21,22], and 5-formylcytosine 
and 5-carboxylcytosine, the seventh and eighth bases, were 
discovered [23,24]. The CpG dinucleotide is the most impor-
tant site of DNA methylation. In general, CpG methylation 
silences genes while demethylation activates them; however, 
recent studies have shown that the functional effects of DNA 
methylation can vary according to the genomic context [25].

Histone is subjected to various post-translational modifi-
cations, including acetylation, methylation, phosphorylation, 
ubiquitination, and sumoylation. These modifications occur 
primarily within the N-terminal tails of histones protruding 
from the surface of the nucleosome, as well as on its core 
region [26]. These modifications and recognition modules 
lead to the establishment of histone code and create an 
epigenetic mechanism for regulating various physiologic and 
pathological phenomena. In general, histone acetylation acti-
vates gene expression, and histone deacetylation suppresses 
gene expression [27].

Non-coding RNA includes short interference RNA 
(siRNA), microRNA (miRNA), Piwi-interacting RNA 
(piRNA), and long non-coding RNA [1,3,28]. miRNA 
regulates gene expression in various ways, such as directly 
binding to DNA or binding to the gene promoter region; the 
influences of miRNA on gene expression are diverse and 
complex [29]. Importantly, circulating miRNAs have been 
identified as biomarkers for human diseases [30].

International epigenetic research organizations and 
programs: The Association for the Study of the Epigenome 
in Europe was established in 1999, and launched the Human 
Epigenome Project (HEP) in 2003. The National Human 
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Genome Research Institute (NHGRI) launched a public 
research consortium named ENCODE, the Encyclopedia 
Of DNA Elements in September 2003 to carry out a project 
to identify all functional elements in the human genome 
sequence. An association concerned with epigenetic research 
in Asia was jointly established by China, South Korea, Japan, 
and Singapore in 2006. The National Eye Institute, since its 
inception, has engaged in a planning effort to present current 
advances in ocular studies, and to identify and prioritize the 
goals in vision research (NEI planning). In the institute’s 
latest issue of “Vision Research: Needs, Gaps and Opportu-
nities,” completed in August 2012, epigenetic mechanisms 
were discussed regarding disorders of the retina, cornea, 
and lens (Vision Research 2012). Furthermore, the world’s 
largest epigenetic research project was initiated recently. 
The study will include 5,000 pairs of twins, who will be 
studied to investigate how different phenotypes occur in 
identical twins [31]. In 2010, the International Human Epig-
enome Consortium (IHEC) was launched to coordinate 
international collaborative efforts to produce reference maps 
of epigenomes for cellular states relevant to human health 
and disease. With recent reports from the ENCODE project 
consortium showing that 80% of the genome is functional, 
the significance of research into epigenetic mechanisms has 
become even more important [32].

DISCUSSION

Epigenetics and keratitis: The interaction between pathogens 
(e.g., bacteria, viruses, and fungi) and immune cells results 
in the activation of inflammatory gene expression. Although 
there is little information on the participation of epigenetic 
factors in bacterial keratitis, the possible role of epigenetic 
mechanisms in the pathogenesis of bacterial infections in 
other systems has been investigated. Lipopolysaccharide 
(LPS), which is part of the structure of certain bacteria, 
was found to increase histone deacetylase (HDAC) activity. 
Inhibition of HDAC decreases LPS-stimulated tumor necrosis 
factor (TNF) expression caused by the accumulation of 
nuclear factor kappa B (NF-κB)/p65 at the TNF promoter. 
Interestingly, HDAC3 regulates TNF production in cardio-
myocytes [33]. Bacteria can induce inflammatory signaling 
through the interaction of microbial associated molecular 
patterns with Toll-like receptors and subsequently activate the 
mitogen-activated protein (MAP) kinases (MAPK) cascade 
and NF-κB, leading to increased production of inflammatory 
cytokines such as interleukin (IL)-12, IL-6, and TNF. More 
importantly, the production of inflammatory cytokines is 
under the control of histone acetylation/deacetylation [34].

