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ABSTRACT
Passive acoustic monitoring (PAM) is a promising method for biodiversity
assessment, which allows for longer and less intrusive sampling when compared to
traditional methods (e.g., collecting specimens), by using sound recordings as the
primary data source. Insects have great potential as models for the study and
monitoring of acoustic assemblages due to their sensitivity to environmental changes.
Nevertheless, ecoacoustic studies focused on insects are still scarce when compared to
more charismatic groups. Insects’ acoustic activity patterns respond to
environmental factors, like temperature, moonlight, and precipitation, but
community acoustic perspectives have been barely explored. Here, we provide an
example of the usefulness of PAM to track temporal patterns of acoustic activity for a
nocturnal assemblage of insects (Orthoptera). We integrate satellite remote sensing
and astronomically measured environmental factors at a local scale in an Andean
Forest of Colombia and evaluate the acoustic response of orthopterans through
automated model detections of their songs for nine weeks (March and April of 2020).
We describe the acoustic frequency range and diel period for the calling song of each
representative species. Three species overlapped in frequency and diel acoustics but
inhabit different strata: canopy, understory, and ground surface level. Based on the
acoustic frequency and activity, we identified three trends: (i) both sampled cricket
species call at lower frequency for shorter periods of time (dusk); (ii) all sampled
katydid species call at higher frequency for longer time periods, including later hours
at night; and (iii) the diel acoustic activity span window seems to increase
proportionally with dominant acoustic frequency, but further research is required.
We also identified a dusk chorus in which all the species sing at the same time.
To quantify the acoustic response to environmental factors, we calculated a beta
regression with the singing activity as a response variable and moon phase, surface
temperature and daily precipitation as explanatory variables. The response to the
moon phase was significant for the katydids but not for the crickets, possibly due to
differences in diel activity periods. Crickets are active during dusk, thus the effects of
moonlight on acoustic activity are negligible. The response to precipitation was
significant for the two crickets and not for the katydids, possibly because of higher
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likelihood of rain interrupting crickets’ shorter diel activity period. Our study shows
how the local survey of orthopteran acoustic assemblages, with a species taxonomic
resolution coupled with remote-sensing environmental measurements can reveal
responses to environmental factors. In addition, we demonstrate how satellite data
might prove to be a useful alternative source of environmental data for community
studies with geographical, financial, or other constraints.

Subjects Animal Behavior, Ecology, Entomology, Zoology, Climate Change Biology
Keywords Remote sensing, Orthoptera, Bioacoustics, Biodiversity monitoring, Moonlight,
Precipitation, Satellite, Environmental factors, Community, Temperature

INTRODUCTION
Many animals use acoustic signaling as their principal form of communication (Bradbury
& Vehrencamp, 2011), contributing to the biotic component of a soundscape (Pijanowski
et al., 2011). Ecological questions regarding behavior, seasonal activity, or response to
external factors at different ecological and temporal scales of acoustic communities can be
addressed with acoustic monitoring (Sugai et al., 2019; Gottesman et al., 2021; Chhaya
et al., 2021); such monitoring can be with in-person recording in the field (Drewry & Rand,
1983; Diwakar & Balakrishnan, 2007a) or with automatic, passive recording (Deichmann
et al., 2018). Favored by the increasing access to new recording technologies and
computational power, passive acoustic monitoring (PAM) has become one of the trending
methods to obtain environmental recordings (Riede, 2018; Sugai et al., 2019). PAM
consists of the deployment of autonomous passive recorders in the field. Its advantages for
biodiversity monitoring including longer term assessment periods, less intrusive
monitoring methods, increase of data collection, and increased potential for community
bioacoustics research at different scales, when compared to classical monitoring
approaches such as specimen collection in the field (Blumstein et al., 2011; Deichmann
et al., 2018; Sugai et al., 2020). Furthermore, PAM allows the classification of calling songs
into recognizable taxonomic units, also referred to as acoustic morphospecies or sonotypes
(Riede, 1998; Aide et al., 2013; Ferreira et al., 2018). Despite that, there are still challenges
when applied to high diverse taxonomic groups with lees availability of taxonomic and
acoustic descriptions, as insects (Riede, 2018). To address these challenges, we acoustically
monitored a nocturnal orthopteran assemblage and matched the sonotypes with
taxonomic species identified from voucher specimens captured at the same location.

