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Topological motifs populate 
complex networks through 
grouped attachment
Jaejoon Choi1,2 & Doheon Lee   1,3

Network motifs are topological subgraph patterns that recur with statistical significance in a network. 
Network motifs have been widely utilized to represent important topological features for analyzing 
the functional properties of complex networks. While recent studies have shown the importance 
of network motifs, existing network models are not capable of reproducing real-world topological 
properties of network motifs, such as the frequency of network motifs and relative graphlet frequency 
distances. Here, we propose a new network measure and a new network model to reconstruct real-
world network topologies, by incorporating our Grouped Attachment algorithm to generate networks 
in which closely related nodes have similar edge connections. We applied the proposed model to real-
world complex networks, and the resulting constructed networks more closely reflected real-world 
network motif properties than did the existing models that we tested: the Erdös–Rényi, small-world, 
scale-free, popularity-similarity-optimization, and nonuniform popularity-similarity-optimization 
models. Furthermore, we adapted the preferential attachment algorithm to our model to gain scale-
free properties while preserving motif properties. Our findings show that grouped attachment is one 
possible mechanism to reproduce network motif recurrence in real-world complex networks.

Researchers have developed network models for real-world systems such as protein-protein interactions (PPIs), 
author collaborations, the World Wide Web (WWW), and social networks in order to analyze the relationship 
between the functions and structures in those real-world systems. Each real-world system has its own proper-
ties that can be described in terms of network measures such as network centralities, average path length, and 
degree distribution. The three classic models for describing real-world properties are the Erdös–Rényi (ER)1, 
small-world (SW)2, and scale-free (SF)3 models. Although several variations of these standard network models 
and other models have been proposed, these three models are still widely used in network analysis4–6. Recently, 
two hyperbolic geometrical models have been developed: popularity-similarity-optimization (PSO)7, and nonu-
niform popularity-similarity-optimization (nPSO)8,9 models. These models have been proved to be able to repro-
duce real-world properties such as clustering, small-worldness, power-lawness, rich-clubness and community 
structure8,10,11.

Network motifs are recurrent and statistically significant partial subgraphs or patterns12, and graphlets are 
small connected non-isomorphic induced subgraphs13. Although these two concepts are defined slightly differ-
ently, they are commonly used interchangeably. Various studies on topological measures of networks have high-
lighted the importance of network motifs and graphlets in analyzing real-world networks properties, including 
scale-free, geometric, complex, or high-order networks13–19. Some proposed topological measures of network 
motifs and graphlets include frequency of network motif14, graphlet degree distributions (GDD)15, and relative 
graphlet frequency distances (RGF-distances)13.

Here we suggest a new network measure which represents real-world topological properties and a new net-
work model incorporating the grouped attachment (GA) to resemble real-world topological properties of net-
work motifs. To validate the GA models, we show that the GA model networks have motif properties more similar 
to real-world networks than other tested conventional models.
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Results
Network motifs in network models.  While recent studies have shown the importance of analyzing net-
work motifs and graphlets20–25, current network models are not capable of reproducing real-world topological 
properties of network motifs. To show the incapability of the network models, we examined network motif fre-
quencies of the canonical Wnt signaling pathway (see Supplementary Fig. S1) in the NCI (National cancer insti-
tute)/Nature database. For the given real network, we generated corresponding model networks by the network 
models (ER, SW and SF). For each network model, 100 random networks are generated with input parame-
ters optimized from the real network (See method session for detailed description of network generation), and 
directed 3-node motif frequency distributions of the networks are examined.

As we show in Fig. 1, none of previous network models (ER, SW and SF) reproduced a motif frequency dis-
tribution of the real-world network (black line) compared to our proposed model (GA and GA + R) networks 
(purple lines). GA model networks have significantly high correlations (correlation coefficients = 0.92) with the 
real network compared to previous network models. This result shows that previous network models have quite 
different network motifs from the real network, and our proposed model networks have higher network motif 
similarity to the real network compared to other network models.

