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Abstract

Colorectal cancer is the third most common cancer diagnosed in both men and women in

the United States. Most colorectal cancers start as a growth on the inner lining of the colon

or rectum, called ‘polyp’. Not all polyps are cancerous, but some can develop into cancer.

Early detection and recognition of the type of polyps is critical to prevent cancer and change

outcomes. However, visual classification of polyps is challenging due to varying illumination

conditions of endoscopy, variant texture, appearance, and overlapping morphology

between polyps. More importantly, evaluation of polyp patterns by gastroenterologists is

subjective leading to a poor agreement among observers. Deep convolutional neural net-

works have proven very successful in object classification across various object categories.

In this work, we compare the performance of the state-of-the-art general object classification

models for polyp classification. We trained a total of six CNN models end-to-end using a

dataset of 157 video sequences composed of two types of polyps: hyperplastic and adeno-

matous. Our results demonstrate that the state-of-the-art CNN models can successfully

classify polyps with an accuracy comparable or better than reported among gastroenterolo-

gists. The results of this study can guide future research in polyp classification.

Introduction

Colorectal cancer is the third most common cancer diagnosed in both men and women in the

united states [1]. According to the American Cancer Society, a total of 101,420 new cases of

colon cancer and 44,180 new cases of rectal cancer occurred in 2019. The lifetime risk of devel-

oping colorectal cancer is about 4.99% for men and 4.15% for women [1]. Colorectal cancer is

the second leading cause of cancer-related deaths. Colon cancer is expected to cause about

51,020 death in the United States during 2020.

Polyps are considered the harbinger of colorectal cancer. Early detection and recognition of

polyps can reduce death caused by colorectal cancers. Broadly speaking, colorectal polyps can

be divided into two categories: non-neoplastic (Hyperplastic) and neoplastic (Adenomatous)

[2]. Hyperplastic polyps do not predispose to cancer, whereas adenomatous polyps are
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considered pre-cancerous as they account for approximately 85% [3] of sporadic colorectal

cancers via the adenoma-carcinoma pathway. Therefore, adenomatous polyps are removed

during colonoscopy to prevent future cancer. Therefore, differentiating the two types of polyp

histology is critical to determine which patient needs close follow up at shorter intervals and

which patient can be surveyed every 10 years.

Colonoscopy is the main diagnostic procedure to detect and recognize polyps located on

colorectal walls. The accurate detection and correct classification depend on the skills and

experience of the endoscopists, however, even for experienced endoscopists, working on con-

ventional colonoscopy for long hours leads to mental and physical fatigue and degraded analy-

sis and diagnosis. Other factors that may affect the classification results include varying

illumination conditions, variant texture and appearance, and occlusion. Moreover, different

types of polyps are hard to differentiate since they may exhibit a very similar appearance with a

subtle difference, as shown in Fig 1. It requires a thorough examination of fine details to distin-

guish one category form the other. Therefore, an accurate and effective automatic computer-

aided system for colonoscopy is required to help endoscopists to detect and classify the type of

polyps. This automated recognition mechanism can also be used as a second opinion to deter-

mine whether a further biopsy is required for diagnosis, which in turn will greatly reduce the

cost of diagnosis. In addition, such an intelligent system can also be used as an educational

resource for gastroenterology trainees to reduce the learning curve and cost.

In recent years, deep learning algorithms have shown their outstanding performance on

various generic datasets [4]. In some computer vision tasks, including strategic board games,

Atari games, and generic object recognition, deep learning even outperforms human accuracy.

However, there is a significant difference between generic images and medical images, as

medical images contain more quantitative information and the object have no canonical

Fig 1. Example of polyps from different class with subtle difference: (a) Upper: Three examples of Adenomatous polyps. (b) Lower: Three examples of

Hyperplastic polyps. They are visually very similar although from different categories.

https://doi.org/10.1371/journal.pone.0236452.g001
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orientation. In addition, acquiring medical data is expensive and labeling them requires the

involvement of domain experts. In this work, although we have used a total of 27,048 images

to train our models, they are extracted from only 119 video sequences with each sequence con-

tains one polyp. In short, we have only 119 different polyp images taken from various view-

points with varying lighting conditions to train our models.

Based on the result of our previous study [5, 6] and the results of MICCAI Endoscopic

Vision Challenge [7], we can see that the state-of-the-art object detection models can already

yield a very high precision in polyp detection. In this study, we assume the polyps have been

detected and focus our study only on classification.