Insect sounds drive tropical soundscapes by contributing acoustic signaling that varies
in time, acoustic frequency, and spatial scales (Aide et al., 2017). In addition, insect sounds
have high potential as acoustic bioindicators, especially at local scales, due to their
sensitivity to environmental change (McGeoch, 2007; Jeliazkov et al., 2016; Riede, 2018).
Within insects, crickets and katydids (Orthoptera: Ensifera) are some of the most
important acoustic contributors to soundscapes. They produce sound by rubbing together
specialized structures in their wings, a behavior called elytral stridulation (Baker &
Chesmore, 2020). Between the different types of stridulatory calls, the “calling song” is used
by males to attract the opposite sex (Grimaldi & Engel, 2005; Buellesbach, Cash & Schmitt,
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2018). Calling songs are the most common insect signals to be found in natural
soundscapes, and they are often used in taxonomic and evolutionary studies (Tan et al.,
2021) due to their stereotyped characteristics and high species-specificity (Grimaldi &
Engel, 2005). However, few ecoacoustics studies include detailed taxonomic resolution for
orthopterans or other insects (Diwakar & Balakrishnan, 2007a; Gasc et al., 2018), and
many community approaches are rather focused on charismatic vertebrates such as birds
(Tobias et al., 2014), anurans (Villanueva-Rivera, 2014), or mammals (Heinicke et al.,
2015). When it comes to the community scale, matching acoustic species with taxonomic
species will help to unveil biological communities’ structure and change over space and
time (Chhaya et al., 2021).

At a community level, the changes in acoustic activity patterns can be explained by the
influence of a set of biotic and abiotic factors (Chhaya et al., 2021). On one hand,
explanations of how biotic factors influence acoustic patterns have been formalized by
different theories (Farina, 2014). The acoustic niche hypothesis for example, states that
animals respond to other signalers by partitioning their acoustic activity (Krause, 1993) in
order to avoid acoustic masking (or overlap) in time, spectral frequency, and space, thus
optimizing the signal transmission (Schmidt, Römer & Riede, 2013). However, high time
overlap is usual in tropical orthopteran assemblages, especially during dusk chorus (Riede,
1996; Jain et al., 2014). The tendency of animals from different species to concentrate their
singing at the same time window has been previously referred to as clustering (Tobias et al.,
2014), and may benefit individual singers by lowering predation risks (Jain et al., 2014;
Farina & Ceraulo, 2017). On the other hand, abiotic environmental factors such as
temperature, precipitation or moonlight are known to predict acoustic patterns in
vertebrate animal communities (Bruni, Mennill & Foote, 2014; Pérez-Granados,
Schuchmann & Marques, 2022), as well as insects (Lang et al., 2006; Franklin et al., 2009).
Acoustic activity can be a very useful description of circadian and seasonal patterns (Aide
et al., 2013), and species responses to environmental variables (Pérez-Granados,
Schuchmann & Marques, 2022).

Most studies at community ecological scales gather environmental information locally,
by directly measuring the variables in the field, or by gathering it from local weather
stations (Ospina et al., 2013). However, field environmental information could be difficult
or even impossible to obtain in some circumstances, due to the sparse distribution or
absence of weather stations in some areas, remote location of study sites, or budget
constraints. Satellite remote sensing could be an alternative in such cases because it is
spatially and temporally comprehensive, despite lower resolution. Data gathered from
satellite remote sensing has been useful for ecological studies at landscape or habitat levels
(Pettorelli et al., 2014; Pasetto et al., 2018), but its potential for local community scale
questions, such as the relationship with acoustic activity, remains unexplored.

Here, we characterize the acoustic activity of an orthopteran assemblage, measuring
occurrence of calling events per time unit and the level of inter-specific overlap in temporal
and frequency range. We expected to find a cluster of singing species during dusk (dusk
chorus), but no species overlapping in all three dimensions (time, frequency, and space).
We also decided to explore the implementation of satellite remote sensing data of
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environmental variables (surface temperature, daily precipitation) along with astronomical
calculated moon illuminated fraction, to describe their species-specific effect on acoustic
activity of an orthopteran assemblage in the tropical Andes of Colombia. In addition, we
recorded and collected insects (including some new species for science that are being
described) to identify sonotypes to species taxonomic level (when possible). This work
serves as an important basis for future acoustic monitoring protocols of insects by
identifying acoustic bioindicators and using available remote sensing data to provide
further insight for localized community ecology studies.

MATERIALS AND METHODS
Study site and acoustic sampling
We sampled the soundscape at the Los Tucanes Natural Reserve, located in Gachantivá,
Boyacá, Eastern Andes of Colombia (5.789, −73.550; 2300 ± 25 m asl). This private reserve
includes an area of 0.16 km2 of sub-Andean Forest dominated by Andean oak (Quercus
humboldtii) in different regeneration states, with an annual temperature of 15 �C. Annual
precipitation is about 1,450 mm, in two rainy seasons: from March to May and from
October to November (Climate-Data.org, 2019). Overall, this forest is a ~20 years old
secondary forest with early successional grasslands after agricultural abandonment.
We used the acoustic monitoring data from an Audiomoth 1.0.0 recorder deployed at a
height of 1.5 m from the ground, with a sampling rate of 48 kHz and resolution of 16 bits,
set to record for 1 min every 30 min during the rainy season, from March to May of 2020
(Tovar Garcia & Acevedo-Charry, 2021).