Herpetic keratitis is a common infectious corneal 
disease. Herpes simplex virus 1 (HSV1) can infect corneal 
epithelial cells and sensory neurons to establish a latent 
infection, leading to recurrence of HSV1 in the cornea when 
the virus is activated by various stimulatory factors. Gene 
replication is activated during acute infection; but instead 
of HSV1 viral DNA being transcribed into RNA and viral 
RNA being translated into viral proteins, only the latency-
associated transcription factor is persistently expressed, and 
thus, latency is maintained. Therefore, understanding the 
mechanism by which HSV1 is maintained in latent infection 
and how HSV1 is activated is critical for controlling HSV 
infection [35,36].

Recent research indicates that the establishment of 
latency and the reactivation of HSV1 are tightly regulated 
by epigenetic mechanisms [35,36]. In acute infection, the 
replication of HSV1 requires participation of the transcription 
factor HIRA, histone H3 acetylation, and H3K4 methylation. 
During latent infection, H3K9 and K27 methylation is the 
major event of histone modifications; in the transition from 
latency to active infection, H3K9/14ac and H3K4me are the 
dominant histone modifications. The latency-associated 
transcript increases deposition of heterochromatic H3K9me2, 
H3K9me3, and H3K27me3 and reduces the formation of 
H3K4me3 on lytic gene promoters, which indicates that 
histone methylation is important in maintaining HSV1 
latency [35,36].

At present, there is no effective therapy for latent infec-
tion. However, recent research shows that latent HSV1 infec-
tion can be activated by the application of the HDAC inhibitor 
trichostatin A (TSA) [37]; the reactivated virus could then 
be killed using specific anti-HSV treatment, suggesting that 
epigenetic therapy is a promising new approach in the treat-
ment of latent HSV infection.

There are no reports on the role of epigenetic factors such 
as DNA methylation and histone acetylation in the patho-
genesis of fungal keratitis; however, fungal metabolic prod-
ucts may interact with Toll-like receptors (TLRs), causing 
a decrease in histone acetylation and an increase in HDAC 
expression, in a manner similar to that of bacterial infection 
[34], and then activate downstream NF-κB signaling, leading 
to the production of inflammatory factors that promote the 
development of fungal keratitis. We further speculate that 
the level of histone acetylation in fungal keratitis is low; 
therefore, fungal keratitis could be inhibited by increasing 
histone acetylation with histone deacetylation inhibitor. This 
implies that the disequilibrium between histone acetylation 
and deacetylation may be a potentially important mechanism 
in the pathogenesis of keratitis.
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Epigenetics in amblyopia and myopia: Histone acetylation/
deacetylation may play an important role in the pathogen-
esis of form deprivation amblyopia [38]. A rat model of 
form deprivation amblyopia was produced by eyelid suture. 
Daily intraperitoneal administration of the histone deacety-
lase inhibitors valproic acid or sodium butyrate resulted in 
recovery of visual acuity and tested visual evoked potentials 
(VEPs) almost to the same level as the controls after the 
sutures were removed. The result demonstrates that epigen-
etic factors are involved in the development of experimental 
form deprivation amblyopia, and suggests that inhibition of 
histone deacetylation might help to prevent visual loss in this 
disorder [38].

In a recent article, Zhou et al. reported that the expres-
sion of collagen 1α1 (COL1A1) mRNA was reduced during 
induction of form deprivation myopia in mice, whereas the 
frequency of methylation in CpG islands of the collagen 1 
promoter was increased compared with control eyes [39]. 
Importantly, during recovery, the expression of COL1A1 
mRNA was increased, corresponding to a decrease in CpG 
methylation. The results indicate that higher levels of DNA 
methylation in the COL1A1 promoter may inhibit scleral 
collagen synthesis and contribute to the development of 
myopia [39].

Epigenetics and cataract: Multiple factors play important 
roles in cataract formation, including genetic, metabolic, 
nutritional, and environmental factors; cataract may also 
develop secondary to other systemic diseases or syndromes 
[40]. Epigenetic factors may also be involved in cataract 
formation [41]. Brg1 is a tumor suppressor that is part of 
the SWF/SNF family. This complex has ATPase activity 
and regulates chromatin remodeling, thus playing a role in 
inhibiting or activating the transcription of multiple genes. 
Using dominant negative Brg1 transgenic mice with a lens-
specific promotor, He et al. showed that the transgenic mice 
developed cataract, while the lenses in the control group were 
transparent. The mechanism of the changes was thought to 
be related to the role of Brg1 in lens fiber differentiation and 
denucleation [41].