Co-neighborness of a graph.  To begin to address a new network model which can reproduce real-world 
topological properties of network motifs, we focus on the concept of common neighbors index26 (Fig. 2). 
Common neighbors index represents the likelihood that two nodes interact increases if overlap of their 
first-node-neighbors (adjacent nodes) increases. Several studies27–32 claimed that nodes in the same community 
or cluster have high similarities and common neighbors index are highly related to community or cluster struc-
tures in networks. Nodes in the same cluster can be clustered based on various criteria such as vertex connectivity 
or neighborhood similarity28, and nodes in a community structure show high similarities29. We assumed that 
neighborhood similarities of related nodes could be a key solution to reproduce real-world topological properties 
of network motifs. Therefore, we suggest a new network measure, co-neighborness, which shows neighborhood 
similarity of nodes in the network.

Let G = (V, E) be a graph with node set V and edge set E. We defined co-neighborness of a graph as an average 
value of Jaccard’s indices33,34 of edges in the graph:
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where two nodes u, v ∈ V are connected by an edge e ∈ E, and JC(u, v) is a Jaccard’s index of node u and v. Jaccard’s 
index is normalized common neighbors index33,34. (See method section for the equation of Jaccard’s index).

Figure 1.  Motif property analysis result of canonical Wnt signaling pathway in the NCI/Nature database. 
Directed 3-node motif frequency of a real-world network and its corresponding model networks of existing 
network models (ER, SW and SF) and our models (GA and GA + R). The horizontal axis is directed 3-node 
motif number, and the vertical axis is motif frequency count. Pearson correlation coefficients between the 
real network and corresponding model networks are stated in legends. GA and GA + R models show higher 
similarity of motif frequencies to the real-world network compared to other network models. Legend: 
ER = Erdös–Rényi; SW = Small-world; SF = Scale-free; GA = Grouped attachment.
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The co-neighborness of a graph has range from 0 to 1. If the co-neighborness is close to 0, few common 
neighbors of an edge (two adjacent nodes) exist. If the co-neighborness is close to 1, most adjacent nodes of an 
edge (two adjacent nodes) are common neighbors. A graph with no ‘triangle subgraph (fully connected 3-node 
subgraph)’ has co-neighborness as 0. A fully connected graph has co-neighborness as 1 (Fig. 3).

There are several existing network measures (see Supplementary Note) which are related to co-neighborness 
such as graph density or average/global clustering coefficient35. These measures can have high correlation with 
co-neighborness, but have different values as co-neighborness has a distinctive definition (see Supplementary 
Table S3).

Grouped attachment.  To reflect the real-world co-neighborness property, we consider the following 
grouped attachment procedure (Fig. 4). We get three values as input parameters: (1) n as a node count, (2) p as 
an edge probability (0 < p < 1) and (3) q as a groupness probability (p < q < 1, see Supplementary Note). Starting 
from a single node graph G0, at every repeat we create and add a highly interconnected graph F, which is gener-
ated by an edge extension model (see Supplementary Note) with an input probability q. Then, we create edges that 
connect the nodes in the graph F to the nodes in the graph G. Among the nodes in the graph G, we select nodes 
with a probability p/q to be connected, and for every selected nodes, we connect to the nodes in the graph F with 
a probability q (p < q < 1). We repeat the procedures until the graph G has n nodes.

By following the procedures above, we can generate edges connecting the graph G to the graph F with a prob-
ability p in total. Compared to a random selection of edges with a probability p, the procedures guarantee high 
neighborhood similarities of nodes in the graph F, when q has a high value. If q has a low value, edges are created 
almost similar as random selection with probability p, which leads to generate a graph similar to the ER model.

The grouped attachment has similarities and differences with the preferential attachment (SF model)3. 
Indicated by their names, both models have growing characteristics which is implemented through attachments. 
Both models start with a small number of nodes (one node for grouped attachment), and at every repeat a new 
group of nodes (one node for preferential attachment) are added with edges that link the new nodes to the nodes 
already present in the system. However, grouped attachment does not preferentially attach nodes, which means 
nodes are not connected depending on degree of nodes. Instead, grouped attachment adds group of nodes at each 
repeat, while preferential attachment adds a single node at each repeat.

Furthermore, we implemented GA with revised p model (GA + R model) to adjust a total edge density to 
be p. As represented in the grouped attachment explanation, the procedures only guarantee a density of edges 

Figure 2.  Common neighbors and Jaccard’s index of an edge. The figure shows an example of common 
neighbors. Among all neighbor nodes (C, D, E, F, G, H, I, J, K and L) of edge e (A-B), nodes which are adjacent 
to both of A and B are co-neighbor nodes (C, D and E). Jaccard’s index of edge e (A-B) is 3/10 = 0.3.