In our previous work [6], we have collected and annotated a collection of endoscopic data-

set, which contains 157 video sequences and a total of 35,981 frames. We have also labeled the

ground truth of the polyp location and histogram class. In order to evaluate the performance

of different classification models, we generate two polyp datasets from the annotated endo-

scopic dataset. As shown in Fig 2, one dataset (set-1) only contains the cropped polyp patches

from the original video frames; the other dataset (set-2) contains not only the cropped polyps

but also around 55% background around the polyps. As described in [8], polyps have different

surrounding and vascular patterns and color in vessels and background according to the type

of polyps. Therefore, we generate set-2 to study the effect of background features [8] in polyp

classification.

Fig 2 illustrates the difference between the two generated datasets. We have evaluated and

compared the performance of six classification models on these two datasets. Our results show

that there is no significant difference in classification accuracy between the two datasets. We

have also analyzed the performance based on both individual frames and individual sequences.

The major contribution of this work include:

• We have generated two datasets for polyp classification. To the best of our knowledge, there

are no such datasets available in the literature,

• we have implemented six state-of-the-art deep learning-based image classification models

and compared their performance on the two datasets. This is the first comparative evaluation

for polyp classification using different convolutional neural network (CNN) models.

Fig 2. Type of polyp input: Same polyp frame with different versions of input. (a) Full frame, where the actual polyp feature is less compare to its

background features. (b) The cropped polyp. (c) The cropped polyp with around 55% of background. We generate data set-1 using (b) and set-2 using

(c) in this study.

https://doi.org/10.1371/journal.pone.0236452.g002
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• This study can serve as a baseline for future studies on polyp classification. The trained clas-

sification models, as well as the test dataset will be available for free to the research commu-

nity on the author’s website.

Related work

Various approaches and models have been proposed for polyp detection in colonoscopy. Pre-

vious comparative validation study on MICCAI 2015 polyp detection challenge shows the pro-

posed models using handcrafted features as well as deep learning models. However, to the best

of our knowledge, most previous works were focused on polyp detection, rather than classifi-

cation, due to the unavailability of the dataset. There have been very few models proposed for

polyp classification which classify the polyp into the hyperplastic and adenomatous type. Pre-

vious polyp classification approaches can be broadly divided into two categories: handcrafted

feature based and deep learning based model.

Conventional computer vision approaches: Most of the polyp classification work in the

literature are based on handcrafted features. Some approaches employ a pit pattern classifica-

tion scheme to classify the polyp [9] into two classes: normal mucosa and hyperplastic. Hafner

et al. [10] went beyond the conventional pit patterns approach and exploited fractal dimension

based (LFD) strategy. Uhl et al. proposed a blob-adapted local fractal dimension(BA-LFD)

approach [11] to classifying polyps. Maximal-minimal filter bank strategy proposed by [12]

outperformed the BA-LFD based approach.

Neural network based approaches: The study [13] provided a first review of various deep

learning based models for polyp classification. They compared the performance of VGG-VD

[14], CNN-F [15], CNN-M [15], CNN-S [15], AlexNet [16], and GoogleLeNet [17] on i-Scan1,

i-Scan2 and i-Scan3 database. The paper [18] utilized CNN model to classify the polyp, but in

their experiments they employed whole side images instead. The study [19] classified the pol-

yps into informative and non informative categories instead of hyperplastic and adenomatous.

Deep learning models: Inspired by the success of AlexNet [16] in the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) 2012, convolutional neural networks (CNN) have

attracted a lot of attention and been successfully applied to image classification [20–22], object

detection [4, 23, 24], depth estimation [25, 26], image transformation [27, 28], and crowd

counting [29]citesajid2020plug. VGGNets [14], and GoogleNet [17], the ILSVRC winners of

2014 and 2015, proved that deeper models could significantly increase the ability of representa-

tions. ResNet [30] proposed a skip connection based residual module to solve the vanishing

gradient problem of very deep models. Highway networks [31] proposed a gating mechanism

to regulate the flow of information in short—connections. ResNetxt [32] proposed to employ

multi-branch architecture and proved the cardinality as an essential factor in the CNN archi-

tecture. Huang et al. proposed DenseNet [33] where each layer is connected to all subsequent

layers. The winner of ILSVRC 2017, SENet [34], achieved 82.7% top-1 accuracy by improving

channel interdependencies at almost no computational cost. Recently, EfficientNet [35] has

been proposed, which introduced a new scaling method for CNN and achieved improved

performance.

