
A computed tomography imaging-based subject-specific whole-
lung deposition model

Xuan Zhanga,b, Frank Lib,c, Prathish K. Rajaramanb, Jiwoong Choia,d, Alejandro P. 
Comellasa,e, Eric A. Hoffmanf,c,d, Benjamin M. Smithg,h, Ching-Long Lina,b,c,f,*

aDepartment of Mechanical Engineering, 2406 Seamans Center for the Engineering Art and 
Science, University of Iowa, Iowa City, Iowa 52242, USA

bIIHR-Hydroscience and Engineering, University of Iowa, Iowa City, Iowa, USA

cDepartment of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA

dDepartment of Internal Medicine, School of Medicine, University of Kansas, Kansas City, 
Kansas, USA

eDepartment of Internal Medicine, University of Iowa, Iowa City, Iowa, USA

fDepartment of Radiology, University of Iowa, Iowa City, Iowa, USA

gDepartment of Medicine, College of Physicians and Surgeons, Columbia University, New York, 
NY, USA

hDepartment of Medicine, McGill University Health Centre Research Institute, Montreal, Canada

Abstract

The respiratory tract is an important route for beneficial drug aerosol or harmful particulate matter 

to enter the body. To assess the therapeutic response or disease risk, whole-lung deposition models 

have been developed, but were limited by compartment, symmetry or stochastic approaches. 

In this work, we proposed an imaging-based subject-specific whole-lung deposition model. 

The geometries of airways and lobes were segmented from computed tomography (CT) lung 
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images at total lung capacity (TLC), and the regional air-volume changes were calculated by 

registering CT images at TLC and functional residual capacity (FRC). The geometries were 

used to create the structure of entire subject-specific conducting airways and acinar units. The 

air-volume changes were used to estimate the function of subject-specific ventilation distributions 

among acinar units and regulate flow rates in respiratory airway models. With the airway 

dimensions rescaled to a desired lung volume and the airflow field simulated by a computational 

fluid dynamics model, particle deposition fractions were calculated using deposition probability 

formulae adjusted with an enhancement factor to account for the effects of secondary flow 

and airway geometry in proximal airways. The proposed model was validated in silico against 

existing whole-lung deposition models, three-dimensional (3D) computational fluid and particle 

dynamics (CFPD) for an acinar unit, and 3D CFPD deep lung model comprising conducting and 

respiratory regions. The model was further validated in vivo against the lobar particle distribution 

and the coefficient of variation of particle distribution obtained from CT and single-photon 

emission computed tomography (SPECT) images, showing good agreement. Subject-specific 

airway structure increased the deposition fraction of 10.0-μm particles and 0.01-μm particles by 

approximately 10%. An enhancement factor increased the overall deposition fractions, especially 

for particle sizes between 0.1 and 1.0 μm.

1. Introduction

The human airways are the pathways for both inhaled noxious particulate matter and 

pharmacological aerosol. Due to genetic abnormalities, poor lung growth in early life, and 

lung diseases, alterations in airway structure may lead to differential deposition patterns 

of inhaled aerosol that could affect disease risk (Bourbeau et al., 2022) and therapeutic 

response (Vameghestahbanati et al., 2021). Thus, it is critical to understand the relationships 

of particle deposition patterns to airway structures and lung functions of individuals 

characterized by various risk factors and disease severities.

Several examples of airway-structure risk factors include airway-branch variation and 

dysanapsis. Airway variants are associated with an increase in chronic obstructive 

pulmonary disease (COPD) prevalence among non-smokers and smokers (Smith et al., 

2018). Dysanapsis is associated with COPD incidence and lung functional decline (Smith 

et al., 2020; Tanabe et al., 2019). With large data acquired by multi-center studies, machine 

learning has been applied to identify disease subgroups (subpopulations, subtypes, or 

clusters) using computed tomography (CT) imaging metrics (Lin et al., 2018; Castaldi et 

al., 2020; Lin et al., 2021). For example, clusters have been identified from asthmatic 

subjects (Choi et al., 2017b), current smokers (Haghighi et al., 2018) and former smokers 

(Haghighi et al., 2019; Zou et al., 2021). In addition, lung-tissue latent traits have been 

extracted from CT lung images (Li et al., 2021). While the associations between clinical data 

and imaging phenotypes within clusters have been established, local and global mechanistic 

phenotypes, e.g. airway resistance and particle deposition derived by computational fluid 

and particle dynamics (CFPD), are yet to be investigated for the benefit-risk analysis of 

inhaled aerosols within clusters. While the cluster-guided high-fidelity three-dimensional 

(3D) CFPD subject-specific strategy has been employed to assess preferential particle 

deposition patterns in cluster-representative archetypes of severe asthmatics (Choi et al., 
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2019a; Rajaraman et al., 2020), the high computational cost of 3D CFPD limited its 

application to a few subjects with finite airway branches for site studies. Thus, there is a 

need to develop a computation-efficient one-dimensional (1D) subject-specific whole-lung 

deposition model that allows for assessment of lung structure-deposition relationships in 

individuals and subpopulations (Hofmann, 2011). This model would complement 3D CFPD 

by enabling organ-level deposition assessments and segment-level site studies in regions of 

interest under the notion of multi-scale simulations (Miyawaki et al., 2017). The rationale 

behind this work is also in alignment with the opinion piece on tackling multi-scale in silico 
models of the whole-lungs for large population studies (Koullapis et al., 2019).