The recording set (number of recordings, n = 2,851) was normalized to −3 dB and
uploaded to the ARBIMON online platform by Rainforest Connection-RFCx (Arbimon,
2020), download information available in Data S11. From there, we manually explored a
subsample of recordings (Table S1, training set size) to annotate the presence or absence of
the acoustic species most consistently observed throughout the days. We defined
sonotypes before identifying taxonomic species (see below) which were then used during
the data analysis. Other sonotypes with sporadic acoustic activity were not considered in
the analyses given the difficulty of training detection models from very few annotated
recordings. Then, we trained random forests (Datas S1, S2, S4, S6) and spectrogram
template matching (or pattern matching) (Datas S3, S5, S7) automatic recognition models
using RFCx ARBIMON integrated tools for each sonotype, using the annotated recordings
as the training dataset (Table S1) in order to detect the occurrences of sonotypes for every
recording. We determined that the detection performance of spectrogram pattern
matching was better for katydids, while random forests was significantly better for crickets
based on preliminary tests. A detailed performance comparison between available
detection models (including those made for other animal groups) for orthopteran species
remains as an interesting issue to address, the more when new promising tools have
recently been launched (e.g., Lapp et al., 2021; Steinfath et al., 2021). Model output was
manually revised, false positives were discarded, and detection precision was calculated as
suggested by Aide et al. (2013): all detection models include a precision above 70%
(Table S2). After post validation, the model output was a presence/absence per recording
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matrix for the complete recording dataset. We defined the acoustic activity as the presences
detected per time unit: hours and days (Aide et al., 2013). Using the acoustic activity per
hour, we described the average daily activity per species and measured the temporal
partition between pairs of species by the overlap of kernel densities, which is a coefficient
that reflects extent of overlap between activity patterns, as a measure of similarity (Ridout
& Linkie, 2009). In addition, we use the activity per day to fit models of satellite
remote-sensed environmental variables (see below).

To assign sonotypes with better taxonomic resolution, we collected specimens in the
field and conducted taxonomic delimitation by actively looking for the emitters of each
signal of sonotypes selected (those most consistently observed in PAM dataset) during two
field trips, from September and October 2020. Observations of microhabitat (height) and
singing behavior were made during these field trips. The collected specimens were
deposited at the Instituto Humboldt’s entomological collection (IAvH-E) in Villa de Leyva
(Boyacá) following extended specimens’ guidelines (Acevedo-Charry et al., 2021), with a
genetic voucher (foreleg) also deposited at the Instituto Humboldt’s tissue collection in
Palmira (Valle del Cauca, Colombia). Specimens were identified to the highest taxonomic
resolution possible. For some species, we were unable to collect specimens (i.e., canopy
dwellers), thus we assigned a sonotype temporary name (e.g., “Flutist”) to the acoustic
signal (Aide et al., 2017; Ferreira et al., 2018). In addition, we made recordings from some
individuals in captivity (species: Katydid1, Katydid3, Katydid4) or directly in the field
(Katydid5) with an Audiomoth 1.0.0 recorder at a sampling rate of 384 kHz and a
resolution of 16 bits. Reference recordings for other species (Cricket1, Cricket2 and
Katydid2) were taken in the field using a Sennheiser ME67 shotgun microphone attached
to a first generation SoundDevice Mix Pre 3 recorder. Acoustic recordings were deposited
in the Instituto Humboldt’s sound collection-Colección de Sonidos AmbientalesMauricio
Álvarez-Rebolledo (IAvH-CSA-18783 to IAvH-CSA-18805).

Environmental variables from remote sensing data
With the detection dates across our study time, we evaluated the relationship of the
acoustic activity per day of each species with satellite-detected local temperature,
precipitation, and moonlight. We extracted the time series from the pixel overlaying the
sampling point from daily generated raster files using the software Quantum GIS (QGIS
Development Team, 2022). Temperature was obtained from a 1 km resolution dataset using
the land surface temperature (LST) parameter and generated using moderate resolution
imaging spectroradiometer (MODIS) LST products (Zhang et al., 2022); this dataset
includes a measurement at 01:00 and another at 13:00 h, equivalent to minimal and
maximal daily temperature. On the other hand, precipitation values were obtained from a
10 km resolution dataset estimated using the Integrated Multi-satellitE Retrievals for
Global Precipitation Measurement (IMERG) (Huffman et al., 2019). Environmental data
used for the analysis is provided in Data S8. Preliminary analysis showed high correlation
with the nearest national station at Santa Sofía, Boyacá (10 km away of our study site) but
IMERG data include more steady values (i.e., no gaps in days as Santa Sofía had). Finally,
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moon illuminated fraction was retrieved through the function getMoonIllumination from
the R package suncalc for our sampling site coordinates (Thieurmel & Elmarhraoui, 2019).

Data analysis
For temporal variables, diel acoustic activity of each species was analyzed using the
package overlap in R (Ridout & Linkie, 2009). First, we generated the von Mises kernel
density distribution of the diel acoustic activity for each species during the complete
sampling period (March to April) given that daily acoustic activity patterns correspond to
a circular distribution. Then, we computed the delta coefficient (D̂4) of overlapping
between every pair of species, as recommended for samples sizes bigger than 75 (Ridout &
Linkie, 2009) with the default smoothing value. Confidence intervals were calculated by
using a smoothed bootstrap with 10,000 samples, adjusted for bias (Ridout & Linkie, 2009).

