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Abstract: Abdominal Aortic Aneurysm (AAA) affects 4–5% of men over 65, and Aortic Dissection
(AD) is a life-threatening aortic pathology associated with high morbidity and mortality. Initiators of
AAA and AD include smoking and arterial hypertension, whilst key pathophysiological features of
AAA and AD include chronic inflammation, hypoxia, and large modifications to the extra cellular
matrix (ECM). As it stands, only surgical methods are available for preventing aortic rupture in
patients, which often presents difficulties for recovery. No pharmacological treatment is available, as
such researchers are attempting to understand the cellular and molecular pathophysiology of AAA
and AD. Upregulation of matrix metalloproteinase (MMPs), particularly MMP-2 and MMP-9, has
been identified as a key event occurring during aneurysmal growth. As such, several animal models
of AAA and AD have been used to investigate the therapeutic potential of suppressing MMP-2
and MMP-9 activity as well as modulating the activity of other MMPs, and TIMPs involved in the
pathology. Whilst several studies have offered promising results, targeted delivery of MMP inhibition
still needs to be developed in order to avoid surgery in high risk patients.

Keywords: matrix metalloproteinase; abdominal aortic aneurysm; aortic dissection; aortic
disease; inflammation

1. Introduction

Abdominal aortic aneurysms (AAA) and aortic dissection (AD) are devastating conditions
occurring within the aortic wall, which if left unchecked, lead to extensive dilatation of the major
blood vessel and eventually aortic rupture. Aortic rupture can lead to adverse consequences, with low
survival rates and elevated mortality rates for survivors of aortic rupture [1,2]. Importantly, the term
‘aneurysm’ refers to the abnormal enlargement of the aorta, whereas the term ‘aortic dissection’ refers
to the process of intimal tearing within the aortic wall. This last process allows blood to pool within
the region, creating recirculating blood flow and forming a ‘false lumen’ [3]. Aneurysm formation and
aortic dissection occur as a result of drastic changes to the structure of the aortic wall. These changes
occur due to steady degradation of the extracellular matrix (ECM) proteins, chronic inflammation and
oxidative stress [4]. However, the underlying pathophysiological processes responsible for these two
conditions have not yet been fully elucidated. As our understanding improves, new drugs targets
may develop to tackle these pathophysiological events. Tissue sections and blood samples taken from
AAA and AD patients have helped researchers to identify key member of the matrix metalloproteinase
(MMP) family, which become upregulated in these diseases [5]. Studies in mice have helped us to
gain a greater knowledge of how these MMPs are regulated and how they operate in situ to bring
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about extensive changes in ECM composition of the aorta. This Review will examine how research
into the role of MMPs in AAA and AD may offer a new pharmacological route for reducing the rate of
development of these pathologies, and avoid the calamitous consequences of aortic rupture.

2. Epidemiology of AAA and AD

An AAA is typically defined as an enlargement of the aortic wall with an aortic diameter equal to
or greater than 3 cm [6]. It affects approximately 4–8% of the population [7]. Risk factors for AAA
development include; smoking [8], advanced age (particularly in the over-70s male population) [9–11],
a family history of AAA, and cardiovascular disease [12–14]. Various co-morbidities are associated
with AAA, including myocardial infarction and peripheral vascular disease in both men and women,
and stroke in women only [15]. Of note, there is a much higher risk of developing AAA in men
compared to women [16], but a greater risk of AAA rupture in women [17]. Usually asymptomatic, an
AAA can go undetected up until the point of rupture, which has a high fatality rate [18]. Thus, early
screening programs for AAA have been adopted in the United Kingdom since 2009 for men aged 65
and over, and have since achieved a significant drop in the prevalence of AAA rupture [19].

Imaging techniques required to diagnose and monitor aneurysmal development in small AAAs
include abdominal ultrasound and duplex ultrasonography, whereas computed tomography (CT)
angiography is required to scan aneurysm above the renal arteries during follow up and before any
treatment [20]. Magnetic resonance imaging is less routinely used, but offers and advantage over other
imaging techniques such as no radiation exposure. Finally, positron emission tomography-computed
tomography can also be used for monitoring aneurysmal growth, particularly in inflammatory or
infective aneurysm and associated pathologies [21].