Several theoretical models were developed to study particle deposition in human lungs. 

Yeh and Schum (1980) developed an 1D airway model based on a silicone rubber replica 

cast of human tracheobronchial airways from a 60 year old male Caucasian (Raabe et 

al., 1976). The model can be described as a typical path for the whole lung (typical-path 

symmetric) or 5 typical paths for lobes (5-lobe symmetric). The former assumes symmetry 

and dichotomy for all bifurcations, whereas the latter considers intra-subject variation only 

for main and lobar bronchi in the first few generations. The demarcation between conducting 

and respiratory airways is fixed at a specific generation of the entire lung for the typical-path 

symmetric model or each lobe for the 5-lobe symmetric model. The deposition probability 

is calculated using analytical formulae in a straight cylindrical pipe for three deposition 

mechanisms: diffusion, sedimentation, and impaction.

Hofmann et al. (Hofmann and Koblinger, 1990; Koblinger and Hofmann, 1990) developed 

a Monte-Carlo stochastic deposition model that randomly selects the geometry of branches 

one at a time along the path of an inhaled particle based on the statistics of morphometric 

data (Raabe et al., 1976) and computes the deposition probabilities (Yeh and Schum, 1980; 

Schum and Yeh, 1980). As a consequence, it avoids the reconstruction of the entire airway 

tree. Asgharian et al. (2001) developed a multiple-path particle dosimetry (MPPD) models 

consisting of ten asymmetric tracheobronchial tree models generated by the stochastic model 

(Hofmann and Koblinger, 1990; Koblinger and Hofmann, 1990). These models were used to 

represent individual healthy adult male subjects to study inter-subject deposition variability. 

It is noted that the above typical-path symmetric, 5-lobe symmetric, stochastic, and MPPD 

models were all based on the same morphometric data of an old male subject (Raabe et al., 

1976).

Semi-empirical models introduced by the International Commission on Radiological 

Protection (ICRP) model (Bair, 1989) calculated radiation doses to the respiratory tract 

of workers resulting from the intake of airborne radionuclides. In the ICRP model, airway 

structure is divided into a multi-filter model, including nasopharyngeal and oropharyngeal 

region, bronchial region, bronchiolar region, and alveolar-interstitial region. Instead of 

calculation based on a detailed airway tree model, the ICRP model divides subjects into 

men, women, and children, providing a quick estimation of particle deposition in each 

region.

3D CFPD has been employed to study particle deposition in human airway models. For 

example, Hofemeier et al. (2018) created a detailed 3D sub-acinar structure generated by 
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the algorithm of Koshiyama and Wada (2015) that would capture the statistics of human 

acinar morphometry (Ochs et al., 2004). Koullapis et al. (2018, 2020) introduced a 3D deep 

lung model to simulate particle deposition in conducting and acinar regions. The airway 

geometry in this model comprised ten distal generations of Yeh-Schum 5-lobe symmetric 

conducting airways coupled to multiple sub-acinar models – a variant of Hofemeier’s 10-

generation sub-acinus model (Hofemeier et al., 2018). Tian et al. (2015) applied a stochastic 

individual path (SIP) model to generate an individual continuous pathway extending from 

the third bifurcation to a terminal bronchiole in each of the five lobes, based on Yeh-

Schum 5-lobe symmetric model (Yeh and Schum, 1980). Kolanjiyil and Kleinstreuer (2017) 

developed a whole-lung airway model (WLAM) consisting of subject-specific upper airways 

from mouth/nose to generation 3, triple bifurcation units (TBUs) for generations 4-15, 

alveolated TBUs for generations 16-21 and a double bifurcation unit (DBU) for generations 

22-23, where TBUs were based on morphometric measurements of human lung casts with 

symmetric branching (Weibel, 2009).

From in vitro and in vivo studies, Lippmann (2022) and Stahlhofen et al. (1989) 

derived simple analytical expressions for the deposition efficiencies of the nasal passages, 

larynx, and upper and lower thoracic airways. De Backer et al. (2010) compared the 

particle deposition from single-photon emission computed tomography (SPECT) with 3D 

CFPD in CT-based airway models of six asthmatic subjects. The authors showed good 

agreement between CFPD and CT/SPECT in lobar airflow distribution and concluded that 

heterogeneity in ventilation patterns could be detected with CT/SPECT and CFPD with 

appropriate boundary conditions.