Spectral variables, i.e., dominant frequency (frequency with the most energy), frequency
bandwidth from minimum (−5 dB below dominant frequency) to maximum frequencies
(+5 dB over dominant frequency), were measured manually from the FFT analysis window
(Hamming window, 256 samples) of the software ocenaudio (Ocenaudio Team, 2015) for
the dominant harmonic of 18 syllables, as defined by Baker & Chesmore (2020) for katydid
species, and eighteen 1s segments for cricket species. Segments were selected from the
recordings with less noise from the passive recording dataset for each species (Data S10).
Additional harmonics were not measured as they were not constantly detected by the
recorders due to attenuation (Romer & Lewald, 1992; Hung & Prestwich, 2004). To assess
frequency overlap, we contrasted the measurements (minimum, maximum and dominant
frequencies) for each species by randomly resampling the measurements with 10,000
iterations. Each iteration per species and measurement includes a mean value and
confidence intervals of 95% of the data (Table S3).

We explored the relationship of the proportion of detections of each species in each day
with the four continuous remote-sensed variables through a beta regression, using the
package betareg in R (Cribari-Neto & Zeileis, 2010). We assumed a beta distribution
because the values were continuous and bounded between 0 and 1 (Bolker, 2007), scaling
the occurrence detections with the formula Detections(b) = [Detections(a) � (N – 1) + 0.5]/N,
where N is the sample size and Detections(b) is our response variable for the beta regression
(Smithson & Verkuilen, 2006). To select the variable that better fits the response variable
(proportion of detections) for each species, we scaled the predictor variables (min and max
temperature, precipitation, and moon fraction) by centering around the mean and dividing
by two standard deviations (Schielzeth, 2010). For each species, we compared 16 additive
models with different combinations of predictor variables, including a null model.
We identified the most frequency top-ranked model (πi) based on the delta Akaike
Information Criteria (ΔAIC) and Akaike weight (wi) after resampling 10,000 times.
To estimate better the top ranked model, in each resampling we randomly select only 50 of
the 61 days of recordings and estimate the percentage of times each top-ranked model was
selected (πi) (Data S9). We conducted our analyses in R, and our code and data are
available (https://github.com/diegryllid).
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RESULTS
We focused on seven identified orthopteran species for our analysis of the acoustic
assemblage. Two species of crickets (superfamily Grylloidea): “Flutist” (Cricket1) and
Podoscirtinae (Cricket2) and five katydids (family Tettigoniidae): Copiphora colombiae
(Katydid1), Neoconocephalus brachypterus (Katydid3), Cocconotini (gen. nov.)
(Katydid4), “Sprinkler” (Katydid2), and “Rattler” (Katydid5). Although not all the species
in the acoustic assemblage were covered, these seven species were the most representative
ones in terms of acoustic activity (the ones detected most of the days) along the sampling
period, as defined after the manual annotation of recordings.

Male singing behavior, microhabitat partitioning and songs of the
assemblage
We detected species dwelling in different microhabitats by sonotype in situ. In the upper
side of the forest, we detected the canopy dwellers (Cricket1, Katydid2, Katydid5). In the
middle strata, among shrubs and low tree branches (<4 m), we detected Podoscirtinae
(Cricket2). Similarly, we detected Cocconotini gen. nov. (Katydid4) mostly at heights of
~4 m at most. Finally, we detected Katydid1 and Katydid3 in more open areas and
early successional shrubs. Cophiphora colombiae (Katydid1) sang from underneath the
leaves or on top of the stems of understory shrubs around 2 m above the ground, while
N. brachypterus (Katydid3) always sang from clumps of grass, very close to the ground
(0.5–1 m). The heights here referred are visual estimates, hence we recommend direct
measurement of heights of individuals for a detailed description of spatial distribution in
forest strata. We detected two main singing behaviors as well. The first one was a cryptic
singing behavior consisting of singing undercover, observed in two species (Cricket2 and
Katydid4). The cricket species Podoscitinae (Cricket2) always sang from inside rolled oak
leaves, while the katydid species Cocconotini gen. nov. (Katydid4) sang from its own
carved burrow in live tree trunks (O. Cadena-Castañeda, D.A. Gòmez-Morales,
O. Acevedo-Charry, J.L. Benavides-Lòpez, 2022, Unpublished manuscript). The second
behavior was singing exposed, consisting of calling from the top of leaves and branches,
observed in two katydid species: C. colombiae (Katydid1) and N. brachypterus (Katydid3).
We could not observe singing behavior for the canopy dwellers (Cricket1, Katydid2,
Katydid5).