Most of the proposed CNN models are based on the following three approaches: (1)

Increasing the depth (number of layers) and/or width of the block architecture; (2) introducing

an attention module; and (3) using a neural architecture search mechanism. The models cho-

sen in this work are the classical models using all these three approaches. In the task of object

detection, classification models are used as a backbone network, and the performance of object

detection largely relied on the backbone network. The most widely adopted backbone
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networks including VGG, ResNet, and DenseNet. Therefore, we include all these three models

in our study. In addition, we also include SENet and MnasNet. SENet employs a novel chan-

nel-wise attention mechanism, while MnasNet uses a neural architecture search. These models

will demonstrate the performance of the state-of-the-art CNN models in polyp classification.

Materials and methods

Convolutional neural networks have been widely applied to various computer vision tasks

including object detection and classification. A general CNN network consists of different

blocks, including an input layer, an output layer, and a number of hidden layers made up of

convolution layers, pooling layers, and activation layers. CNNs adaptively learn spatial hierar-

chies of features via back propagation through these building blocks. In this section, we make

a brief review of the classical object classification models used in this comparative study. These

models include VGG [14], ResNet [30], DenseNet [33], Squeeze-and-Excitation Network

(SENet) [34] and MnasNet [36].

VGG

VGG Net [14] was proposed by Simonyan and Zisserman to improve the classification perfor-

mance by adding more convolutional layers to increase the depth of the network. This could

be possible by replacing a large filter size (11 × 11 and 5 × 5) with 3 × 3 multiple kernel sized

filter stacked together. Max pooling layer is used to reduce spatial dimensions at every few lay-

ers. There are three back-to-back fully connected and a softmax layer respectively followed by

stacking the 3 × 3 convolution layers at the end. VGG is the first network structure that adopts

block-based architecture. ReLU non-linearity has been added to all hidden layers. The number

of weight parameters in VGG is larger than the previously proposed AlexNet, though it takes

fewer epochs to converge because of implicit regularization imposed by its depth and small

convolution filter size.

ResNet

To address the problem of vanishing gradients in deep neural networks, He at al. [30] pro-

posed ResNet which was implemented using the idea of Residual—Blocks, with skip connec-

tion to fit the input from the previous layer to the next layer without modifying it. In addition,

the residual block structure was structured for different deep variants of ResNet, ResNet-50,

and ResNet-101, by including bottleneck design. For each residual block, they used a stack of 3

layers instead of 2 layers, which includes 1 × 1 convolution layer back and forth of 3 × 3 layer.

Here 1 × 1 layer is responsible for adjusting the dimensions. Though ResNet is deeper than the

VGG net, it has fewer filters and lower complexity. ResNet-34 has 3.6 billion Flops which is

only 18% of VGG-19.

DenseNet

Huang at al. [33] proposed DenseNet based on the observation that deep network is efficient

to train if they contain shorter connections between layers close to the input and layers close to

the output. DenseNet is made up of several dense blocks and the feature maps from all previ-

ous layers are used as an input, and its own feature map is used as input to all subsequent lay-

ers. DenseNet uses concatenation operation to add the features from previous layers instead of

using element-wise addition. In DenseNet, each layer has fewer number of filters(12 filters),

which makes the network thinner and compact. In addition to fewer weight parameters,
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DenseNet is easy to train because of improved information flow and gradients throughout the

network.

As each layer produces k feature maps. 1 × 1 convolution layer is used to reduce the number

of input feature map before applying it to a 3 × 3 convolution layer. With this unique design

architecture, DenseNet has succeeded to reduce the vanishing gradient problem as well as

strengthen feature propagation and encourage feature reuse.

SENet

Researchers have tried to improve the accuracy by stacking layers in different ways. Hu at al.
[34] proposed a new architecture block squeeze and excitation based on the observation that

not all feature maps are equally important. In conventional convolutional networks, the output

feature maps are equally weighted, whereas SENet block weights each channel adaptively in a

kind of content-aware mechanism. In more formal terms: SE block employs global informa-

tion to selectively emphasize informative features and suppress less useful ones. The SE block

is made up of two different operations: Squeeze and excitation. The squeeze operation uses

global average pooling to generate channel-wise statistics which is a n-dimensional feature vec-

tor where n is the number of channels. The excitation operation utilizes this n-dimensional

feature vector, passes through two fully connected layers, and generates the same length vector.