In this work, we present a computation-efficient CT imaging-based subject-specific 1D 

whole-lung deposition model. This model is based on the framework of our previous 

3D-1D CFPD subject-specific lung models Lin et al. (2018, 2021), which could predict 

1D airflow distribution for the whole lungs (Yin et al., 2010; Yoon et al., 2020) and 

3D airflow and particle deposition in airways of limited generation or pathway for site 

studies (Choi et al., 2019a, 2019b). The subject-specificity is achieved by incorporating 

CT-resolved airway trees and lobes (structure) and CT image-registration-derived regional 

airflow change/ventilation (function) into CFPD modeling. The current model consists of 

three new features: a registration-based respiratory tree model characterized by intra-acinar 

isotropic expansion/contraction and inter-acinar variability, rescaling of airway dimensions 

for transition from conducting to respiratory regions and from total lung capacity (TLC) to a 

desired lung volume (LV), and an empirically-determined enhancement factor that accounts 

for the effects of secondary flow and airway geometry to improve the accuracy of deposition 

prediction in proximal airways. The proposed model would be validated in silico against 1D 

whole-lung deposition models, 3D CFPD acinar simulations, and 3D deep lung simulations 

as well as in vivo against our combined CT and SPECT imaging human subject experiments.

2. Methods

2.1. Human subject data and image processing

CT lung image data of 7 non-smoking subjects acquired from the Multi-Ethnic Study of 

Atherosclerosis (MESA) study were used for model development, while CT and SPECT 
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lung image data of 8 subjects with chronic obstructive pulmonary disease (COPD) acquired 

at the University of Iowa were used for model validation. The study protocols were approved 

by respective Institutional Review Boards. Each CT/SPECT subject had three visits at 

0, 12, and 24 months, amounting to a total of 24 datasets with 6, 3, 10 and 5 in the 

Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 0, 1, 2 and 3, 

respectively. Because the sample size for GOLD 1 subjects was too small for statistical 

analysis, they were grouped into two subgroups of 9 nonsevere-mild subjects (GOLD 0-1) 

and 15 moderate-severe subjects (GOLD 2-3). CT images provide structural data, whereas 

SPECT images provide functional data. Each CT/SPECT subject had three static CT scans 

at TLC, functional residual capacity (FRC) and residual volume (RV), and one dynamic 

ventilation SPECT scan per visit. Technetium-99m (99mTc) sulfur colloid was used as the 

radiopharmaceutical for ventilation SPECT imaging. Since the size of sulfur colloid is below 

1.0 μm (Krogsgaard, 2004), the aerosol is expected to travel deep into the lung (Sirr et 

al., 1985). The lobar deposition fractions were estimated by the distributions of the tracer 

activity of 99mTc sulfur colloid via co-registration of SPECT images and CT images at FRC 

whose lung volume is close to that of tidal breathing during SPECT imaging. Compared 

to a control group of 105 healthy non-smokers (Cho et al., 2022), the demography, post-

bronchodilator pulmonary function tests and lung volumes for healthy controls and CT/

SPECT subjects are: age (years) = 44.6±14.1, 62.3±11.4*, sex (female%) = 51.4, 37.5; BMI 

(kg/m2) = 25.7±3.6, 27.7±3.6*; height (cm) =176.4±8.6, 166.3±9.0*; FEV1% predicted = 

99.5±10.7, 82.3±11.8*; TLC (L)= 5.8±1.3, 6.1±1.3*; RV (L)= 1.7±0.7, 2.0±0.7* (*, p < 

0.05).

2.2. Airway models

2.2.1. Conducting airways—All CT scans were processed using VIDA Vision (VIDA 

Diagnostics, Coralville, Iowa), a commercial software, to segment the airways and lobes. 

A volume filling algorithm was employed to generate CT-based subject-specific conducting 

human airways (Tawhai et al., 2000, 2004). The airway models are host-shape dependent 

because this algorithm uses five CT-segmented lobes as host-shaped boundaries and CT-

resolved terminal airways as starting host-specific segments at TLC scan that bifurcates 

repeatedly to approximately 30,000 acinar units distributed within five lobar cavities. The 

resulting airway models agreed with morphometric data for normal subjects such as length 

ratios, path lengths, numbers of branches, branching angles, and branching asymmetry 

(Tawhai et al., 2000, 2004). We employed a stochastic airway narrowing model for diseased 

lungs to determine the diameters of CT unresolved airways (Yoon et al., 2020; Choi et al., 

2019b). Fig. 1 shows the probabilities of generation numbers of terminal bronchioles of the 

seven MESA subjects by lobe, which peak at around generation 16.

2.2.2. Respiratory airways with isotropic alveolar wall motion—The respiratory 

airway modeling process consists of two steps: choose an airway tree model and 

approximate alveolar wall motion. Here, we adopted an idealized typical-path acinar airway 

model based on the measurements of human acinar airways on casts by Weibel et al. 