Diel acoustic activity
Diel acoustic activity varied across the night, reflecting two strategies. All katydids have a
completely nocturnal singing behavior (Katydid1, Katydid2, Katydid3, Katydid4,
Katydid5), although “Rattler” (Katydid5) showed a few, sparse detections during the day
(Data S7). These five species started singing at dusk (~17:30 h); then, three species showed
a higher density of detections in specific times of the night (Katydid1: ~20:30, Katydid2:
~01:30, Katydid3: ~20:00) shown as the peak acoustic activity density (Fig. 1). It is
important to point out that these three species are still active throughout the whole night,
and their activity peaks are subtle (less than 0.1 difference in acoustic activity density when
compared to the mean of the rest of the hours of activity). The remaining two katydids

Gomez-Morales and Acevedo-Charry (2022), PeerJ, DOI 10.7717/peerj.13969 7/21

http://dx.doi.org/10.7717/peerj.13969/supp-8
http://dx.doi.org/10.7717/peerj.13969
https://peerj.com/


(Katydid4, Katydid5) showed relatively constant acoustic activity throughout the night and
a faster decrease in activity from 04:00 until sunrise (~06:00). On the other hand, both
crickets have a crepuscular schedule, singing mainly during dusk. Podoscirtinae (Cricket2)
showed a much more restricted singing schedule, from 18:00 to 19:00 with a very abrupt
decrease in activity afterwards. Flutist (Cricket1) showed a slower decrease in activity,
maintaining a considerable number of detections after ~21:00. Overall, we identified a
chorus time when all the members of the assemblage sing at the same time, from 18:00 to
20:00 (Fig. 1).

Diel and spectral overlap
Species density distribution pairwise analysis showed two overlap trends (Table 1).
Crickets have less probability of overlapping with the katydids’ singing schedules
(coefficient values <0.6). Of these two, Podoscirtinae (Cricket2) was the most specialized,
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Figure 1 Acoustic activity density per species. The distribution was calculated from the number of
detections every half an hour during the 2-month sampling period. The acoustic activity density value
corresponds to the proportion of positive detections at a given time. The shaded area demarks the
probability of a dusk chorus when all species sing at the same time. The sun icons represent the sunset
time and sunrise times. The type of line denotes the dominant frequency range: solid for high frequency,
dashed for medium, and dotted for low. Full-size DOI: 10.7717/peerj.13969/fig-1

Table 1 Kernel density delta coefficient for pairs of species. Bootstrap 95% confidence intervals in parenthesis. The values go from 0 to 1, 1
indicating complete overlap.

Podoscirtinae
(Cricket2)

C. colombiae
(Katydid1)

“sprinkler”
(Katydid2)

N. brachypterus
(Katydid3)

Cocconotini (gen.
nov); (Katydid4)

“Rattler”
(Katydid5)

“Flutist” (Cricket1) 0.49 (0.41–0.58) 0.42 (0.36–0.47) 0.34 (0.30–0.38) 0.51 (0.44–0.57) 0.36 (0.32–0.40) 0.32 (0.28–0.36)

Podoscirtinae (Cricket2) 0.16 (0.12–0.20) 0.14 (0.11–0.18) 0.21 (0.16–0.25) 0.17 (0.14–0.20) 0.12 (0.09–0.15)

C. colombiae (Katydid1) 0.86 (0.81–0.90) 0.89 (0.83–0.94) 0.81 (0.76–0.85) 0.78 (0.74–0.82)

“sprinkler” (Katydid2) 0.77 (0.71–0.81) 0.91 (0.88–0.94) 0.90 (0.87–0.93)

N. brachypterus (Katydid3) 0.74 (0.70–0.78) 0.72 (0.67–0.76)

Cocconotini (gen. nov); (Katydid4) 0.95 (0.92–0.97)
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having a very short singing schedule (Fig. 1). Conversely, katydids overlap in their singing
periods (coefficient values >0.6).

The mean dominant frequency was considerably lower for crickets, and higher for
katydids. While cricket bandwidth was narrow, katydid frequency bandwidth varied across
species, reflecting spectral overlap in four species (Fig. 2). The species which used a higher
frequency also include a higher bandwidth (Katydid5, Katydid4, Katydid3), overlapping
among them. The species with higher bandwidth, N. brachypterus (Katydid3), overlapped
additionally with a canopy dweller species, Katydid2, which included a lower frequency
bandwidth. Most of the species had harmonic components in their calling song (all
excepting Cricket1) as observed in the directional recordings (Fig. 2A) with ultrasonic
harmonics for all the katydids except Katydid2. (Romer & Lewald, 1992; Hung &
Prestwich, 2004). Ultrasonic harmonics were not recorded or analyzed because of the
sampling rate used in our PAM setting; audible harmonics other than the dominant one
(the harmonic with the highest amplitude) where not analyzed either, as their lower
amplitude made them undetectable in the automated field recordings.