DNA methylation, and one of the DNA-methylation-
associating proteins, methylation binding protein 2 (MeCP2), 
may play an important role in transforming growth factor 
(TGF)-β-induced posterior capsular opacification (PCO) 
after cataract surgery. Importantly, the use of the DNA 
methylation inhibitor zebularine can inhibit lens epithelial-
myofibroblastic transformation in vitro [42]. This result 
suggests that aberrant DNA methylation may be relevant to 
PCO; additionally, methylation inhibitors may potentially be 
used to treat PCO [42].

Epigenetics and glaucoma: Multiple factors play important 
roles in the development of glaucoma and retinal ganglion cell 
death. These factors include predisposing single nucleotide 
polymorphisms (SNPs) and environmental effects [43]. A 
better understanding of the mechanisms involved in the onset 
and progression of glaucoma is crucial to the development of 
better therapies. Recent evidence shows that HDAC 2 and 3 
transcripts are significantly increased after acute optic nerve 
injury (ONI); in contrast, histone H4 acetylation in retinal 
ganglion cells was decreased following ONI, suggesting a 
correlation between increased HDAC activities and ONI 
[44]. In addition, Fem1cR is expressed in the early stage of 
neuronal cell apoptosis; the death of retinal ganglion cells is 
closely related to the silenced Fem1cR gene and increased 
HDAC3 activity in mice [45].

Additional experiments show that the application of 
histone deacetylase inhibitors such as TSA and valproic acid 
can reduce the loss of ganglion cells or can even enhance 
axonal regeneration after optic nerve damage [46]. These 
reports suggest that abnormal histone acetylation/deacety-
lation may be related to retinal ganglion cell damage in 
glaucoma. Furthermore, significant differences in genomic 
DNA methylation have been found in peripheral mononuclear 
cells from patients with open angle glaucoma compared with 
healthy controls [47]. In the future, genome-wide mapping 
of the changes in DNA methylation, histone modifications, 
and the expression of miRNA in human retinal ganglion cells 
will help us to determine the profile of epigenetic aberrations 
in glaucoma.

Epigenetics and proliferative vitreoretinopathy: The epithe-
lial-mesenchymal transition of retinal pigment epithelial 
(RPE) cells into myofibroblast-like cells plays a key role in the 
pathogenesis of proliferative vitreoretinopathy (PVR). TGF-β 
is a major inducer of this process, and α-smooth muscle actin 
(SMA)-positive RPE cells have been shown to promote PVR 
membrane contraction that leads to retinal detachment [48]. 
In addition, studies in other cell types and disorders have 
shown that wound healing is regulated by epigenetic factors, 
including DNA methylation and histone acetylation [49-51]. 
Of particular note, MeCP2 is a key regulator of epithelial-
myofibroblast transformation [49]. Recent reports indicate 
that the balance between histone acetylation and deacety-
lation is lost in many fibrotic disorders [50]. HDAC inhibi-
tors suppress renal fibrosis induced by diabetes or TGF-β 
[50]. The HDAC inhibitor TSA also reduces platelet-derived 
growth factor–induced fibroblast proliferation [51].

Epigenetics and retinitis pigmentosa: Retinitis pigmentosa 
(RP) is a heritable, degenerative retinal disease that causes 
progressive visual impairment and blindness. Many RP gene 
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mutations have been identified, but the mechanism leading 
to photoreceptor death is still unclear, and no treatment is 
available for most patients [52]. A recent study found that 
an increase in HDAC activity is observed before photore-
ceptor degeneration in the rd1 mouse model of RP, and that 
the degeneration can be reduced by applying HDAC inhibi-
tors through upregulating peroxisome proliferator-activated 
receptor γ [53]. miRNA have also been implicated in photo-
receptor degeneration. Notably, if the retinal DICER enzyme 
is specifically knocked down in mice, a reduced electroreti-
nography response is observed in degenerated retinal cells 
[54]. In addition, reduced expression of miR-96, miR-182, 
and miR-183 is found in rd1 mice compared with normal 
mouse retinas, and the expression of miR-96, miR-183, miR-1, 
and miR-133 [55] is aberrant in transgenic mice with the 
Pro347Ser mutation in rhodopsin compared with wild-type 
mice.