Figure 3.  Co-neighborness of a graph. Example graphs are illustrated with their co-neighborness. A graph with 
no triangle subgraph (fully connected 3-node subgraph) has co-neighborness as 0. A fully connected graph has 
co-neighborness as 1.
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connecting the existing graph with the added graph (edges between the graph G and the graph F) to be p. On the 
other hand, a density of edges of an added graph (the Graph F) is independent of p. As our model is designated 
to have a total edge density as p (like the ER model), we adjusted a density of connecting edges (edges between 
the graph G and the graph F) to be p′, which guarantees a total edge density to be p (Fig. 5). We deduced p′ by 
calculating an edge density of the added region (edges in the graph F and connecting region between the graph G 
and F) for each repeat (see Supplementary Note for p′ calculation).

Figure 4.  Network generation procedures of grouped attachment model. The GA model gets three input 
parameters; n: node count, p: edge probability, and q: groupness probability. Like the preferential attachment 
model, attachments are processed repeatedly.
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Topological property of GA model networks.  To validate our models, we computed RGF-distances25 
between a canonical Wnt signaling pathway in the NCI/Nature database (the pathway used in the introduction 
session) and its corresponding model networks of existing network models (ER, SW and SF) and our models (GA 
and GA + R) (see Supplementary Fig. S7). Creation processes of corresponding model networks of existing mod-
els are described in the Method session. RGF-distance compares the frequencies of the graphlets in two networks. 
To find the optimized q values for our models, we applied various q values ranging from 0.1 to 0.9 with an interval 
0.1 (see Supplementary Note). Furthermore, we performed the same experiments to various types of undirected 
networks from Network Repository36; co-authorship network of scientists, airport network among cities, and real 
world road network (see Supplementary Note).

As described ahead, Fig. 1 shows directed 3-node motif frequency distributions of a canonical Wnt signaling 
pathway and its corresponding model networks of the existing network models (ER, SW and SF) and our models 
(GA and GA + R) with optimized q values (0.8 and 0.8, respectively). None of the existing network models repro-
duced a motif frequency distribution of the real network. On the other hand, GA models show similar shapes 
(high frequency at motif No. 3, 5, 6, 7, 10 and 11) of directed 3-node motif frequency distributions with the real 
network (purple lines in Fig. 1).

Supplementary Table S1 shows RGF-distances between canonical Wnt signaling pathway and its correspond-
ing model networks of the existing network models (ER, SW and SF) and our models (GA and GA + R). Having 
low RGF-distances can be interpreted as they have more similar graphlet frequencies to the real-world network. 
GA models with optimized q values (0.8 and 0.8, respectively) show better results (lower values) in RGF-distances 
compared to the existing network models.

According to the results of motif frequency distributions and RGF-distances, our models showed better per-
formances compared to the existing network models. The importance of the results is implied by the similar 
patterns (high frequency at motif No. 3, 5, 6, 7, 10 and 11) of 3-node motif frequency distribution of GA models 
with the real network, while the existing network models showed different aspects. GA models had better per-
formances compared to the existing network models not only on the RGF-distances, but also on the aspects of 
3-node motif frequency distribution. These results indicate that GA models reproduce motif properties of the real 
network better than other models.

Table 1 shows RGF-distances and co-neighborness values between various real-world networks (canonical 
Wnt signaling pathway, co-authorship of scientists, airport network among cities, and real-world road network) 
and their corresponding model networks of the existing network models (ER, SW, SF, and PSO/nPSO) and GA 
models. For PSO/nPSO models, the best performed results are shown among various input parameter settings 

Figure 5.  Edge generation procedures of GA and GA + R model. The figure shows an example of edge 
generation procedures (Step 3 of Fig. 4) of both models. Both GA and GA + R models are supposed to have 
edge density as p, while edge density of graph F is not guaranteed to be p. To adjust total edge density to be p, 
the edge generation procedure of GA + R model selects target nodes with probability of p′/q, instead of p/q, 
which change the edge density of connecting edges (between graph G and graph F) from p ( = p/q × q) to p′ 
( = p′/q × q).
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(T = 0.1, 0.5, and 0.9; C = 0, 4, and 8; See method session for details). Except for the Inf_USAir network, GA 
models outperformed in RGF-distances. For the Inf_USAir network, GA models might generate better results for 
q value over 0.9, which was not included in the experiment.

