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Mammalian genomes are pervasively transcribed [1, 2] to produce thousands of long noncod-

ing RNAs (lncRNAs) [3–5], transcripts that are more than 200 nucleotides in length that do

not code for proteins. Although only a handful of functional lncRNAs have been well charac-

terized to date, recent work suggests that some lncRNAs have crucial roles in the control of

gene expression during both normal development and disease, through multiple mechanisms

[6, 7]. As new lncRNAs are being discovered at a rapid pace, their molecular mechanisms are

continuing to be enriched and diversified. For example, a few lncRNAs have been shown to

affect expression of nearby genes through recruitment of protein regulatory complexes [8–10],

while it is suggested that others function akin to enhancers and local regulators in cis [11, 12].

In fact, such local gene-regulatory mechanisms have been invoked to explain the observation

that lncRNA expression is often correlated with the expression of nearby genes—the so-called

“guilt by association” [13].

The cis-acting mechanisms of lncRNAs are largely unknown. Whether loci encoding lncRNAs

function via their lncRNA transcripts or DNA elements is often unclear. An important question

in the field centers around distinguishing between at least 2 possible mechanisms—either the

function of many of the lncRNAs that appear to regulate genes in cis depends on the RNAs them-

selves or their effect is mediated by enhancer-like activity of underlying DNA elements in the

lncRNA locus, the act of transcription, and/or splicing of lncRNAs [14, 15]. Furthermore, the

molecular components regulating the expression of lncRNAs remain mostly unexplored. An

understanding of the possible commonalities of the disparate underlying mechanisms may facili-

tate instructive and predictive models of lncRNA function.

Pradeepa et al. [16] set out to elucidate 1 mechanism of lncRNA regulation and function

using the HoxA locus as their model. The Bickmore group had previously shown that positive

cofactor 4 (PC4) and splicing factor 2 (SF2) interacting protein (Psip1), also known as lens epi-

thelium-derived growth factor (LEDGF), played an important role in the regulation of Hox

genes [17] and had more recently demonstrated the role of the p75 isoform of Psip1 (Psip1/

p75) in recruiting the Trithorax/mixed lineage leukemia (MLL) complex to expressed Hox

genes [18]. Interestingly, loss of Psip1 led not only to reduced binding of the MLL complex

and loss of histone 3 lysine 4 trimethylation (H3K4me3) at the distal HoxA genes, it also re-

sulted in complete loss of expression of the lncRNA HoxA transcript at the distal tip (Hottip),

transcribed in an antisense direction away from the distal end of the 50 HoxA cluster [10]. This

suggested that Psip1 might function as a transcriptional regulator of Hottip expression. Follow-

ing up on this possible connection, the authors showed that knockdown of Psip1/p52, the p52

isoform of Psip1, or Hottip, led to down-regulation of multiple 50 HoxA genes; knockdown of

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006797 June 29, 2017 1 / 4

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Wang KC, Chang HY (2017) Transcription

coactivator and lncRNA duet evoke Hox genes.

PLoS Genet 13(6): e1006797. https://doi.org/

10.1371/journal.pgen.1006797

Editor: Gregory S. Barsh, Stanford University

School of Medicine, UNITED STATES

Published: June 29, 2017

Copyright: © 2017 Wang, Chang. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: Supported by NIH (to HYC). The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: I have read the journal’s

policy and have the following conflicts: HYC was a

member of the scientific advisory board of RaNA

Therapeutics and is a cofounder of Epinomics.

https://doi.org/10.1371/journal.pgen.1006797
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006797&domain=pdf&date_stamp=2017-06-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006797&domain=pdf&date_stamp=2017-06-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006797&domain=pdf&date_stamp=2017-06-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006797&domain=pdf&date_stamp=2017-06-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006797&domain=pdf&date_stamp=2017-06-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1006797&domain=pdf&date_stamp=2017-06-29
https://doi.org/10.1371/journal.pgen.1006797
https://doi.org/10.1371/journal.pgen.1006797
http://creativecommons.org/licenses/by/4.0/


p52 also strongly down-regulated Hottip expression. Consistent with these observations, MLL

occupancy was significantly reduced across posterior HoxA genes upon knockdown of p52 or

Hottip compared to controls.

The authors next took advantage of CRISPR-Cas9 technology to create gene-body deletions

of Hottip. Loss of Hottip expression led to decreased expression of posterior (HoxA13, HoxA11,

and HoxA10) and increased expression of anterior (HoxA2, HoxA6, and HoxA7) HoxA genes.

To find direct genomic targets of Hottip, chromatin isolation by RNA purification [19] (ChIRP)

was performed, which demonstrated specific occupancy of Hottip RNA over the promoters of

HoxA13 and HoxA11. Importantly, ectopic activation of full-length Hottip via dCas9-mediated

transcriptional activation showed specific induction of posterior (HoxA13, HoxA11, and HoxA10)

but not anterior HoxA or HoxD genes. Additionally, premature termination of Hottip RNA by

insertion of a synthetic polyadenylation cassette downstream of the Hottip transcription start site

significantly reduced HoxA13 and HoxA11 mRNA levels in vitro and in vivo, firmly establishing a

role for the intact Hottip lncRNA molecule and distinguishing its requirement from the act of

transcription at the Hottip locus in the regulation of gene expression in cis. Taken together, the

study provides a solid mechanism for the control of posterior HoxA gene transcription through

activation of Hottip lncRNA by Psip1/p52 (Fig 1).

Several interesting and important questions remain. Psip1 binds to 50 HoxA genes but

somehow still requires Hottip RNA to activate these genes. Thus, the concept of transcription

coactivator using an enhancer-like RNA to amplify or expand its reach may apply to other

Fig 1. Model of positive cofactor 4 (PC4) and splicing factor 2 (SF2) interacting protein (Psip1) action.

Psip1 activates the transcription of Hottip long noncoding RNA (lncRNA) in distal limb cells. Hottip lncRNA in

turn stimulates the transcription of 50 HoxA genes by enforcing H3K4me3 chromatin modification. Hottip’s

selective effect on 50 HoxA genes is due to the chromosome looping that brings 50 HoxA genes into the vicinity

of Hottip RNA emanating from the Hottip DNA locus. This mechanism transmits the spatial information in DNA

looping into chemical information in chromatin modification and gene activation. Abbreviations: WDR5, WD

repeat-containing protein 5; MLL, mixed lineage leukemia.

https://doi.org/10.1371/journal.pgen.1006797.g001
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pairs as well. These findings also provide substantial insights into the regulation of Hottip, the

expression of which is dysregulated in a number of human cancers. Hottip appears to act

locally near its site of transcription, but the mechanism through which Hottip RNA localizes

specifically to the distal HoxA genes in cis is unknown. It is possible that Hottip takes advantage

of the existing 3-dimensional chromosomal structure at the distal HoxA loci [10] to affect the

local transcription landscape. This would be an attractive mechanism given the now-appreci-

ated highly conserved hierarchical organization of the genome [20], in which fundamental

structural units serve to guide regulatory elements or, in this case, specific RNA transcripts to

their cognate promoters. These interactions could provide insight into the way in which the

3-dimensional organization of the genome reflects alterations in lineage and stage-specific

transcriptional programs that govern cell fate, with lncRNAs such as Hottip acting as well-

timed molecular switches. This may represent a fundamental property of mammalian gene

regulatory networks, whose mechanisms for specificity and the general applicability represent

key areas for future investigation.
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