Acoustic activity response to environmental variables
The response of the acoustic activity varied by species and environmental variables
obtained from satellite remote sensing sources (Fig. 3, Table 2). Acoustic activity of katydid
species included a negative relationship with moon fraction for Katydid1 (β = −0.28,
p = 0.003), Katydid2 (β = −0.34, p < 0.001), Katydid3 (β = −0.36, p < 0.001), Katydid4
(β = −0.13, p < 0.001), and Katydid5 (β = −0.07, p = 0.02). Both cricket species showed a
negative relationship only with the precipitation (Cricket1: β = −0.31, p = 0.006; Cricket2:
β = −0.32, p = 0.002) while in katydids the response was more complex. In addition to the
cricket species, precipitation was also strongly negatively related to acoustic activity of
Katydid1 (β = −0.25, p = 0.02), but less for Katydid5 (β = −0.06, p = 0.05). Minimum

0

5

10

15

20

2.5 5.0 7.5 10.0
Time (s)

F
re

qu
en

cy
 (

kH
z)

0

5

10

15

20

Cricket1 Cricket2 Katydid1 Katydid2 Katydid3 Katydid4 Katydid5

Species

Frequency

Minimum

Dominant

Maximum

(a) (b)

Figure 2 Frequency range per species. (A) Spectrogram sections for the study species at 48 kHz, same species order as in (B) average values for
minimum, maximum, and dominant frequency calculated after a bootstrap sampling of 10,000 iterations.

Full-size DOI: 10.7717/peerj.13969/fig-2

Gomez-Morales and Acevedo-Charry (2022), PeerJ, DOI 10.7717/peerj.13969 9/21

http://dx.doi.org/10.7717/peerj.13969/fig-2
http://dx.doi.org/10.7717/peerj.13969
https://peerj.com/


temperature showed a positive trend for both Katydid1 (β = 0.26, p = 0.007) and Katydid2
(β = 0.21, p = 0.04), and maximum temperature was significantly negatively related for
Katydid5 only (β = −0.07, p = 0.03). In general terms, daily precipitation is a better

Table 2 Results of beta regressions for the seven species.

Species Model (β) πi k wi LL Φ z-value Pr (>|z|)

Cricket1–“flutist” Precipitation (−0.31) 76.2 3 0.28 125.80 22.89 5.09 <0.001

Cricket2–Podoscirtini Precipitation (−0.32) 94.8 3 0.35 142.70 41.49 5.22 <0.001

Katydid1–C. colombiae MinTemp (0.26) + Precipitation (−0.25) + Moon (−0.28) 82.4 5 0.42 73.64 13.37 5.43 <0.001

Katydid2–“sprinkler" MinTemp (0.21) + Moon (−0.34) 30.2 4 0.25 38.30 7.00 5.69 <0.001

Katydid3–N. brachypterus Moon (−0.36) 56.8 3 0.28 73.63 16.2 5.49 <0.001

Katydid4–Cocconotini (gen. nov.) Moon (−0.13) 61.7 3 0.26 77.04 51.01 5.58 <0.001

Katydid5–“rattler" MaxTemp (−0.07) + Precipitation (−0.06) + Moon (−0.07) 62.3 5 0.27 89.25 77.43 5.56 <0.001

Note:
Response variable is the proportion of detections per day. Explanatory variable models include minimal (MinTemp) and maximal temperature (MaxTemp), daily
precipitation, and moon fraction (Moon), in parenthesis is shown the estimated slope for the log odds ratio of each variable (β). πi shows the percentage of times a model i
was top-ranked after 10,000 iterations. k is the number of estimated parameters. wi is the Akaike weight. Φ, SE (standard error), LL (log-likelihood), z-value, and Pr (>|z|)
shows the result of the beta regression for the top-ranked model (see beta regression results in Data S8).
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explanatory for the acoustic activity of crickets, while moon fraction for acoustic activity of
katydids.

DISCUSSION
Despite insects’ acoustic activity being driving the soundscapes of tropical ecosystems
(Aide et al., 2017), they are rarely identified with accurate taxonomic resolution in
ecoacoustic studies. We used the acoustic signaling footprint of different species from
passive acoustic sampling to characterize an orthopteran assemblage. With the daily
acoustic activity pattern for each sonotype, we were able to sample the prioritized species
and match four out of seven species. Despite recent improvement in taxonomic work in
the group for Colombia (Cadena-Castañeda et al., 2020, 2021), and impressive research on
sound production and reception (Baker et al., 2019; Celiker, Jonsson & Montealegre-Z,
2020), we found taxonomic novelties from this community (O. Cadena-Castañeda,
D.A. Gòmez-Morales, O. Acevedo-Charry, J.L. Benavides-Lòpez, 2022, Unpublished
manuscript). In addition, we explored the relationship of acoustic activity of each species
with environmental variables extracted from satellite remote sensing data. We experienced
difficulties in collecting canopy dwellers, for which we recommend the use of specialized
methods such as fogging (Montealegre-Z et al., 2014), light trapping (e.g., Symes et al.,
2021), or specialized manual tracking (Diwakar & Balakrishnan, 2007b) for future studies.
As studies on environmental effects on insect acoustic communities are still rare, our study
is an important precedent, and serves as a good example on how satellite remote sensing
data can be used along with acoustic monitoring schemes in areas with low accessibility to
ground-based methods of environmental measurement, such as weather stations.