For three real-world networks (Canonical_wnt, Ca_netscience, and Inf_USAir) which have high 
co-neighborness values (0.19, 0.30, and 0.26, respectively), GA models showed relatively high co-neighborness 
values compared to ER and SF model. SW and PSO/nPSO models also showed relatively high co-neighborness 

Canonical_wnt Ca_netscience Inf_USAir Inf_euroroad

Real-world network

  Co-neighborness 0.19 0.30 0.26 0.01

  Assortativity coefficient γ −0.24 −0.08 −0.21 0.13

Corresponding model (existing) networks

ER model

  RGF-distance 107.26 ± 4.51 112.89 ± 3.32 109.97 ± 3.74 75.26 ± 6.00

  Co-neighborness 0.01 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.00 ± 0.00

  Assortativity coefficient γ 0.00 ± 0.03 −0.01 ± 0.03 0.00 ± 0.02 −0.01 ± 0.03

SW model

  RGF-distance 46.32 ± 2.79 72.90 ± 1.27 21.01 ± 0.40 102.11 ± 2.63

  Co-neighborness 0.24 ± 0.01 0.17 ± 0.01 0.32 ± 0.01 0.00 ± 0.00

  Assortativity coefficient γ 0.00 ± 0.04 0.00 ± 0.04 0.00 ± 0.02 0.01 ± 0.02

SF model

  RGF-distance 56.47 ± 4.07 118.56 ± 5.71 50.92 ± 1.55 131.14 ± 5.67

  Co-neighborness 0.02 ± 0.00 0.02 ± 0.01 0.04 ± 0.00 0.00 ± 0.00

Assortativity coefficient γ −0.85 ± 0.05 −0.39 ± 0.06 −0.81 ± 0.03 −0.54 ± 0.11

nPSO model

  Optimized T value and C value 0.1, 8 0.1, 8 0.1, 8 0.1, 8

  RGF-distance 28.64 ± 1.28 68.92 ± 1.75 34.61 ± 1.13 98.73 ± 0.16

  Co-neighborness 0.13 ± 0.00 0.08 ± 1.75 0.19 ± 0.01 0.00 ± 0.00

  Assortativity coefficient γ −0.10 ± 0.02 −0.19 ± 0.03 −0.09 ± 0.01 −0.24 ± 0.03

Corresponding model (GA) networks

GA model

  Optimized q value 0.8 0.9 0.9 0.2

  RGF-distance 22.97 ± 1.43 16.72 ± 2.85 33.30 ± 3.31 31.94 ± 10.14

  Co-neighborness 0.14 ± 0.01 0.19 ± 0.01 0.14 ± 0.01 0.02 ± 0.00

  Assortativity coefficient γ 0.00 ± 0.04 −0.05 ± 0.05 −0.07 ± 0.03 0.04 ± 0.03

GA + R model

  Optimized q value 0.8 0.9 0.9 0.2

  RGF-distance 25.91 ± 2.28 13.72 ± 2.66 32.33 ± 2.22 27.29 ± 17.86

  Co-neighborness 0.14 ± 0.01 0.20 ± 0.01 0.15 ± 0.01 0.01 ± 0.00

  Assortativity coefficient γ 0.05 ± 0.06 0.02 ± 0.09 −0.02 ± 0.04 0.04 ± 0.03

GA + P model

  Optimized q value 0.9 0.9 0.9 0.1

  RGF-distance 20.87 ± 2.73 52.99 ± 8.31 40.75 ± 2.29 87.74 ± 15.66

  Co-neighborness 0.17 ± 0.01 0.18 ± 0.01 0.15 ± 0.01 0.01 ± 0.00

  Assortativity coefficient γ −0.31 ± 0.03 −0.17 ± 0.03 −0.39 ± 0.02 −0.18 ± 0.02

GA + RP model

  Optimized q value 0.6 0.9 0.9 0.1

  RGF-distance 29.23 ± 4.88 43.73 ± 15.83 43.86 ± 2.80 67.83 ± 11.02

  Co-neighborness 0.09 ± 0.01 0.19 ± 0.01 0.16 ± 0.01 0.01 ± 0.00

  Assortativity coefficient γ −0.32 ± 0.04 −0.15 ± 0.02 −0.34 ± 0.03 −0.16 ± 0.02

Table 1.  RGF-distance, co-neighborness and assortativity analysis results of various real-world networks. 
The table shows RGF-distance, co-neighborness, assortativity coefficient γ values of four real-world networks 
and their corresponding model networks. For models, which require optimization, also stated the optimized 
parameter(s). Average values and standard deviations are stated together as the experiments are performed 10 
times (100 times for canonical_wnt) per every condition, and averaged the results. Low RGF-distance represents 
high motif similarity to real-world networks. Co-neighborness is our proposed measure, which is highly related 
to common neighbors and community/cluster structures. Low assortativity coefficient γ values are related to 
scale-free property. Best performed RGF-distances, relatively high co-neighborness values, and relatively low 
assortativity coefficient γ values are stated in bold.
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values, because SW and PSO/nPSO model generates networks with high clustering coefficients, and clusters 
increase co-neighborness values of the network. Inf_euroroad network has a low co-neighborness value (0.01) 