Aortic rupture is typically treated either with open repair or endovascular aneurysm repair
(EVAR) [22]. EVAR is also used for elective repair in patients with infrarenal AAA with an aortic
diameter greater than 5.5 cm [23] although the RESCAN study determined a diameter of 4.5 cm in
women as a threshold for treatment, since the risk of rupture in women is four times higher than that in
men [24]. Available techniques for elective repair also include open repair, requiring the administration
of heparin to reduce the risk of thrombosis [25], which is the standard procedure for nonemergency
infrarenal AAA according to the current 2019 guidelines [26], although such a procedure presents with
significantly higher mortality risks compared with EVAR [27].

Unfortunately, EVAR is plagued by complications such as endoleaks, whereby inadequate sealing
or placement of the stent graft leads to persistent blood flow outside of the graft, increasing the chance
of aortic rupture. Migration of the stent graft >10 mm away from the assigned location can also result
in endoleak, stent graft occlusion and stent graft separation [26]. In light of these complications, new
techniques such as ‘endostapling’, which improves stent graft fixation, and multilayered stent grafts
have been investigated for their improved treatment outcomes [14].

Pharmacological treatments such as doxyclicine and angiotensin-converting enzyme (ACE)
inhibitors have been investigated for their potential to treat and/or prevent AAA growth, as well
as reducing the likelihood of aortic rupture. However, both have been dismissed as they failed to
adequately replicate findings from animal models, and showed conflicting outcomes in clinical studies
respectively [28–32]. Currently, the European Society for Vascular Surgery recommends β-blockers,
aspirin and statins for treating/preventing AAA growth or aortic rupture, despite no clear evidence for
delayed aneurysmal growth [26].

As it stands, pharmacological means of treating AAA are sorely lacking, in part due to a poor
understanding in how aneurysm formation and/or AD is initiated and progresses.
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3. Cellular and Molecular Pathophysiology of AAA and AD

Although multiple processes occurring throughout the course of AAA and AD have been identified,
the chronology of events has been difficult to establish in humans as most cases present mid to late
stage in the disease. As such, various animal models of AAA and AD have been used to further our
understanding including; the global angiotensin II-infusion model, the aortic periadventitial CaCl2
application model, and the intralluminal elastase infusion model [33]. Although each of these models
replicate one or more key aspects of AAA pathology, they serve only to study the role of a specific
cell type and its signaling pathways, and thus information gleaned with regards to early disease
triggers are limited. Therefore, our current understanding of AAA progression is viewed within the
context of multiple pathological events occurring simultaneously. Key events occurring within the
aortic wall include inflammation, vascular smooth muscle cell (VSMC) apoptosis, oxidative stress, and
ECM degradation.

It has long been established that inflammation plays a huge role in onset and progression of
AAA. Elevated C-reactive proteins levels detected in AAA patients [34,35], as well as a large leukocyte
presence in the aortic wall of AAA patients [36], provide a strong indication of immune system
involvement in AAA, as well as AD [37] and rupture [38,39]. In 1972, Walker et al. described the
‘inflammatory aneurysm’ with ‘extensive active chronic inflammatory changes’ seen in tissue sections
of aneurysm patients [40] with the inflammatory variant of AAA disease [41]. Of note, the more
common variant known as ‘atherosclerotic’ AAA, is also marked by immune cell infiltration, however,
without the excessive fibrosis or thickening of the aortic wall seen in 5–10% of aneurysm patients
with ‘inflammatory’ AAA condition [41]. Importantly, cells of both the innate and adaptive arms of
the immune system are observed within the adventitial and medial layers of the aortic wall during
aneurysm development. Both neutrophils and macrophages have been identified as key players in
AAA progression. Early neutrophil infiltration in aneurysm development was found to be essential in
initiating immune cell recruitment through ECM remodeling, as neutrophil depletion studies showed a
significant drop in AAA formation in mice with far smaller aortic diameters [42]. Their role in releasing
neutrophil elastase [43] and forming neutrophil extracellular traps in response to elevated interleukin-1
β (IL-1β) levels [44], point to a vital function for neutrophils in the vast degradation of the ECM within
the aortic wall [45]. Of note, neutrophil function in later stages of AAA progression has also been
studied, with AD found to be mediated by neutrophil-derived MMP-9 release from neutrophils present
in the intima of the aortic wall [46].