This resultant vector is used to weight the original feature maps. This squeeze and excitation

block can be embedded into any state-of-the-art object classification models at a slightly addi-

tional cost. The squeeze and excitation network won the first place in ILSVRC 2017 classifica-

tion and reduced the top-5 error to 2.251%.

MnasNet

MnasNet [36], proposed by Google Brain, is an automated mobile neural architecture search

approach, based on reinforcement learning, which can identify a model that could achieve a

good trade-off between accuracy and latency. MnasNet introduced a hierarchical search space

that provides layer diversity throughout the network instead of repeatedly stack the same cells

through the network. The main components of MnasNet include (i) RNN-Controller used for

sampling model architecture; (ii) a trainer used to trained model sampled by RNN-controller;

and (iii) a mobile phone-based inference engine for measuring latency. MnasNet has been

implemented on the ImageNet [37] and COCO [38] database. In this work, we used the archi-

tecture which was searched by MnasNet on the ImageNet [37] dataset.

Implementation

Dataset preparation. In order to evaluate the performance of different models on the

classification of polyps. We collected and labelled the following datasets.

1. MICCAI 2017 Dataset: This dataset was published at the GIANA Endoscopic Vision Chal-

lenge held at MICCAI 2017. It contains 18 short videos for training and 20 videos for test-

ing [7]. Each frame in the training set has its associated ground truth in the form of

segmentation mask.

2. CVC ColonDB Dataset: This dataset was published by Bernel at al. [39], which contains 15

short colonoscopy video sequence, with the ground truth of polyp segmentation mask.

3. ISIT-UMR Colonoscopy Dataset: This dataset was published by Mesejo at al. [40]. It con-

tains 76 short video sequences. Each video sequence was labeled by the polyp categories,

however, there is no ground truth of segmentation.
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4. KUMC Colonoscopy Dataset: This is a dataset collected at the University of Kansas Medi-

cal Center. It consist of 80 colonoscopy video sequences.

With the help of three endoscopists from the medical school of Jilin University and the Uni-

versity of Kansas Medical Center, we labeled the polyp classification results of all videos in

datasets 1, 2, and 4. We also annotated the location bounding boxes for all the polyps in data-

sets 3 and 4. During the annotation process, the endoscopists could not reach an agreement on

some sequences since they may need further biopsy verification. Those videos are removed

from the datasets. We finally obtained a dataset of 157 videos (35,981 frames) with the labeled

ground truth of the polyp histology and bounding boxes.

For the labeled dataset, we randomly split all the videos into training, validation, and test

sets which contains 119, 16, and 22 video sequences, respectively. The study focuses on evalu-

ating the performance of the state-of-the-art classification models. We assume the polyps have

been accurately detected and generate two separate datasets for the evaluation. As shown in

Fig 2, set-1 only contains the patches of the cropped polyps, and set-2 contains not only the

cropped polyps but also about 55% background around the polyps.

Training

In this study, we implemented and compared a total of 6 classical classification models:

VGG19 with/without batch normalization [14], ResNet50 [30], DenseNet121 [33], SE-Res-

Net50 [34] and MnasNet [36]. The training dataset contains 119 sequences (27,048 images).

We train all the model using NVIDIA Tesla K80 or P100 GPUs. The hyperparameters used to

train the models are tabulated in Table 1. All models were initialized by pre-trained ImageNet

weights and the training time of each model ranges from 1 to 3 hours.

Evaluation metrics

In the experiments, we train each model until it achieves the optimal performance on the vali-

dation set. To evaluate the model performance, we calculate the top-1 classification error. In

order to make a fair comparison of different models, the performance has also been evaluated

in terms of sensitivity, specificity, accuracy, precision, and F1-Score. The definitions of these

matrices are listed in Table 2. We evaluates the performance of all models on each sequences

individually for both datasets.

Results

In this section, we report the classification results of all comparative models using the two

datasets. All input images are resized to 224 × 224 for a fair comparison. All models include

Table 1. Hyperparameters.