and all model networks showed low co-neighborness values. As optimized q values for GA models of Inf_euro-
road are also low, there seems to be a correlation between co-neighborness and optimized q values, which might 
be a good following research topic. In general, corresponding model networks of similar co-neighborness values 
with real-world networks showed low RGF-distances, which implies that co-neighborness can be a good topolog-
ical measure of network motifs.

From these results, we can insist that GA models generate networks which have high topological similarities 
with real-world networks in the manner of RGF-distances. As well, co-neighborness showed its potential to be a 
representing topological measure of network motifs.

Preferential GA models (GA + P and GA + RP models).  As the scale-free model (SF model) has been 
widely analyzed and represented as a proper network model in various types of networks3,37,38, we applied the 
preferential attachment procedures to our models. The preferential GA model (GA + P model) is a combined 
model which preferentially attaches nodes when connecting the added graph (Graph F) with the existing graph 
(Graph G) (Fig. 6). During the attachment procedure (step 3 in Fig. 4), we select | | ⋅V p q/G  nodes depending on 
the distribution +αdeg V a( )G , where deg(VG) indicates a degree (in-degree for a directed graph) distribution of 
nodes in the Graph G, α indicates power of preferential attachment, and a indicates initial attractiveness of the 
nodes3. This procedure guarantees higher connection probabilities on nodes of higher degrees, while preserving 
a motif property of our model. Furthermore, we also implemented GA + RP model, which adapted preferential 
attachment to GA + R model.

To show preferential attachment procedures are well-implemented in preferential models (GA + P and 
GA + RP models), we computed RGF-distances25, power law exponents3, and assortativity coefficients39 of 
the networks. Scale-free networks have degree distributions following power law with exponents in the range 
between two and three3. As some of network generation models get power law exponents as one of their input 
parameters, we also measured assortativity coefficients as indirect measurements of scale-free property40. Power 
law exponents and assortativity coefficients are measured from two real-world networks (Canonical_Wnt and 
Inf_USAir) and their corresponding model networks (Fig. 7). Networks generated by SF, PSO/nPSO, GA + P, 

Figure 6.  Edge generation procedures of GA and the preferential attachment adapted model (GA + P). The 
figure shows an example of edge generation procedures (Step 3 of Fig. 4) of both models. High degree nodes 
have higher probability to be selected in attachment procedure of GA + P model. GA + P model shows a scale-
free property while maintaining a motif property of our model.
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and GA + RP have low assortativity coefficients and power law exponents around two to three, which represents 
those networks are scale-free and confirms that low negative assortativity coefficients are related to scale-free 
properties. In Table 1, networks generated by SF and PSO/nPSO models show low negative values of assortativity 
coefficient r, while networks generated by ER and SW models show r values close to 0. This result also supports 
that scale-free properties are represented with low negative values of r. As networks generated by preferential 
models (GA + P and GA + RP models) have power law exponents around two to three and show relatively low 
negative values of r compared to networks generated by non-preferential models (GA and GA + R models), we 
can claim that networks generated by preferential models have scale-free properties.