Equally macrophages in AAA, predominantly derived from circulating monocytes [47] have been
shown to play a role in early AAA processes, particularly through the release of pro-inflammatory
cytokines, such as tumor necrosis factor- α (TNF- α), and interferon- γ (IFN- γ) [48], which have been
studied for their use as biomarkers for AAA [49]. Moreover, their recruitment to ECM injury sites
and exposure to elastin breakdown products has been shown to trigger phenotype switching towards
either the M1 ‘pro-inflammatory’ phenotype or the M2 ‘anti-inflammatory’ phenotype. M1 and M2
macrophages are predominantly localized in the adventitial layer and the intraluminal thrombus,
respectively, highlighting separate roles for these macrophage subtypes in AAA [50]. Importantly, the
M1/M2 ratio was found to be elevated in ruptured human cerebral aneurysms, compared to unruptured
aneurysms where an equal ratio was observed [51].

Following innate immune cell infiltration, T cells, in particular CD4+ T helper cells play a huge
role in aneurysm pathology. Indeed, depletion of CD4+ T cell populations prevents AAA development
in mice, however, injection with the CD4+ T cell-derived cytokine, IFN- γ, can reconstitute AAA
formation even in the absence of CD4+ T cells [52]. Importantly an imbalance in T helper subsets, Th1
and Th2, has been linked with AAA formation and development [53–55].
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B cells have also been observed in the adventitial wall of aneurysmal tissue sections [56]. As an
abundant source of immunoglobulins, complement and pro-inflammatory cytokines, immune cell
recruitment is potentiated in part by B cells, which require activation through spleen tyrosine kinase
(Syk). Furthermore, as an additional source of MMPs, inhibition of B cell activation using a Syk-specific
inhibitor led to suppressed expansion of aneurysm tissue sections isolated from mice, with a concomitant
reduction in inflammation and immunoglobulin activity [57].

Overall, various pro-inflammatory signaling pathways have been investigated as a potential way of
preventing global inflammatory cell infiltration into the aortic wall. For instance, the c-Jun NH2-terminal
protein kinase (JNK) pathway promotes AAA development by inducing pro-inflammatory chemokine
release [58–60], such as monocyte chemoattractant protein-1 (MCP-1). It is typically activated through
toll-like receptors (TLRs); TLR-2 and TLR-4, which are expressed on immune cells; macrophages
and B cells, in AAA [61]. JNK pathway inhibition has been shown to reduce MMP production and
chemokine-mediated macrophage migration, slowing the progression of AAA development in rats
and humans [62–64]. Moreover, direct inhibition of TLR-2 and TLR-4 has also proven successful
in reducing AAA formation and recurrence in mice and humans [65–68]. Finally, inhibition of
another pro-inflammatory pathway, the nuclear factor kappa-light-chain-enhancer of activated B
cells (NFkB) pathway in endothelial cells, has been shown to be beneficial in protecting mice from
angiotensin II-induced AAA formation by reducing macrophage infiltration, oxidative stress and aortic
inflammation [69]