Recently, valproic acid, an HDAC inhibitor, has been 
used for treating patients with retinitis pigmentosa [56]. 
Although encouraging preliminary results were shown, the 
benefit of this drug in RP needs to be confirmed in a placebo-
controlled clinical trial.

Epigenetics and diabetic retinopathy: Poor glycemic control 
(PC) is associated with many complications, including 
diabetic retinopathy (DR). Recently, a role for epigenetics in 
the pathogenesis of diabetic complications has been proposed 
[57]. In human umbilical vein endothelial cells (HUVECs), a 
heightened glucose level increases the expression and binding 
of the histone acetyltransferase p300 to the promoters of endo-
thelin-1, fibronectin, and vascular endothelial growth factor 
(VEGF) [58]. In streptozotocin (STZ)-treated rats, the retinas 
and retinal endothelial cells (RECs) from animals kept in PC 
show increased expression of HDAC1, HDAC2, and HDAC8, 
and a reduction in the activity of a histone H3-specific acetyl-
transferase; these changes were not reversed when the PC rats 
were returned to good glycemic control. The result suggests 
that the epigenetic metabolic memory phenomenon may be 
the major reason for the continuation of DR even when the 
blood glucose level returns to normal [59].

Alterations in miRNA expression have also been 
observed in diabetic eyes. When rats treated with STZ were 
compared to untreated rats, changes in expression were 
detected in 37 miRNAs. Six of the miRNAs with confirmed 
alterations were differentially expressed over the course of 
STZ-induced diabetes [60]. In another study, VEGF-induced 
miR-17–5p, miR-18a, miR-20a, miR-21, miR-31, and miR-133 
expression was observed in the RECs of STZ-treated rats. 
The p53-responsive miR-34c was also detected, implicating 
miRNAs in mediating the proangiogenic or proapoptotic 

effects caused by VEGF and p53 [61]. Reduced miR-200b 
and increased VEGF have been observed in HUVECs and 
bovine RECs treated with high glucose. Further, knocking 
down miR-200b inhibits the diabetes-induced upregulation of 
p300 in the retina, implying crosstalk between two epigenetic 
mechanisms in diabetic retinopathy [62].

Epigenetics and age-related macular degeneration: Age-
related macular degeneration (AMD) manifests as choroidal 
neovascularization (CNV) in the wet form and geographic 
atrophy (GA) in the late dry form [63]. Recently, epigenetic 
mechanisms have been implicated in the pathogenesis of 
AMD [64,65]. Hypoxia-inducible factor-1α (HIF-1α) has 
been suggested to contribute to the pathogenesis of AMD 
[66]. Epigenetic regulation of HIF-1α has been evaluated in 
cell culture and cancer models. The expression of HIF-1α 
can be reduced via HDAC1 by upregulating p53 and the Von 
Hippel–Lindau protein, through which the expression of 
VEGF is also inhibited [67]. HDAC7 associates with HIF-1α 
to increase HIF-1α’s transactivation ability [68], but VEGF 
induces the nuclear exit of HDAC7 to activate proangiogenic 
gene expression [69]. The HIF-1-directed hypoxic response 
can be regulated by histone methylation as well [70]. In a 
retinal ischemic rat model, TSA not only protected the retina 
from ischemic damage but also inhibited the TNF-α induction 
of matrix metalloproteinase-1 and matrix metalloproteinase-3 
[71]. The pathogenesis of AMD may also potentially be regu-
lated by DNA methylation. Clusterin/apolipoprotein J may 
have either anti- or proangiogenic activities and has been 
found in drusen [72-74]. Clusterin contains CpG islands in 
its promoter region, and treatment of ARPE-19 cells with 
the DNA methylation inhibitor 5-azacytidine (5-AZA) with 
or without HDACi upregulated clusterin expression [74]. In 
a study mapping promoter DNA methylation in AMD and 
age-matched normal RPE/choroid samples, the antioxidants 
glutathione S-transferase isoforms mu1 and mu2 were down-
regulated and heavily methylated in their promoter regions in 
AMD samples. Additionally, the proangiogenic angiopoietin-
like protein 2 had less methylation in its promoter in the 
AMD samples [75]. Hypomethylation of the interleukin-17 
receptor C (IL17RC) promoter has recently been identified in 
peripheral blood cells from patients with AMD and was asso-
ciated with increased expression of IL17RC in their peripheral 
blood and affected retina and choroid. These results suggest 
that epigenetic regulation of IL17RC may play a role in the 
pathogenesis of AMD [76].