Furthermore, it is notable that RGF–distances are quite similar between the non-preferential models (GA 
and GA + R models) and the preferential models (GA + P and GA + RP models) in canonical Wnt signaling 
pathway and airport network among cities, while preferential models had poor RGF-distances compared to 
non-preferential models in other networks (co-authorship network of scientists and real world road network). 
As real-world networks of canonical Wnt signaling pathway and airport network among cities showed relatively 
low negative values (−0.24 and −0.21, respectively) of r, we can assume that those two networks have scale-free 
properties. Then, we can conclude that the preferential models showed good performances of motif properties in 
real-world networks with scale-free properties.

According to these results, we can claim that preferential models (GA + P and GA + RP) gained scale-free 
properties while preserving real-world motif properties. Also, it can be implied that preferential attachment pro-
cedures are well-implemented in preferential models (GA + P and GA + RP).

Discussion
In summary, we suggested a new network measure, co-neighborness, and a new network model, grouped attach-
ment, to represent real-world network topologies. We showed that some of real-world networks have high 
co-neighborness, and reproducing the co-neighborness can generate real-world topologies. As the preferential 
attachment is suggested to reproduce scale-free properties of real-world networks3, we suggested the grouped 
attachment to reproduce co-neighborness of real-world networks. By applying the grouped attachment to random 
network generation, we have developed a new network model which has higher similarities of motif properties 

Figure 7.  Assortativity coefficients and power law exponents of two real-world networks and their 
corresponding model networks. Two real-world networks, (A) Canonical_Wnt and (B) Inf_USAir, are selected 
as both of them have power law exponents between two and three, which represents scale-free property. 
Assortativity coefficients and power law exponents are measured from those networks and their corresponding 
model networks. For PSO/nPSO and GA models, we used the optimized input parameters stated in the Table 1. 
Most networks with low negative assortativity coefficients have power law exponents around two and three, 
which represents scale-free property. There exist couple of outliers in GA + P and GA + RP model networks.
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with real-world networks. While existing network models could not reproduce motif frequency distribution of 
real-world networks, our proposed model showed higher similarities of motif frequencies with real-world net-
works quantitatively. Furthermore, we applied preferential attachment procedures to our model, to gain scale-free 
properties while preserving real-world motif properties.

Nevertheless, existing network models have their capability to reproduce some of real-world properties. While 
our models outperformed on reproducing network motif properties, existing models have their own specialties 
on different real-world properties; SF model for scale-free properties; SW model for small world properties; PSO/
nPSO models for various properties stated in the introduction session. It would be responsible for users to choose 
appropriate models for a given task.

As co-neighborness adopted the concept of Jaccard’s index, graphs with high co-neighborness would have 
pairs of adjacent nodes which are located closely in a hidden geometric space10. Furthermore, if you apply 
co-neighborness (Jaccard’s index) concept to the community/cluster structure, you can interpret it as “A pair of 
nodes in the community/cluster structure would likely to have similar common neighbors, so that they have high 
interconnections in the community/cluster and few connections to nodes out of the community/cluster”. In this 
interpretation, we have focused on ‘few connections to nodes out of the community/cluster’. We thought that not 
only the fewness of connections is important, but also those few connections should be (likely to be) connected 
to the same nodes (out of the community/cluster), not randomly. This idea is well implemented in our grouped 
attachment model. We assumed the highly interconnected graph F represents a community/cluster. When they 
attach to existing graph G, they make connections to specifically selected nodes (not to random nodes). These 
implementations led our model to have reproducibility of neighborhood similarities.

In-depth analysis of co-neighborness and optimization of q values can be a good candidate following research 
topics. Our findings show that real-world complex networks are populated by topological motifs and the pro-
posed model reproduces real-world topological properties. These findings can be applied to various network 
topology studies such as community detection41 and link prediction42,43. Some of existing methods of both tasks, 
community detection and link prediction, are dependent on network models which reproduce real-world topol-
ogies. They use network models for network structure estimation, and infer results based on them. As our pro-
posed GA models uniquely reproduces real-world motif properties, implementing our models might be a key 
solution to the tasks.