In the presence of such large-scale inflammation, the aortic wall undergoes significant weakening,
which is compounded by oxidative stress, VSMC apoptosis and ECM remodeling. With the upregulation
of inducible nitric oxide synthase (iNOS) and the presence of nicotinamide adenine dinucleotide
phosphate hydrogen (NADPH) oxidases, reactive oxygen species (ROS) are abundant in the aortic wall,
resulting in further activation of ECM degrading enzymes and VSMC apoptosis. As expected, iNOS
knock out (iNOS-/-) mice and mice treated with a selective NADPH oxidase inhibitor were found to be
resistant to developing aneurysms, highlighting the crucial role that oxidative stress plays in aneurysm
formation [70]. Importantly, the iNOS-/- group expressed reduced levels of MMP-2 and MMP-9, two of
the key MMPs involved in AAA and AD. Although ROS has also been shown to stimulate the secretion
of cyclophilin A (CyPA) from VSMCs, which initiates VSMC migration and proliferation [71], elevated
and sustained levels of ROS will eventually induce VSMC apoptosis [72], resulting in a depletion of
cellular content of the medial layer of the aorta. Finally, the release of matrix degrading enzymes by
immune cells present in the inflammatory milieu of the aortic wall, add to the extensive changes seen
in ECM. Early elastin fragmentation followed by collagen degradation, are hallmarks of AAA and
AD pathology, and considered crucial for aortic dilation and eventual rupture [73]. Protein degrading
enzymes such as urkinase-type plasminogen activator (u-PA) [74] and a host of MMPs are released
into the weakened wall, thereby perpetuating the pathology [75,76]. Halting the destruction of vital
structural components of the ECM is key to salvaging the integrity of the aorta and preventing rupture.
As such, developing pharmacological inhibitors of MMPs may prove useful in determining the course
of AAA and AD progression.

4. MMP and TIMPs Overview

MMPs are a class of zinc-dependent endopeptidase proteins [77], with roles in both physiological
processes, such as angiogenesis [78], and pathological diseases such as cancer [79] and cardiovascular
disease [80]. The MMP family consists of 28 endopeptidases, which must be enzymatically activated
before they can begin degrading various components of the ECM either through cleavage by other
MMPs and proteinases or activation through their catalytic domain via thiol modifying agents and
ROS [81].
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Originally categorized based on the substrate they degrade, namely collagenases (MMP-1, MMP-8,
MMP-13, MMP-18), stromolysins (MMP-3 and MMP-10), gelatinases (MMP-2 and MMP-9) and
matrilysins (MMP-7 and MMP-26), the discovery of more MMP family members paved the way
for a new numbering system, based on molecular structure [82]. Each MMP contains a conserved
signal peptide along with a pro-domain and a catalytic domain, differing within each sub-group.
Added regions are present and required for the breakdown of specific substrates and are often a
determining factor in the localization and function of the MMP. For instance, the hinge region of
MT-MMP1 (MMP-14) plays a key role in pericellular proteolysis by enabling autocatalytic processing
of MT-MMP1 [83]. MMP substrates include ECM proteins (type I/IV collagen, gelatin, laminin,
fibronectin), cell adhesion molecules (E-cadherin), inflammatory cytokines (monocyte chemoattractant
protein 1/3) and breakdown products (IL-1β degradation) [84]. Importantly, MMP expression is
regulated by endogenous tissue inhibitors of MMPs (TIMPs). Appropriate MMP activity hinges on
adequate TIMP expression, and an irregular MMP/TIMP ratio may lead to excessive ECM breakdown,
as is the case in AAA and AD pathology [85].

In particular, MMP-9 and MMP-1 levels were found to be significantly upregulated in aneurysmal
aortic specimens compared to healthy aortic tissues. Moreover, the ratio of MMP to TIMP expression was
found to be higher in diseased specimens [86]. Of greater interest is the relationship between aneurysm
size and the abundance of specific MMPs at different stages of disease progression. Intriguingly,
MMP-9 expression was found to be correlated with aneurysm diameter (over 5 cm), implying a role for
this MMP in later stages of the pathology. Equally another gelatinase, MMP-2, has been implicated
in AAA pathology, as elevated expressions of its activated form were found bound to the ECM of
tissues isolated from AAA patients [87]. As such, both MMPs have been of considerable interest
in the pathology of AAA and AD, and may offer pharmacological means of preventing or slowing
these pathologies.