(2005) (Table 1). The dichotomously regularized model consists of 8 generations of acinar 

airways starting with a transitional bronchiole as the zeroth generation (z’=0), followed by 

three generations of respiratory bronchioles, four generations of alveolar ducts, and one 
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generation of terminal alveolar sacs with an average volume of 187 cm3. The mean lengths, 

inner diameters of airway segments, and the total alveolar surface at a given generation 

were used to derive the mean velocity inside each airway segment needed for the deposition 

formulae. The dashed lines outline the control volume inside an airway segment (Fig. 

2). On inspiration, Qdi (or Qde) is the flow rate at the inlet (or outlet) of a segment of 

generation z’. Qa is the flow rate into all alveoli at generation z’. The number of airway 

segments is N z′ = 2z′. Mass conservation at generation z’ yields Qde·N = Qdi·N – Qa. With 

normalization by the flow rate at the transitional bronchiole Qdi(z’=0), we obtain:

qde ⋅ N = qdi ⋅ N − qa (1)

where qk ≡ Qk/Qdi z′ = 0  with k=di, de, and a; and hence qdi(z′ = 0) = 1.

Next, qa z′  is estimated by assuming isotropic alveolar wall expansion/contraction.

qa z′ = Salv z′ valv (2)

where valv is the mean outward (or inward) normal velocity of the alveolar wall 

on expansion (or contraction) calculated by valv = qdi z′ = 0 /∑z′ = 0
8 Salv z′  where 

qdi z′ = 0 = 1 . With qde z′  obtained from Eq. (1), the mean normalized flow rate inside an 

airway segment qd = qdi + qde /2 and the normalized inlet flow rate for the next generation 

qdi z′ + 1 = qde z′ /2 can be calculated. The flow rate at the inlet of a transitional bronchiole 

Qdi z’ = 0  (or the exit of a terminal bronchiole) is location and acinus specific (Yin et al., 

2010). Thus, while the alveolar wall velocity in an acinar unit is uniform, it varies across 

acinar units. The mean airway flow rate, the mean airway length and the inner airway 

diameter are then used to calculate the deposition probabilities.

2.2.3. Rescaling of airway dimensions—The airway dimensions segmented from 

TLC images are rescaled to a desired LV. The scaling factor below is calculated based on the 

assumption (Schum and Yeh, 1980) that both airway diameters and lengths in the respiratory 

region of the lung are proportional to the cube root of LV, while those in the conducting 

region are proportional to the square root of LV. The scaling factor for conducting airway 

diameters from TLC to LV reads:

ζ = V D, LV
V D, TLC

(3)

where VD,Y is the volume of dead air space at lung volume Y (Schum and Yeh, 1980). The 

scaling factor for respiratory airway diameters from TLC to LV reads:

ξ1 = V R, LV
V R, TLC

3 (4)
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where VR,Y is the volume of respiratory airways at lung volume Y (VR,Y=Y-VD,Y).

The diameters of terminal bronchioles and the volumes of acinar units generated by a 

volume filling algorithm vary locally, while the diameters of acinar airways and the acinar 

volume are fixed. To ensure a smooth transition from terminal bronchioles to transitional 

bronchioles in Weibel’s acinar model, we assumed that the volume of an acinar unit is 

proportional to the cube of the diameter of its associated terminal bronchiole. The following 

scaling factors are then applied to adjust acinar airway diameters and acinar volumes from 

those of Weibel’s model.

ξ2 = dterminal broncℎiole
dterminal broncℎioles

(5)

ξ3 = V FV
V Weibel

3 (6)

where dterminal bronchiole is the diameter of a terminal bronchiole obtained by a volume filling 

algorithm and dterminal broncℎioles is the average diameter of terminal bronchioles. V FV  is the 

average volume of acinar units generated by a volume filling algorithm and VWeibel is the 

volume of Weibel’s acinar model. The formulae for rescaling the diameters (d) and lengths 

(l) of conducting and respiratory airways are:

dconducting aiway, LV = ζdconducting airway, TLC (7)

dacinar aiway, LV = ξ1ξ2ξ3dacinar aiway,Weibel (8)

lacinar airway, LV = ξ1ξ2ξ3lacinar aiway,Weibel (9)

2.3. Particle deposition and enhancement factor

First, we employed an in-house 1D CFD model (Yoon et al., 2020; Choi et al., 2019b) 

to calculate airflow velocity and pressure fields in subject-specific airways. Second, 

we calculated aerosol deposition probabilities for each airway segment due to turbulent/

laminar/Brownian diffusion, sedimentation, and inertial impaction, using respective analytic 

formulae derived for flow in a straight cylindrical pipe (Yeh and Schum, 1980; Schum and 

Yeh, 1980) (supplementary materials; Fig. S1). It is known that a turbulent laryngeal jet is 

formed downstream of glottal constriction during inspiration. In a realistic non-cylindrical 

airway geometry, this jet flow can significantly increase particle deposition at bronchial 

bifurcations (Lin et al., 2007; Miyawaki et al., 2017). It was reported that the theoretically-

derived analytical deposition probability formulae (Yeh and Schum, 1980; Schum and Yeh, 

1980) under-predict particle deposition in the central airways (Hofmann and Martonen, 

1988). Thus, an enhancement factor defined as the ratio of actual total deposition probability 
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to formulae prediction is needed to improve the accuracy of 1D deposition models on 

inspiration (Hofmann and Koblinger, 1990).