Model Learning rate Batch size Epoch Step size Gamma

VGG19 0.001 32 25 - -

VGG19-BN 0.001 32 25 - -

ResNet50 0.001 64 25 - -

DenseNet 0.001 64 25 - -

SE-ResNet 0.001 64 50 30 0.1

MnasNet 0.001 64 150 - -

The hyperparameters used to train different models.

https://doi.org/10.1371/journal.pone.0236452.t001
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batch normalization except VGG-19. The test set contains a total of 22 sequences (4719

frames), where 13 sequences (2890 frames) belong to adenomatous and 9 sequences (1829

frames) belong to hyperplastic. All models employ softmax as the classifier to yield the scores

for the two classes, and the model outputs the class corresponding to the higher score. The

top-1 error, precision, recall (individual class accuracy), and F1-score for both categories are as

shown in Table 3. To alleviate the influence of the variation of illumination, all images in the

Table 2. Evaluation metrics.

Polyp classification

True Positive(TP) Numbers of adenomatous polyps that are correctly classified

True Negative(TN) Numbers of hyperplastic polyps that are correctly classified

False Positive(FP) Numbers of hyperplastic polyps that are incorrectly misclassified as adenomatous

False Negative(FN) Numbers of adenomatous polyps that are incorrectly classified as hyperplastic

Sensitivity % of actual adenoma are correctly classified. Also termed as recall and accuracy of

adenoma. TP
TPþFN � 100

Specificity % of actual hyperplastic are correctly classified. Also termed as recall and accuracy of

hyperplastic. TN
TNþFP� 100

Precision(Adenoma) % of predicted adenoma that are truly adenoma. TP
TPþFP � 100

Precision

(Hyperplastic)

% of predicted hyperplastic that are truly hyperplastic. TP
TPþFP � 100

Accuracy Overall accuracy of both classes. TPþTN
TPþTNþFPþFN � 100

F1-Score Weighted average of precision and recall. 2
precision�recall
precisionþrecall� 100

Error 1� Accuracy
100

ROC Receiver operating characteristic curve

AUC Area under the curve (of ROC)

Evaluation metrics used in the comparison. Precision, Recall(class based accuracy) and F1-Score are calculated for

both classes

https://doi.org/10.1371/journal.pone.0236452.t002

Table 3. Evaluation results.

Model TP TN FP FN Ade

(%)

Hyper

(%)

Acc

(%)

Err

(%)

Pre-1

(%)

Pre-2

(%)

F1-1

(%)

F1-2

(%)

AUC

(%)

VGG-19(set-1) 2424 1149 680 466 83.87 62.82 75.71 24.28 78.09 71.14 80.88 66.72 76.43

VGG-19(set-2) 2419 1346 483 471 83.70 73.59 79.78 20.21 83.35 74.07 83.52 73.83 84.80

VGG19-BN(set-1) 2071 1440 389 819 71.66 78.73 74.40 25.59 84.18 63.74 77.42 70.45 78.58

VGG19-BN(set-2) 2295 1345 484 595 79.41 73.53 77.13 22.86 82.58 69.32 80.96 71.37 82.20

ResNet50(set-1) 2350 1222 607 540 81.31 66.81 75.69 24.30 79.47 69.35 80.38 68.05 77.25

ResNet50(set-2) 2042 1305 524 848 70.65 71.35 70.92 29.07 79.57 60.61 74.85 65.54 76.27

DenseNet(set-1) 2246 1282 547 644 77.71 70.09 74.76 25.23 80.41 66.56 79.042 68.28 79.28

DenseNet(set-2) 2065 1306 523 825 71.45 71.40 71.43 28.56 79.79 61.28 75.39 65.95 78.65

SENet(set-1) 2230 1320 509 660 77.16 72.17 75.22 24.77 81.41 66.66 79.23 69.30 72.78

SENet(set-2) 2338 1138 691 552 80.89 62.21 73.65 26.34 77.18 62.21 78.99 64.67 82.05

MnasNet(set-1) 2239 1213 616 651 77.47 66.32 73.15 26.84 78.42 65.07 77.94 65.69 73.32

MnasNet(set-2) 2115 1242 587 775 73.18 67.90 71.13 28.86 78.27 61.57 75.64 64.58 77.11

Overall performance of all model on set-1 and set-2 based on individual frame irrespective of sequence.

https://doi.org/10.1371/journal.pone.0236452.t003
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datasets were normalized with respect to their mean and standard deviation. The mean and

standard deviation of both datasets are listed in Table 4.