5. Clinical and GWAS Studies: MMPs in AAA and AD

As evidenced above, AAA and AD are complex pathologies whose outcome relies on cell-mediated
processes regulating MMP activity and behavior. In addition to which, underlying genetic risk factors
also play an important role in influencing AAA and AD likelihood and outcome. Increased susceptibility
for AAA has been determined for several gene variants including in the DAB2IP gene, which encodes
an inhibitor of cell growth and survival [88], and low-density lipoprotein receptor (LDLR) [89]. Both of
these variants showed association with additional cardiovascular conditions such as peripheral artery
disease and coronary artery disease, respectively. By contrast, the single nucleotide polymorphism
(SNP) in the low-density-lipoprotein receptor-related protein 1 (LRP1), rs1466535, was found to be
specifically associated with AAA only [90].

This finding points to a pathological deviation of AAA and AD from other CVD diseases, which
share similar pathologies. Gene variants in sortilin-1 (SORT1) [91] and interleukin-6 receptor (IL-6R) [92]
have also been identified as risk variants for AAA, pointing to possible impairment of macrophage
function with respect to LDL handling [93] and ‘alternative’ phenotype switching [94]. As an abundant
source of MMP-9, impaired macrophage function could prove vital in determining levels of MMP-9
release and therefore aneurysm growth. Unfortunately, GWAS findings have only identified a weak
link between a variant in a region (20q13.12) which maps closely to the MMP-9 gene. However, an
alternative hypothesis has been put forward based on the discovered association between the genetic
variant at 20q13.12 and the PLTP gene nearby, which plays a vital role in high density lipoprotein
metabolism (HDL) [95].
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It is important to acknowledge the difficulty in determining genetic risk variants and their relevance
for MMPs in AAA and AD, due to the redundant nature of various members of the MMP family.
Particularly when shared, overlapping substrates exist between MMPs and allows for compensatory
mechanisms to take over in the event of specific MMP loss [96]. As such, studies investigating the
potential of AAA-relevant MMPs, such as MMP-2 and MMP-9, should focus instead on animal models
and clinical trials rather than genetic association.

6. MMP2 and MMP9 in AAA and AD

MMP2 and MMP9 are the two most critical players in AAA and AD development (Figure 1).
Findings have shown that MMP-2 is predominantly derived from smooth muscles cells and fibroblasts,
and to a lesser extent macrophages [87], whereas MMP-9 is predominantly derived from macrophages
and to a lesser extent neutrophils [81,97]. Due to the multi-cellular origins of these two MMPs, attempts
to block specific MMP function is arguably more favorable than attempting cellular blockade into
the aneurysmal tissue. MMP9-/- and MMP2-/- mice were used to determine their effect on aneurysm
formation. Compared to wild type mice, both groups of genetically modified mice showed no
difference in aortic diameter size, 10 weeks after periadventitial application of CaCl2. Neither group
showed reduced infiltration of macrophages, despite the absence of MMP2 to MMP9, pointing to
a downstream role for these MMPs following their release into the aorta. Interestingly, infusion of
wild type macrophages resulted in reconstitution of aneurysms in MMP9-/- mice, but not MMP2-/-,
highlighting MMP-9 specific release from macrophages, as expected [98].Pharmaceuticals 2019, 11, x FOR PEER REVIEW  6 of 24 
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Figure 1. Signaling pathways involved in regulating MMP-2 and MMP-9 activity in VSMC/fibroblasts
and macrophage, respectively. ASO: antisense oligonucleotide, Hcy: homocysteine, TNF-α: tumor
necrosis alpha, IL-1β: interleukin 1 beta, MCP-1: monocyte chemoattractant protein 1, ROS: reactive
oxygen species.