Regulation of gene expression by miRNA is also 
involved in CNV. In a laser-induced murine CNV model, the 
intravitreal injection of pre-miR-21 significantly diminished 
CNV volume [77]. When mice were put under ischemic 
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stress, the injection of pre-miR-31 or −150 caused significant 
downregulation of VEGF in the retina, while premiR-31 also 
reduced the expression of retinal HIF-1α and platelet-derived 
growth factor B. The injection of all three of the same pre-
miRs, or of pre-miR-31 or −150 by itself reduced CNV lesion 
sizes in a laser-induced CNV mouse model, while the levels 
of these three miRNAs were significantly reduced in CNV 
lesions [78]. Other mechanisms involving miRNAs could play 
a part in either form of AMD. When miR-23a is downregu-
lated, the death receptor Fas is upregulated, resulting in RPE 
cell apoptosis [79]. The expression of miR-155 is induced by 
TNF-α, IL-1β, and interferon-γ at moderate levels, individu-
ally or synergistically, in combination via the Janus kinase/
signal transducers and activators of transcription pathway 
[80]. In the aged retina, upregulated expression of miRNA-9, 
miRNA-125b, miRNA-146a, and miRNA-155 has been 
found, all of which were responsive to the NF-κB activation 
that modulates amyloidogenesis by inhibiting TSPAN12 and 
that modulates innate immunity by downregulating comple-
ment factor H [81]. DICER1, which is part of the miRNA-
processing machinery, is downregulated in human GA eyes. 
In animal and cell culture experiments, the depletion of 
DICER1 reduces RPE cell viability by causing the accumula-
tion of Alu RNA, which is toxic to RPE cells. A mouse model 
with a DICER knockdown in the retina displayed an RPE 
degeneration phenotype similar to human GA [82].

Epigenetics and retinoblastoma: Retinoblastoma (RB) is the 
most common intraocular tumor in children. Recent studies 
indicate that in addition to RB1 gene mutation, tumor devel-
opment also involves promoter DNA methylation of other 
tumor suppressor genes. Whole-genome sequencing analysis 
from samples of patients with RB and normal controls 
showed that the tumors contained a small number of muta-
tions or chromosomal rearrangements; more likely, RB1 
mutation causes epigenetic abnormalities in cancer-related 
genes, namely, the high expression of spleen tyrosine kinase 
(SYK), suggesting the regulation of RB and SYK is closely 
related [83]. In addition, an association between RB and 
hypermethylation of the RAS association domain family 1A 
gene (RASSF1A) promoter has been demonstrated [84]. Taken 
together, these findings indicate that epigenetic mechanisms 
participate in the pathogenesis of RB.   

Epigenetic and uveal melanoma: Previous studies showed 
that methylation of RASSF1A promoter CpG island is a 
common event in uveal melanoma; and importantly, hyper-
methylation of RASSF1A is related to the development of 
metastatic disease [85-88]. However, a recent study demon-
strated that the human telomerase reverse transcriptase gene 
was methylated, but not on RASSF1A, in uveal melanoma 

[89]. The discrepancy may be due to genetic heterogeneity in 
human uveal melanoma. More research is needed to identify 
these different patterns of DNA methylation.

In addition to DNA methylation, histone acetylation 
has also been implicated in the pathogenesis of uveal mela-
noma. In vitro, histone deacetylase inhibitors can inhibit the 
metastatic activity of uveal melanoma cell by inhibiting cell 
proliferation and inducing apoptosis, which is similar to the 
Fas-dependent apoptosis pathway [90,91]. Additionally, it has 
been suggested that HDAC inhibitors reduce the invasiveness 
of uveal melanoma by inducing changes in DNA conforma-
tion, resulting in inhibited expression of some key tumor 
genes, reduced invasiveness of the tumor cells, and blockage 
of tumor cell proliferation [91].