Here, we used data generated by 3D CFPD simulations (Choi et al., 2019a) to develop 

a regression model for predicting enhancement factors in central/proximal airways. 

Specifically, we performed both 3D and 1D CFPD simulations on the seven MESA subjects. 

We then used 3D and 1D data to train a non-linear support vector regression (SVR) 

model to predict enhancement factors. Based on the correlations of several dimensionless 

parameters with the enhancement factor, we found that Reynolds number, Stokes number, 

Schmidt number, shape factor, and airway diameter-to-length ratio are good predictors for 

the enhancement of deposition in the first 8 airway generations. The shape factor measures 

the extent of twisting, bending, and branch narrowing of an airway segment. It is defined 

as the reciprocal of the percentage of the overlapping region between a CT-resolved airway 

branch and a cylindrical tube defined by the start and end centerline points and the average 

diameter of the former. The range of shape factors is from 1 (same as a cylindrical tube) to 

4 (the overlapped volume is 25% of a tube volume). Some examples of low and high shape 

factors are shown in Fig. S2 (supplementary materials). In the SVR model, the variables 

are transformed into hyperplanes in a multidimensional space (feature space), and decision 

boundaries are found in the hidden layer to fit the data and predict the enhancement factor 

(Fig. S3).

2.4. Modeling process

The 1D CFPD modeling process consists of steps (a-f) below (Fig. 3).

a. Image processing: Segment airways and lobes from TLC images, and register 

TLC and FRC images to derive air volume change between the two volumes at 

the image-voxel level.

b. Airway modeling: Generate entire subject-specific conducting airways and 

acinar units using TLC images and associate each terminal bronchiole with an 

acinar unit.

c. Regional ventilation: Associate each acinar unit with its corresponding image 

voxels to calculate air volume change between two lung volumes for each unit.

d. Volume adjustment: Rescale dimensions of conducting airways and respiratory 

airways from TLC to a desired LV.

e. Airflow modeling: Perform 1D CFD flow simulations.

f. Deposition modeling: Perform 1D deposition simulations.

For step (a), we used the commercial software package VIDA Vision for segmentation and 

airway skeletonization and an in-house code (Yin et al., 2009; Haghighi et al., 2018) for 

image registration. For step (b), we employed a volume filling method (Tawhai et al., 2000, 

2004). For step (c), we followed the subject-specific modeling strategy (Yin et al., 2010). 

Step (d) was described in a previous section. For step (e), we used our in-house 1D CFD 

code (Yoon et al., 2020; Choi et al., 2019b). Step (f) was described in a previous section (see 

also supplementary materials).
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In this study, we first considered two sets of tidal (quiet) and deep breathing waveforms (Fig. 

S4) to compare with previous studies. One set was taken from Koullapis et al. (2020) for 3D 

CFPD deep lung simulations, including a tidal breathing with a breathing volume of 420 mL 
and a deep inhalation waveform with a breathing volume of 1680 mL without a breath hold. 

The other set was taken from Hofemeier et al. (2018) for 3D CFPD acinar simulations. The 

tidal breathing had a breathing volume of 500 mL and the deep maneuver completed rapid 

inhalation in 2 s to reach a volume of 1250 mL. The inspiration phase was followed by a 

breath hold of 4 s, which was then followed by the expiration phase of 4 s.

The tidal breathing waveform is defined as follows.

Q(t) = Qpeaksin 2π
T t (10)

where Qpeak = (π /T)TV is flowrate at peak inspiration, T is breathing period and TV is 

tidal volume. For MESA and CT/SPECT subjects, TV is estimated using ideal body weight 

(IBW) (Fuller and Mohr, 2017).

TV = 7kg/mL ⋅ IBW (11)

where IBW = C + 0.9· (height [cm] – 152) with C = 45.5 for female, and 50.0 for male.

The number of replicates for validation against independent in silico data is 8, including 2 

for Yeh and Schum (1980), 2 for Mimetikos Preludium (Koullapis et al., 2020), 2 for acinar 

simulations (Hofemeier et al., 2018) and 2 for deep lung simulations (Koullapis et al., 2020), 

where 2 corresponds to tidal and deep breathing waveforms.

2.5. Statistical analysis

A t-test was used to measure the difference between two data sets. A p value less than 0.05 

(p < 0.05) was considered as statistically significant difference. For cases with p > 0.10, 

normalized root mean square deviation (NRMSD) was calculated to measure the similarity 

between them.