Methods
Common neighbor index and Jaccard index.  Let u and v are network nodes, and Γ(u) and |Γ(u)| refer 
to the set of neighbors of u and the cardinality of the set, respectively. Common neighbor index26 is defined as

∩Γ Γ=CN u v u v( , ) ( ) ( ) , (2)

and Jaccard index33,34 is defined as

∩
∪ ∪

Γ Γ
Γ Γ Γ Γ

= = .JC u v
u v
u v

CN u v
u v

( , )
( ) ( )
( ) ( )

( , )
( ) ( ) (3)

Random network generation of existing models.  All random networks of existing models (ER, SW, 
and SF) are generated through ‘igraph’ R package (package version 1.0.1)44. To generate input parameters of 
network models, we measure |N| (number of nodes), |E| (number of edges), p (edge density), α (exponent of the 
fitted power-law distribution of degree), and a (minimum value from which the power-law distribution of degree 
was fitted) from a given real-world network.

For ER network generation, we adapted Erdös–Rényi model by utilizing erdos.renyi.game() function in 
‘igraph’ package. We set the number of nodes to be |N|, and the edge probability to be p.

For SW network generation, we adapted Watts-Strogatz model by utilizing watts.strogatz.game() function in 
‘igraph’ package. We set the dimension of the starting lattice to be 1, the size of the lattice along each dimension to 
be |N|, the neighborhood within which the vertices of the lattice will be connected to be |E|/|N|, and the rewiring 
probability to be 0.05.

For SF network generation, we adapted Barabasi-Albert (preferential attachment) model by utilizing barabasi.
game() function in ‘igraph’ package. We set the number of vertices to be |N|, the power of the preferential attach-
ment to be α, the number of edges to add in each time step to be |E|/|N|, and the attractiveness of the vertices with 
no adjacent edges to be a.

For PSO/nPSO network generation, we adapted nPSO model in the corresponding manuscript27. We set the 
number of nodes to be |N|, the half of average degree to be |E|/|N|, the exponent of the power-law node degree 
distribution to be α. The random networks of PSO/nPSO model were generated with three different temperature 
values (T = 0.1, 0.5, and 0.9), and three different numbers of communities (C = 0, 4, and 8); C = 0 corresponds to 
the PSO model, while C = 4, 8 corresponds to the nPSO model.

Using each model, we generated 100 random networks (100 repeats) for directed networks and 10 random 
networks (10 repeats) for undirected networks. All experiments are performed to the networks and the results 
are averaged.

Counting motif frequencies.  Counting network motif frequencies have been processed differently 
depending on directedness of the given network. For directed networks, we utilized graph.motifs() function in 
‘igraph’ R package44. For undirected networks, we utilized countMotif() function in ‘NeMo’ R package (package 
version 1.0.1)45.
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RGF-distance calculation.  RGF-distance compares the frequencies of the appearance of all 3–5-node 
graphlets in two networks13. Between two graphs G and H, RGF-distance is defined as

∑= −=D G H F G F H( , ) ( ) ( ) , (4)i i i1
29

where

= −









.F G log N G

T G
( ) ( )

( ) (5)
i

i

Ni(G) is the number of graphlets (motif frequency count) of type i (i ∈ {1, …, 29} for graphlet size from 3 to 5) 
in a network G, and

∑= =T G N G( ) ( ) (6)i i1
29

is the total number of graphlets of G. Graphlet types can be referred to motif numbers in network motifs. In 
our experiments, we computed RGF-distances between real-world networks and their corresponding model 
networks.

Power law exponent measurement.  Power law exponent k is a measure of scale-free property. Degree 
distribution of a scale-free network follows power law with exponent 2 < k < 33. Power law exponent k of network 
is measured through power.law.fit() function in ‘igraph’ R package (package version 1.0.1)44.

Assortativity coefficient measurement.  Assortativity coefficient r is a measure of the likelihood for 
nodes to connect to other nodes with similar degrees39, and is related to a scale-free metric40. Assortativity coef-
ficient ranges between −1 and 1. When r = 1, the network is completely assortative. When r = 0, the network is 
non-assortative. When r = −1, the network is completely disassortative. Assortativity coefficient r of network is 
measured through assortativity.degree() function in ‘igraph’ R package (package version 1.0.1)44.

Code availability.  The R script implementing the GA models and the co-neighborness is available at https://
github.com/bisl-kaist/GA_model.

Data availability.  The Canonical Wnt signaling pathway data analyzed during the current study are available 
in the NCI/Nature database by ‘import network from web services’ in Cytoscape46. The Co-authorship of scien-
tists47, the airport network among cities48, and the real-world road network data49 analyzed during the current 
study are available in the Network Repository, http://networkrepository.com/36. Detailed descriptions of four 
networks are stated in Supplementary Note.
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