Audible representative species
Our focused species represent the most common nocturnal audible orthopteran insects in
our sampling site. Our approach, focusing in low frequency (audible spectrum)
conspicuous species has benefits and challenges. By focusing on the most common species:
we were able to describe the assemblage sonotypes identity as well as the overall trend of
singing behaviors that dominate the community. However, it left aside other species which
are rare or undetectable by our methods. Diurnal species, for instance, had relatively low
detectability within our data set (grasshoppers mostly) and were barely detected, which
confirms previous observations for the group in tropical forests (Diwakar & Balakrishnan,
2007a). For studies with the aim of extensively describing an acoustic community, or
analyzing detailed interactions between species, we recommend using more extensive
sampling in both space (more recording units) and time (longer monitoring periods) along
with more intensive annotation of recordings; for example, by using ultrasonic sampling
for propper detection of some Neotropical katydid species. The use of multiple recording
units can also enhance the detectability of low amplitude song species, which may have
been under detected in our study. Despite that, given their high activity and detectability,
combined with our ability to match taxonomic resolution of most of the species, we
consider the representative species here taken into consideration are adequate and
sufficient for analyzing single species relations with environmental factors for ecoacoustic
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monitoring purposes. Therefore, we recommend this approach of species prioritization for
environmental studies with time or methodological constraints.

Time and spectral overlap
We observed that the higher the dominant frequency of their calling song (Fig. 2), the
broader the diel acoustic activity range seemed to be (Fig. 1; Fig. S1). However, such
pattern must be studied in detail in further research, focusing on the underlying
mechanism regarding interspecific competition, morphological constraints, and/or
predator-prey relationships. While cricket species had low frequency calling, narrowly
clustered during dusk (Fig. 1, dotted line), katydids dispersed their calling widely
throughout the night. Furthermore, medium frequency calling katydids (Fig. 1, dashed
lines; Katydid1, Katydid2, Katydid3) show clear activity peak times, and the high frequency
ones (Fig. 1, solid lines; Katydid4, Katydid5) maintain constant activity levels throughout
the night. Previous studies found a negative relationship between calling signal duration
and daily signaling rate in Neotropical katydids as result of acoustic trade-offs (Symes et al.,
2021), our data suggests that there might be a positive relationship between the dominant
frequency and the daily acoustic activity as well. In addition, although we did not measure
body size or specific size and properties of the producing sound structures for the species in
our assemblage, crickets were overall smaller than katydid species, thus our observation
might be contrary to the predictions of the morphological adaptation hypothesis (Farina,
2014), previously proven in birds (Wallschläger, 1980), mammals (Fletcher, 2004), and
frogs (Boeckle, Preininger & Hödl, 2009). Such a hypothesis may not even apply to
orthopterans, given that their way of producing sound (elytral stridulation) is completely
different. For example, Godthi, Balakrishnan & Pratap (2022) found a relationship of the
size and properties of the stridulatory apparatus with acoustic frequency, independent to
body size. Further examination of our vouchered specimens at IAvH-E might be useful for
testing morphological hypotheses. Finally, previous studies have shown that nocturnal
predators, like bats, eavesdrop and select their prey based on certain signal properties
including peak frequency, and vary among species present in a community (Falk et al.,
2015); then in this case, lower peak frequency species in this assemblage could be under
stronger predation pressures, and respond by concentrating their singing in shorter time
periods to lower that risk (Farina & Ceraulo, 2017). Further experimental research on
these topics for insects remains needed.

In addition to the aggregation in time, there is a clear preference for dusk times by
crickets, that can be explained by the fact that it is the time of the day when diurnal
predators are already becoming inactive plus nocturnal predators being still not at their
peak (Jain et al., 2014). Also, this is the time where all the katydid species start to become
active as well, so the simultaneous interspecific singing can lower individual risk by
“confusing” the predator who now has many choices (Farina & Ceraulo, 2017).

We previously referred to this period as the “dusk chorus”, and many other factors may
be influencing this phenomenon. Moreover, the relatively high katydid temporal
overlapping (Table 1; Fig. 1) suggests that katydids are also aggregating their acoustic
activity in time, only in a different fashion by concentrating on their activity later and
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extending it during the whole night. Maintaining a continuous sing-along but extending
their signaling for several hours also comes with its downsides, which require further
adaptations in response to visual predators, as we will discuss later. Previous works have
described how katydid aggregation in space can lower the effectiveness of bat captures
(Prakash et al., 2021). Although we did not test the relationship between acoustic
frequency and duration of the diel calling activity, our preliminary analysis suggests that
species with lower dominant frequencies tend to call for shorter periods (e.g., Cricket1 vs
Katydid5; Fig. S1). Further research including more taxa and sampling locations and
taking into account the mechanisms behind the dusk chorus along with the acoustic
interactions with predators are necessary to confirm the “frequency-acoustic activity
relationship”. In addition, we did not account for phylogenetic or evolutionary constraints
when contrasting these two groups of insects with very different limitations on the
frequency of their songs, leaving open such research topic to better understand the
orthopteran acoustic assemblage.