3. Results

3.1. Comparison of 3D and 1D CFPD computational times

The average computational times for 3D and 1D CFPD on the MESA subjects were 120.0 

and 0.2 hours per subject for flow simulations, respectively, and 36.0 and 0.25 h per 

subject for particle simulations, respectively. Large-eddy simulation was adopted for 3D 

CFPD and was executed parallelly on 256 cores (4 compute nodes with 64 cores per 

node) of National Science Foundation (NSF) Extreme Science and Engineering Discovery 

Environment (XSEDE) clusters. 1D CFPD was run serially on a single node with 40 

cores on the University of Iowa Argon cluster, allowing for simultaneous simulations of 

10 particle sizes (capped by memory) for the same subject. The average branch numbers 

in 3D (from the trachea to around 8th-generation airways with 6 pathways extending to 
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terminal bronchioles) and 1D (whole-lung) conducting airway models were 1,043 and 

58,142, respectively. Thus, the total computational times for 3D CFPD (partial lung with 

one particle size) and 1D CFPD (whole lung with 10 particle sizes) were 156.0 and 0.45 h 

per subject, respectively.

3.2. Validation against 1D symmetric model simulations

To verify and validate the time-sequence calculation of three deposition mechanisms in 

human lungs, we replicated the 1D deposition simulations performed by Yeh and Schum 

(1980) using their typical-path symmetric airway model that excluded the mouth-throat 

region. We considered simulations at two tidal volumes, 750 mL, and 1450 mL, with the 

aerodynamic particle diameter ranging from 0.1 to 10.0 μm. A comparison between our 

simulations and Yeh and Schum (1980) shows good agreement (p > 0.10 and NRMSD = 

0.00007 for 420 mL, p > 0.10 and NRMSD = 0.0001 for 1450 mL; Fig. S5). Moreover, 

we compared the 1D deposition simulations of Koullapis et al. (2020) calculated from a 

commercial software package Mimetikos Preludium, which was based on Yeh-Schum’s 

5-lobe symmetric model. Our simulations are also in good agreement with theirs (Fig. S6) 

for 420 mL tidal breathing (p > 0.10 and NRMSD = 0.0013) and 1,680 mL deep inhalation 

(p > 0.10 and NRMSD = 0.0027).

3.3. Validation against 3D CFPD acinar simulations

To validate our 1D acinar model, we simulated the deposition fractions in a single acinar 

unit and compared with the 3D CFPD acinar simulations performed by Hofemeier et al. 

(2018). It is noteworthy that the 1D acinar model was based on Weibel’s morphometric 

data (Weibel et al., 2005), while Hofemeier et al. (2018) adopted a detailed 3D sub-acinar 

structure (Koshiyama and Wada, 2015). We varied the particle sizes and considered two 

waveforms of 500 mL tidal breathing and 1250 mL deep breathing with a pause of 4 s. A 

comparison between them shows good agreement for both waveforms despite the differences 

in acinar structure (p > 0.10 and NRMSD = 0.0085 for 500 mL; p > 0.10 and NRMSD = 

0.015 for 1250 mL; see Fig. S7).

3.4. Validation against 3D CFPD deep lung model simulations

The 3D CFPD deep lung model developed by Koullapis et al. (2020) comprised the last ten 

generations of Yeh and Schum (1980) symmetric conducting airways coupled with multiple 

sub-acinus units based on a variant of Hofemeier et al. (2018)s acinar structure. In order to 

replicate their results for model validation, we adopted the geometrical model of Rajaraman 

et al. (2020) for the last ten generations of conducting airways with each terminal bronchiole 

connected to a Weibel-based acinar model. An enhancement factor was not used since the 

3D CFPD deep lung model only included distal airways. Fig. 4 shows good agreement 

between our 1D results and those of the 3D CFPD deep lung model (Koullapis et al., 2020) 

over a wide range of particle sizes in conducting and respiratory regions during inspiration/

expiration using both tidal breathing and deep inhalation (p > 0.10 and NRMSD = 0.028, 

0.035, 0.016, 0.023, and 0.027 (tidal breathing) and NRMSD = 0.031, 0.049, 0.032, 0.025, 

and 0.029 (deep breathing) for conducting inspiration, respiratory inspiration, conducting 

expiration, respiratory expiration, and total, respectively).
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3.5. Enhancement factor

To assess and improve the accuracy of 1D model prediction, we calculated the ratio of 

3D CFPD deposition fractions over 1D deposition fractions for all branches of the MESA 

subjects, called the “actual” enhancement factor. Fig. 5 shows the distributions of actual 

enhancement factors in the first 8-generation proximal airways (starting from the trachea as 

generation 0) by particle diameter, lung region, and airway generation. The results indicate 

that large enhancement factors center around particle diameters ranging between 0.1 and 

1.0 μm. A comparison of SVR model-predicted enhancement factors with actual ones 

shows good agreement between them (Fig. S8) except for an enhancement factor > 150, 

where airway segments are twisted and/or narrowed as measured by a shape factor, with 

a correlation coefficient of r > 0.7 (or r > 0.9 by excluding the outliers having an actual 

enhancement factor > 150). With the data in Fig. 5, we further developed an empirical 

function, Eq. (12), to predict the enhancement factor for inspiratory flow in airways at 

generation j (≤7) based on particle size, shape factor, airway length-to-diameter ratio and 

Reynolds number.