The authors of this paper suggested that concerted activation of TGF –β may be one of the ways
in which MMP-2 and MMP-9 work together. Although activation of the TGF –β signaling pathway
is generally understood to offer protection against AAA development [99], with important roles in
enhancing Type I and III collagen production [100], and increasing expression of protease inhibitors,
plasminogen activator inhibitor-1 (PAI-1) [101] and TIMP-1 [102].
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On the other hand, the MAPK (mitogen-activated protein kinase)/ERK pathway has been shown to
play a clearly defined role in AAA formation. As stated previously, one member of the Mitogen-activated
protein kinase (MAPK) pathway, JNK, has already been shown to be important in AAA formation by
regulating MMP-9 activity [103]. Expression of another member, ERK-1/-2, was found to be upregulated
in human aortic tissues isolated from AAA patients compared to controls. Moreover, knock down
of ERK in mice (ERK-1-/-) prevented AAA formation by elastase perfusion, resulting in decreased
activation of MMP-2 and MMP-9 [104], highlighting ERK as an upstream regulator of MMP-2 and
MMP-9. Importantly, oxidative stress has been shown to play a role in triggering homocysteine-induced
ERK1 activation leading to MMP-9 release from microvascular endothelial cells [105]. Further in vitro
studies showed that pharmacological inhibition of ERK1/2 and p38 pathway, could attenuate MCP-1
mediated MMP9 release from human aortic smooth muscle cells [106]. One pathway has been
investigated for its protective effect in AAA through MMP-2 and MMP-9 modulation. Activation of
the AMPK signaling pathway was found to alleviate MMP-2 and MMP-9 expression as well as reduce
expression of pro-inflammatory cytokines (TNF- α, IL-6, MCP-1, IL-1β) in AAA mice. Decreased
phosphorylated AMPKα levels, typically observed in AAA patients, could be restored in mice infused
with Angiotensin-II, using aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), a specific
activator of the AMPK pathway, or metformin, a drug currently used in the treatment of Type II
diabetes [107]. In light of this, metformin has now been proposed for clinical trial as a treatment for
AAA (ClinicalTrials.gov Identifier: NCT03507413), and may also provide a helpful clue by explaining
the reduced prevalence of AAA observed in patients with diabetes mellitus [108,109].

Importantly, different animal models of AAA have identified contrasting roles for MMPs including
MMP-2. Shen et al. 2015 found that although MMP-2 was vital for promoting constructive remodeling
of the thoracic aorta through enhanced ECM synthesis following Angiotensin-II infusion in mice, it
enhances ECM degradation in the CaCl2 model [110]. These findings are further compounded by
the fact that the role of MMP-2 in aneurysm development is subject to both regional and temporal
circumstance. For instance in ascending thoracic aortic aneurysms (TAAs), a role for MMP2 has been
widely established, however, its role in descending TAA is less clear [111]. Raised levels of MMP-2
within 72 h of aneurysm formation, followed by a rapid return to baseline levels would suggest a role
for MMP-2 in early thoracic aneurysm formation only [112]. Moreover, the cellular source of MMP-2
and MMP-9 in aneurysmal development differs between the thoracic and abdominal aorta [113,114].
Thus, it is important to recognize these intrinsic differences when designing suitable therapeutic targets.

7. Other MMPs or TIMPS in AAA and AD

It is clear from the literature that multiple signaling pathways converge to regulate MMP-2 and
MMP-9 activity within their respective cells (Figure 1). It is worth noting, however, that although much
effort has been devoted to understanding their roles in AAA and AD pathology, many other MMPs
are upregulated and enhance pathological processes under these conditions (Table 1). For instance,
MMP-8 in conjunction with cathepsins K, L and S were found to be significantly upregulated in tissues
sections isolated from asymptomatic and ruptured aneurysms. Importantly, these collagenases were
identified as the key culprits of aneurysmal growth and rupture in which collagen turnover plays a
huge part [115]. As such, pharmacological inhibition of lysosomal cathepsin proteases should also
be considered for future pharmacological inhibition of AAA and AD [116]. Similarly, TIMPs play
a key role in modulating MMP expression, as well as regulating leukocyte and VSMC behavior in
AAA pathologies. However, conflicting findings add to the confusion arising from a complex and
dynamic network of proteases [117–120]. Therefore, future studies are required, using comparable
animal models, cell types, and experimental conditions, to determine the true role for each MMP and
TIMP protein involved AAA and AD pathology.