Epigenetics and ocular stem cells: The potential for 
self-renewal and differentiation in stem cells, including 
embryonic stem cells and induced pluripotent stem cells, 
has become an active area of epigenetics research [16]. The 
dynamic regulation of stem cells by epigenetic factors may 
play an important role in stem cell renewal and differentiation 
[92]. Genes associated with self-renewal are silenced in the 
process of stem cell differentiation, while genes that regulate 
cell differentiation are activated; these stem cell functional 
phenomena are regulated by epigenetic factors. It has been 
suggested that reprogramming of promoter methylation is one 
of the key determinants of the epigenetic regulation of pluri-
potency genes [93]. Shen et al. found that approximately 1.4% 
of CpG islands have undergone significant re-methylation 
in the differentiation of embryonic stem cells into neural 
stem cells [94]. In the murine retina, increased methyla-
tion corresponds to lower levels of EphA5 receptor mRNA 
expression in Müller glial stem cells in the mouse retina [95]. 
The expression of Sirt1 (one of the HDACs) mRNA in retinal 
stem cells was significantly decreased with increasing age 
[96]. In addition, miRNA maintains stem cells in an undif-
ferentiated state [97]. Adult stem cells originating from the 
eye, including corneal epithelial and endothelial stem cells, 
trabecular meshwork stem cells, and retinal stem cells, in 
theory, may have characteristics similar to those of other 
stem cells in the human body, where their mechanisms for 
differentiation and self-renewal are regulated by epigenetic 
factors.

Epigenetics and pharmacotherapeutics: Pharmaceutical 
agents may also be viewed as environmental factors with 
widespread impact on the human body. For example, many 
drug-metabolizing enzymes, gene therapy vectors, and drug 
targets are subjected to regulation by epigenetic factors [98]. 
The resistance of viruses or bacteria to antiviral and antibiotic 
drugs may be related to aberrant epigenetic regulation, which 
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is relevant in clinical practice [99]. Another common phenom-
enon is individual differences in reactions to drugs. DNA 
methylation plays an important role, especially in regulating 
certain drug metabolizing enzymes in the cytochrome super-
family [100]. The differences in expression of cytochrome c 
P450 are responsible for different responses to the same drug 
in different individuals, and P450 expression is regulated by 
DNA methylation [100]. Attention should be paid to these 
epigenetic factors in the development of ocular therapeutics 
and the personalized treatment of ocular diseases.

Future perspectives : The rapid increase in epigenetic 
research in the past decade has increased our understanding 
of the role of epigenetic mechanisms in human physiology and 
disease [4]. Improvements in technology have resulted in the 
ability to perform individual-based human DNA methylation 
mapping (human DNA methylome) [101]. With the expansion 
of epigenetic research, several new concepts and terms have 
emerged, such as the epigenome, epigenetic epidemiology, 
epigenetic pathology, epigenetic disease, epimutation, and 
epigenomic therapy [102]. Although considerable progress 
has taken place, challenges and questions remain. What are 
the epigenetic maps of the various types of ocular cells and 
how do they vary among individuals and in disease? Which 
epigenetic factors in complex eye diseases play a key role, 
and which play a secondary role? What are the epigenetic 
marks that predict progression in blinding eye disease? How 
do epigenetic factors regulate ocular stem cells and tissue 
regeneration? More specifically, what are the roles of histone 
modifications and non-CpG methylation and 5-(hydroxy-
methyl) cytosine methylation in eye development and disease?

Ultimately, the goal of such research is to find effec-
tive therapies for blinding eye disease. Although epigenetic 
therapeutic agents such as 5-AZA and suberoylanilide  
hydroxamic acid are currently being investigated in human 
clinical trials for cancer [19,20], a major problem in applying 
epigenetic agents for ocular disease is the lack of target cell 
or target gene specificity. Consideration should be given to 
the development of small molecules that specifically target 
epigenetic alterations related to specific eye diseases.
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