Enhancement factorj = α ⋅ 1
Repeak

⋅ SF
1
3 ⋅ l

d e−
(log10(Dae) − β)2

2γ2 + η (12)

where α, β, γ and η are model constants listed in Table 2. Repeak is the Reynolds number 

at peak inspiration with Repeak ≤ 4, 000, SF is shape factor, Dae is aerodynamic particle 

diameter and l/d is airway length/diameter ratio. This empirical function yields r > 0.6, 

compared to r > 0.7 of the SVR model.

To inspect deposition mechanisms that are underestimated by probability formulae, Fig. 6 

shows the breakdown of contributions by various mechanisms for the cases without and with 

enhancement. For large particles of around 10.0 μm, sedimentation is dominant, whereas, for 

small particles around 0.01 μm, diffusion plays a major role in distal airways. For particles 

between 0.1 and 1.0 μm, the enhancement factor contributes more to laminar diffusion in 

proximal airways. Since the critical Reynolds number for the transition of laminar flow to 

turbulent flow in a straight pipe was fixed to 2300, the deposition probability formula for 

laminar diffusion was used in most branches. This formula did not account for the effects 

of transient secondary flow in a branching network and realistic airway geometry, leading to 

underpredicted deposition fractions.

3.6. Subject-specific model vs symmetric/stochastic model

To compare the deposition features in MESA subject-specific airway models with those of 

symmetric/stochastic models, Fig. 7 shows the total deposition fractions computed by the 

subject-specific 1D CFPD along with those of Yeh and Schum (1980)’s symmetric model 

and Asgharian’s MPPD model (Asgharian et al., 2001) for particle diameter ranging from 

0.01 to 10.0 μm. The 1D CFPD deposition fractions without enhancement factor resemble 

those of Yeh and Schum’s (p > 0.10 and NRMSD = 0.048) and Asgharian’s models (p > 

0.10 and NRMSD = 0.051) except for large (10.0 μm) and small (0.01 μm) particles having 

about 10% difference. The 1D CFPD results with enhancement show significant higher 
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depositions than those without enhancement (p < 0.05), particularly for particle diameter 

within the range of 0.1 and 1.0 μm.

Fig. 8 shows a comparison of the 1D CFPD results with and without enhancement factor 

in conducting and respiratory airways during inspiration and expiration, respectively. The 

enhancement factor increases both the deposition in conducting airways on inspiration 

and the total deposition in the lungs. For 0.01-μm particles, the difference between total 

depositions with and without enhancement factor is insignificant (p > 0.10 and NRMSD = 

0.02). For particle size ranging from 0.1 to 1.0 μm, the deposition in conducting airways 

on inspiration is enhanced due in large part to secondary flow and airway geometry in the 

CT-based proximal airways. The enhancement factor has the maximum effect for about 

1.0-μm particles with a significant increase of deposition in conducting airways during 

inspiration (p < 0.05 and NRMSD = 6.72). This subsequently reduces the deposition in 

respiratory region on inspiration (p < 0.05 and NRMSD = 0.08) as well as expiration (p 
< 0.05 and NRMSD = 0.17). Since the increase in conducting region is much greater than 

the decrease in respiratory region, the total deposition of 1.0-μm particles increases about 

two-fold (p < 0.05 and NRMSD = 0.97). With increasing particle size to 10.0 μm, the 

total deposition fraction increases insignificantly by enhancement factor. Nonetheless, the 

deposition in conducting region on inspiration increases significantly from 62% to 78% 

(p < 0.05 and NRMSD = 0.2) due to sedimentation and impaction, while the deposition 

in respiratory region on inspiration decreases significantly due to fewer particles escaping 

conducting region (p < 0.05 and NRMSD = 0.58).

Fig. 9 further shows the distributions of deposition fraction by generation in conducting 

airways and acinar (respiratory) units with and without enhancement factor for selected 

particle sizes of 10.0, 1.0 and 0.01 μm. Each acinar unit is assigned a single generation 

number with the generation number of its associated terminal bronchiole. The features 

of deposition distributions for particle size from 10.0 to 0.01 μm change from large-

conducting-airway deposition dominance to large-conducting-airway and acinar deposition 

dominance, and then to small-conducting-airway and acinar deposition dominance. Most 

large 10.0-μm particles are deposited in proximal conducting airways, whereas small 0.01-

μm particles are deposited in distal small airways and more are deposited in conducting 

region than acinar region.