ClinicalTrials.gov
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Table 1. Other MMPs or TIMPS in AAA and AD.

Role within AAA, AD or
Rupture Substrate Stimulus Known Signaling

Pathways Ref.

MMP-1
Associated with increased rates of
aneurysmal rupture and reduced

survival, and aortic dissection

Collagen
triple helix

TNF-α
IL-1

(MAPK family) JNK,
ERK and p38

kinase-induced
activation of MMP-1

[121–123]

MMP-3 Activity promotes AAA Elastin Netrin-1

Netrin-1 binds
neogenin-1 receptors
on VSMCs to activate

MMP3

[124]

MMP-7 Increased expression in AAA N-cadherin
PI-3 kinase/Akt

VSMC apoptosis and
proliferation

[125]

MMP-8
Elevated expression in growing
and rupture AAA, released by

neutrophils

Collagen
triple helix
Cystatin C

Ox-LDL
IL-1 [115,126]

MMP-12
Promotes AAA growth by

regulating leukocyte recruitment
Promotes AD formation

Elastin
CXC-chemokine
ligand 2 and 3

IFNγ

IL-3

MMP-12 cleaves
N-cadherin,

triggering ß-catenin
signalling and VSMC

proliferation

[127–131]

MMP-13

Elevated expression in AAA
sections and thoracic aortic

dissection tissues, predominantly
localised to VSMCs

Collagen
triple helix

TNF-α
IL-1

(MAPK family) JNK,
ERK and p38

kinase-induced
activation of

MMP-13

[132,133]

MMP-14
(MT1-MMP)

Modest increase in tissues of
ruptured AAA

Collagen
triple helix [134]

MMP-17
(MT4-MMP) Inhibits AAA formation Osteopontin

in VSMCs

c-Jun N-terminal
kinase signalling,

VSMC maturation
[135]

MMP-19 Expression is associated with
aneurysms [134]

TIMP-1

Increased levels in AAA
Overexpression leads to ablation

of AAA within experimental
rodent model

Deletion enhances aneurysm
formation

MMP-1,
MMP-9 and

MMP-3
TNF-α Inhibits MMP-1,

MMP-9 and MMP-3
[97,136–

139]

TIMP-2

TIMP-2 promotes aortic growth
through activation of MMP-2 in

murine model of AAA
Reduced expression of TIMP-2 in

late stage cerebral aneurysm
formation

MMP-2 Regulates MMP-2 [117,118]

TIMP-3

Increased expression in response
to MMP over activity, with

heightened expression in human
AAA end stage tissues
Loss of TIMP-3 leads to

worsening of the AAA pathology
Reduces VSMC proliferation and

migration

MMP-2,
MMP-9,
TNF-α

TGF-ß [140–142]

8. Potential Applications of MMP Inhibition

As it stands, most pharmacological means of targeting MMP activity in AAA have consisted of
targeting global MMP expression rather than through MMP-specific attenuation. Doxycycline has long
been considered an effective non-selective MMP inhibitor by reducing gene expression [143], resulting
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in a reduced incidence of AAA in mice [144] and aortic growth in humans [145]. Interestingly salvianolic
acid A has been shown to achieve similar levels of improved vascular integrity and decreased aortic
diameter in ApoE-/- mice infused with angiotensin II, however with reduced hepatoxocity levels
compared to doxycycline treatment [146]. Moreover, the 3-hydroxy-3-methylglutaryl coenzyme A
reductase inhibitor, cerivastatin, has been shown to suppress MMP-9 production in the aortic wall
in humans [147] and prevent aneurysm formation in an elastase-induced AAA model in rats [148].
Conversely, the calcium channel blocker, amlodipine, has been shown to enhance MMP-9 activity and
elastin degradation in porcine aortic segments [149]. Despite this, amlodipine was found to halt aortic
dilatation in an angiotensin II-induced model of aortic aneurysm formation, however the absence
of any MMP activity measurements in this study may suggest an alternative mechanism, such as
blood pressure lowering, was responsible for reduced dilatation [150]. Another study found that in
combination with the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, atorvastatin and
amlodipine could reduce MMP-2 activity in an angiotensin II infusion animal model of AAA [151].
Finally, imidapril, an angiotensin-converting enzyme inhibitor, has also been shown to attenuate aortic
expansion in an elastase-induced model of AAA both in wildtype mice and further in angiotensin II
type I (AT1) receptor knock out mice. Imidapril was found to achieve this without affecting blood
pressure. As evidenced above, a number of pre-existing drugs have been tested for their efficacy
at targeting aneurysm formation, with varied success. Future work should focus on MMP-specific
attenuation, for instance, using synthesized molecules such as small molecular weight MMP inhibitors
(MMPis) which work through chelation of the MMP ZN2+ ion active site and may offer potential
therapeutic tools for targeting specific MMP activity during aneurysm formation [152].