Discussion

Frame-based performance

We first report the comparative performance of different models based on each individual

frame. Frame-based performance is measured without considering the particular sequence of

those frames. It measures the overall accuracy similar to the generic classification evaluation

for other datasets. As shown in Table 3, VGG19 outperforms all other models with an overall

accuracy of 75.71% and 79.78% for set-1 and set-2, respectively. The precision of Adenomatous

class is higher than that of Hyperplastic class for every model in both datasets, except for

VGG-19 with batch normalization (on set-1) and ResNet50 (on set-2). If we consider precision

and F1-score for every model in both datasets, the precision of Adenomatous is always higher

than that of Hyperplastic. VGG-19 has also achieved the highest recall for both classes on set-

2. The most recently proposed models, like ResNet, SENet, and MnasNet did not perform well

in both datasets, although they have better performance than VGG-19 on generic image classi-

fication datasets.

From Table 3 we also observe that VGG-19 outperforms VGG-19 with batch normalization

in most metrics. This is contradicting to what was observed in other datasets. The reason

might because that, in polyp classification, the exact intensity values of the pixels may be more

useful for the discrimination of different types of polyps than that in generic image classifica-

tion. While batch normalization layer scales the pixel values with respect to the batches, which

may affect the intensity information and downgrade the performance.

To better visulize the performance, we employ AUC (area under the curve) ROC (receiver

operating characteristics) curve to demonstrate the frame-based performance. AUC-ROC

curve represents the degree of separability of a classification problem. It demonstrates the

capability of a model in differentiating classes. Figs 3 and 4 show the ROC curves of different

models for set-1 and set-2, respectively. The results show that, in general, the models achieve

better classification performance on set-2 than that on set-1 except for ResNet. We can also see

that VGG-19 achieves the highest ROC score and the best accuracy on set-2.

Sequence-based performance

Based on the classification of each frame, we can measure the performance of each sequence.

The sequence-by-sequence performance for the two datasets are shown in Figs 5 and 6, respec-

tively. We can see that the results are not consistent among all frames within the same

sequence of the same polyp. This is because the appearance of the polyp may subject to signifi-

cant appearance changes due to the variance of the viewpoints, zooming scales, and illumina-

tion. Fig 7 shows some sample frames of a sequence under different viewpoints and lighting

conditions. In this case, even experienced endoscopists cannot make an accurate prediction

from a single frame. As a result, not all frames can be correctly classified. In practice, we

Table 4. Mean and standard deviation.

Mean and standard deviation used for normalization

Set-1 [0.6916, 0.5297, 0.4158][0.1439, 0.1377, 0.1306]

Set-2 [0.6594, 0.5112, 0.4026][0.2469,0.2254,0.2095]

Mean and standard deviation of set-1 and set-2, used to normalize input images.

https://doi.org/10.1371/journal.pone.0236452.t004
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calculate the percentage of correctly classified frames for each sequence. Then, we set a thresh-

old in terms of the percentage, and a sequence is considered to be correctly classified if the per-

centage of correctly classified frames is greater than the specified threshold. Table 5 shows the

performance corresponding to different thresholds for the two datasets.

As shown in Figs 5 and 6, the classification result for each sequence is not consistent. The

test sequences 1, 3, 10, 12, 13, 14, 18, 19, 21, and 22 are correctly classified by all models for

both datasets, while the results of sequences 2, 4, 5, 6, 7, 9, 11, 17, and 20 are not consistent

because the percentage of the correctly classified frames is in between 40-50%. Sequences 5

and 6 could not be classified well by all models. Some sample frames of sequences 5 and 6 are

shown in Fig 8, which subject large variations in appearance that cause the difficulty in classifi-

cation. Table 5 shows the threshold-based performance of all models. The results indicate the

consistency of the prediction of different models, from which we can see that VGG models

achieve relatively better performance than other models. For example, VGG-19 achieves

around 70%, 80%, and 90% accuracy at the thresholds of 70%, 60%, and 50%, respectively.

Comparing Tables 3 and 5, we can find that if we set the threshold at 50%, the sequence-based

accuracy is much higher than frame-based based accuracy, especially for VGG models. How-

ever, at a higher threshold of 70%, the overall accuracy of the frame-based is higher than the

sequence-based approaches, which indicates the consistent prediction within the sequence.

Fig 3. AUC-ROC curves of different models on set-1: (a) VGG19 (b) VGG19-BN (c) ResNet50 (d) DenseNet (e) SENet (f) MnasNet.

https://doi.org/10.1371/journal.pone.0236452.g003
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To better visualize the sequence-based performance, we have included the box plots.