Even though four species show spectral overlap (Fig. 2), those might have different
microhabitat preferences: Katydid2 seems to dwell in the canopy, while Katydid3 was
always found at ground level grass chunks. Although we noted microhabitat observations
based on opportunistic sampling, our results provide an approach to try to understand
spectral and temporal overlap for some species. The species Katydid4 and Katydid5, which
overlap in both time and frequency, inhabit the understory and canopy, respectively, and
may be avoiding masking because of differential attenuation at different heights (Ellinger &
Hödl, 2003). However, other studies have found conflicting evidence (Jain & Balakrishnan,
2012). Further research is required to test this hypothesis, as the effect of forest
stratification over signal interference in insects remains unclear (Schmidt & Balakrishnan,
2015). In addition, measurements of smaller scale time features could help to confirm
temporal masking avoidance at smaller scales (Symes et al., 2021), as Katydid4 and
Katydid5 pulse rates and syllable duration seem to differ greatly.

Environmental factors effects and Remote sensing data
Katydid species decrease acoustic activity 0.70 to 0.93 times with a unit increase in moon
fraction light (from new moon at 0.0 to full moon at 1.0). The negative relationship found
between moon fraction and katydid species acoustic activity (Table 2, Fig. 3) corroborates
the findings of previous studies. For example, response to more moonlight led to avoidance
of visual predators, either by lowering their overall activity (Lang et al., 2006), or increasing
the use of alternate communication channels, such as tremulation (Römer, Lang &
Hartbauer, 2010), as part of katydids’ repertoire of adaptations for predation by bats (ter
Hofstede et al., 2017). Response to moonlight is probably the consequence of the
above-mentioned continuous time aggregation as opposed to crickets’, which in fact, did
not show any relationship to moonlight (Table 2), perhaps because during the dusk there is
still plenty of sunlight, so moonlight would not make any difference.

Regarding precipitation, one cricket and two katydid species decrease acoustic activity
0.73 to 0.94 times with a unit increase in rainfall (mm per day). Such negative effect mainly
over the acoustic activity of the two cricket species (Cricket1 and Cricket2; Fig. 3) confirms
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previous observations (Alexander & Meral, 1967) and our own during the field: whenever
it rained during the chorus time, the crickets barely sang. Although rain noise may have
affected detectability on rainy days, our manual revision of recordings and observations in
the field give us confidence in the model detections reflecting acoustic activity even during
rainy days. Still, we recommend using acoustic detection models accounted for rain
detection itself as a way of measuring rain impacts over detection of orthopterans in future
studies. The katydids did not show that unique relationship with daily precipitation, except
for Katydid1 and Katydid5 which included other covariates. However, something to
consider is that given the shorter time span of crickets calling time, they had a greater
chance of being interrupted by rain, as has been observed in other species (Alexander &
Meral, 1967; Franklin et al., 2009), while broader katydid calling spans may have improved
their detectability even after short rainy periods during the night. Our opinion is that rain
may affect orthopterans singing at a finer time scale in addition to the accumulated daily
effects, as opposed to moonlight, given that daily precipitation can be either sparsely or
densely distributed during the day. In addition, other external factors such as wind (Velilla
et al., 2020), or ultrasonic background noise (Römer &Holderied, 2020) can affect signaling
behavior of katydid species as well. A comparison of both locally measured precipitation
and satellite remote sensing data with community acoustic activity may be useful to
confirm this relationship.

Temperature analysis suggests a negative relation (decrease 0.93 times with a unit
increase) with daily maximum temperature only for Katydid5, and positive relation with
minimum temperature for Katydid1 (increasing 1.30 times with a unit increase) and
Katydid2 (increasing 1.23 times with a unit increase in min temperature). The underlying
reasons for this response are yet to be discovered, but the increase in signaling by Katydid1
and Katydid2 species are concordant with previous studies in other species (Franklin et al.,
2009) which found increased signaling during warmer nights. As the microhabitat’s
preference can play a fundamental role on temperature regulation, we rather recommend
the use of local scale measurements to further explore calling activity relationship with this
variable.

Although previous studies have evaluated the accuracy of the satellite remote sensing
products here used or similar with environmental applications (e.g., Palomino-Ángel,
Anaya-Acevedo & Botero, 2019), or overviewed its potential for ecosystem modelling
(Pasetto et al., 2018), and even coupled with passive acoustic monitoring (Elise et al., 2022),
none to our knowledge has yet evaluated the applicability of these datasets for answering
local community ecology monitoring questions. We recommend further comparison of
local weather station data with satellite remote sensing data, in the context of local
biological monitoring programs for evaluating the extent of applicability of this approach.

CONCLUSIONS
Astronomical moonlight and satellite remote sensing precipitation data can explain the
acoustic activity of katydids and crickets respectively in an orthopteran assemblage, and its
use may be beneficial for studies with geographical, financial, or other constraints. Still, we
consider that further analysis including multiple sampling points is necessary before
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generalizing the patterns observed here, given the small time and space scale of the present
study. The effects of small changes in environmental factors on species acoustic activity
observed in our study suggest orthopterans could be a successful key indicator of
environmental change. How those changes could be extrapolated to annual seasonality and
other trophic levels is a potential endeavor to better understand acoustic communities
worldwide. Finally, acoustic monitoring of orthopterans has a high potential for
environmental assessments, in addition to answering ecological questions and enriching
taxonomic descriptions of under-studied biotas.
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