9. Conclusions and Future Perspectives

First described in 1962, MMPs have been a huge source of interest as new functions and catalytic
mechanisms become assigned to them in various physiological and pathological conditions [153]. Due
to their abundance and multi-faceted nature, they offer a large scope for modulating key pathological
processes in AAA and AD, particularly with regards to ECM turnover. As discussed previously, the
cellular source of MMP-2 and MMP-9 in aneurysmal development differs at different locations [113,114],
suggesting a distinct or in some occasions even an opposite contributions of different cellular sources
of MMPs to AAA or AD. Unfortunately, MMP gene global knockout mice were used to examine the
potential contribution of individual MMP to AAA and/or AD in the majority of studies. Although
some researchers attempted to use alternative strategies (e.g., bone marrow transplantation [98,124,144]
and cellular depletion [46]) to address above issue, cell lineage conditional MMP gene knockout mice
would be more desirable tool for us to confirm the cell-specific roles of carious MMPs in AAA or
AD. Moreover, under normal conditions, MMP-mediated ECM turnover allows cell migration within
healthy tissues, vital for maintaining structural integrity of the aorta. As such, effects observed through
global interference of MMPs in murine models of AAA provide a somewhat unrealistic portrayal of
outcomes to be expected in humans, since localized MMP inhibition is more desirable. Hence, future
investigations using drug-eluting grafts or flow diverting stents following EVAR procedures may
present one localized method of preventing aneurysmal growth and aortic rupture following AD [154].
However, this still does not offer a substantial solution to preventing enlargement of small aneurysms,
reducing the need for patients to undergo surgery in the first place.

As such, alternative methods have been investigated including delivery of rapamycin via
nanoparticles in an elastase infusion model of AAA. Accumulation of rapamycin was found
to successfully target aortic aneurysms and reduce the expression of MMPs and inflammatory
cytokines [155]. Similarly, delivery of nanoparticles loaded with batimastat (a hydroxamate-based
MMP inhibitor) was found to be more effective at reducing MMP activity, elastin degradation and
aortic wall expansion in a CaCl2 murine model of AAA compared with batimastat administration alone.
Nanoparticle-based MMP inhibition studies have demonstrated numerous benefits in the treatment
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of AAA including improved drug delivery, reduced off-target effects and in some cases a reversal of
disease pathology [156,157].

Future studies using a similar delivery system but targeting specific MMP gene expression
through oligonucleotide-based therapy may prove to be an ideal method of understanding localized,
MMP-specific responses to the highly inflammatory and hypoxic environment in the aorta during
AAA and AD [158]. It is clear from the literature that protease contributions to AAA and AD pathology
are immense and targeted inhibition could significantly improve the prognosis for aneurysm patients.
However, significantly more work must be carried out to improve our understanding of specific MMP
and TIMP involvement, particularly with regards to their signaling pathways and temporal influence
on disease progression. Once their contributions have been clearly established, appropriate delivery
methods for modulating their activity will need to be considered as well.
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