Box plots show the accuracy per sequence distribution of the total 22 sequences. Fig 9 shows

the box plots of different models on set-1 and set-2, respectively. It can be seen that the maxi-

mum accuracy of all models is 100% because at least one sequence has been correctly classified

Fig 4. AUC-ROC curves of different models on set-2: (a) VGG19 (b) VGG19-BN (c) ResNet50 (d) DenseNet (e) SENet (f) MnasNet.

https://doi.org/10.1371/journal.pone.0236452.g004

Fig 5. Sequence-based performance of set-1: The performance of different models for each test sequence of set-1.

https://doi.org/10.1371/journal.pone.0236452.g005
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by each of the models. The upper quartile range is dependent on the median value. A high

median value decreases the upper half range, which shows the ability of the model to consis-

tently correctly classified sequence. On set-1, VGG-19 achieves the highest median value,

which indicates that half of the sequences are correctly classified with a very high threshold.

On set-2, ResNet-50 yields the most consistent results with the highest median value. We can

also see from the results that the upper quartile ranges are smaller than the lower quartile

range, which indicates that the spread of accuracy below the median value is very high.

Fig 6. Sequence-based performance of set-2: The performance of different models for each test sequence of set-2.

https://doi.org/10.1371/journal.pone.0236452.g006

Fig 7. Images from different viewpoints: Six sample frames from the same sequence. The same polyp looks considerably different due to the

variations of viewpoints and lighting conditions.

https://doi.org/10.1371/journal.pone.0236452.g007

Table 5. Sequence-based accuracy.

Model Threshold(70%) Threshold(60%) Threshold(50%)

VGG-19 63.63/68.18 72.72/81.81 81.81/90.90

VGG19-BN 69.63/68.18 72.72/81.81 81.81/90.90

ResNet50 68.18/59.09 77.27/72.72 86.36/81.81

DenseNet 59.09/63.63 72.72/68.18 86.36/68.18

SE-ResNet 63.63/54.54 72.72/72.72 72.72/77.27

MnasNet 54.54/54.54 68.18/68.18 81.81/81.81

Accuracy per sequence for all models based on different threshold with set-1 / set-2. First term before ‘/’ specifies accuracy for set-1 and and term after ‘/’ indicates

accuracy for set-2.

https://doi.org/10.1371/journal.pone.0236452.t005
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Polyp crops vs crops with background

In order to test the background information in polyp classification, we generate two datasets

in the experiment, set-1 has only polyp crops and set-2 contains polyp crops with 50% back-

ground. From Table 3 we can see that, if we consider frame-based performance, except for the

Fig 8. Missclassified sequences: Sample frames from different sequences that could not be correctly classified by almost all models. (a) and (b) are

sequences 5 and 6, respectively, where 5 is of type adenomatous and 6 is of type hyperplastic.

https://doi.org/10.1371/journal.pone.0236452.g008

Fig 9. Box plot of set-1 and set-2: The accuracy per sequence distribution of different models on (a) set-1 and (b) set-2.

https://doi.org/10.1371/journal.pone.0236452.g009
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VGG models, all other models achieve higher accuracy on set-1 than on set-2. If we consider

the overall AUC-ROC score, set-2 yields better performance which means the two classes are

easier to distinguish in set-2 than in set-1. If we consider sequence-based analysis, the perfor-

mance of all sequences is almost similar for both types of datasets. For consistency-based per-

formance, the consistency is improved by VGG-19, VGG-19 with batch normalization, and

DenseNet for set-2, whereas for other models, the overall threshold-based accuracy is very

close. If we consider the box plots and set median as a threshold, the consistency of correctly

classifying sequence is improved by ResNet, DenseNet, and SENet for set-2.

Conclusion

In this paper, we have established two datasets and compared six state-of-the-art deep learn-

ing-based classification models. We have evaluated the results both at the frame level and at

the polyp level. Our results show that VGG-19, in general, outperforms other models in both

cases for both datasets. While some more advanced classification models, like ResNet, Dense-

Net, SENet, and MnasNet did not perform well in our experiments, though they have advan-

tages on other benchmark datasets. The poor performance may be caused by the limited size

of the polyp dataset. This study provides a good baseline for future research to develop more

accurate and more robust polyp classification models.
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