3.7. Validation against CT/SPECT imaging data

Because the size of 99mTc sulfur colloid used in SPECT imaging is below 1.0 μm 

(Krogsgaard, 2004), the particle diameter for the 1D CFPD simulations of the CT/SPECT 

subjects was set as 0.5 <m. The breathing period was set as T = 4.8 s. Fig. 10 shows that 

the lobar deposition distributions predicted by the 1D CFPD model are highly correlated 

with those of the SPECT data (p > 0.10 and NRMSD = 0.08 (LUL), 0.12 (LLL), 0.05 

(RUL), 0.06 (RML), and 0.03 (RLL)), while they are significantly different from those 

predicted by Yeh-Schum 5-lobe symmetric model (p < 0.05). Fig. 11 shows the coefficient 

of variation (CV) values of particle distributions obtained from CT/SPECT and 1D CFPD. 

The CV values from CT/SPECT and 1D CFPD are in good agreement (r > 0.8 and NRMSD 

= 0.094) and they are greater than that of the controls calculated by 1D CPFD (p < 0.05), 
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indicating higher CV and more heterogeneity with increasing disease severity. In contrast, 

the CV value obtained by Yeh-Schum 5-lobe symmetric model is unpredicted and invariant 

to disease severity. To illustrate the heterogeneity of deposition with increasing disease 

severity, Fig. 12 shows the spatial deposition distributions in selected subgroup subjects.

4. Discussion

Humans may breathe in particles of various size at any instant. For example, grain of pollen 

is about 15.0 μm in diameter, and dust particulate matters may vary from 2.5 to 10.0 μm 

in diameter as denoted by PM2.5 and PM10. Respiratory virus-laden aerosols generated 

during normal breathing, which can linger in air for hours and transmit diseases (Wang et 

al., 2021), are around 0.01–0.20 μm (Darquenne et al., 2022), and those generated by cough 

are around 1.0–10.0 μm (Wang et al., 2021, Darquenne et al., 2022; Madas et al., 2020). 

Pharmaceutical aerosols are 5.0 μm or less (Newman SP 2006). Bacterium is about 1.0-3.0 

μm and coronavirus is about 0.1–0.5 μm. Wildfire smoke is about 0.4-0.7 μm, and electronic 

cigarette particles vary between 0.1-0.9 μm (Mulder et al., 2019). While the bulk knowledge 

of particle deposition in human lungs has been established (Darquenne, 2020), the ability to 

quantify deposition in a subject-specific manner is lacking, but desirable for the benefit-risk 

analysis of inhaled particles. In vivo and in vitro studies can provide real but limited data. 

In silico 3D CFPD is a popular method, however it is only limited to site studies, e.g. in 

an airway model of a few generations, due to high computational cost. The proposed 1D 

CFPD technique offers a computation-effective option that allows characterizing whole-lung 

depositions in individuals and subpopulations with distinct lung structural and functional 

features. 3D and 1D CFPD models should complement each other due to their respective 

limitations as discussed later.

Constructing airway structure is a key component in modeling 1D whole-lung particle 

deposition. Symmetric model, typical-path model and stochastic model are commonly used 

in 1D models. In the current 1D model, we employed a volume filling technique (Tawhai 

et al., 2000, 2004) to construct CT imaging-based subject-specific conducting airways and 

used image-registration to estimate airflow distributions to acinar units that provided initial 

airflow fraction to the 1D CFD model for calculation of airflow fraction to each acinar unit. 

With airway geometry and airflow fraction generated, the deposition fraction in the whole 

lung was calculated using deposition probability formulae along with an enhancement factor. 

Comparing with symmetric models, our model predicted higher deposition for two reasons. 

First, subject-specific airway structure and volume are different from those of a symmetric 

model, such as average branching angles in proximal airways (MESA, 37.24°±19.12° vs. 

Yeh-Schum, 28.32°±9.58°), generation numbers for terminal bronchioles (MESA, variable 

vs. Yeh-Schum, fixed), and conducting airway volumes (MESA, 111.35 ± 26.8 cm3 vs. 

Yeh-Schum, 227 cm3). Second, additional deposition due to the effects of secondary flow 

and airway geometry is accounted for by an enhancement factor. When particle diameter 

is relatively small (< 0.1 μm), particles are highly diffusive and can be easily deposited in 

airways. On the other side, when particles are relatively large (> 1.0 μm), deposition fraction 

is also high because of the effect of sedimentation and impaction. For relatively small or 

large particle diameters, both symmetric model and subject-specific model predict high 

deposition fraction. Nonetheless, the deposition fraction predicted by the subject-specific 
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model is about 10% higher than that of symmetric model for 0.01-μm and 10.0-μm particles 

due in part to the differences in airway structurer and volume discussed before. It should be 

noted that Yeh-Schum symmetric model is based on the morphometric data of one subject. 

Due to subject-specific or gender-specific anatomies (Christou et al., 2021), there might 

exist subjects with deposition fraction lower than that of the symmetric model. Thus, it is 

essential to conduct large studies to better understand the relationships of particle deposition 

to airway structure and lung function.

The acinar model used in the current 1D CFPD model was based on Weibel’s typical-path 

acinar model with intra-acinar isotropic alveolar wall expansion/contraction (Weibel et al., 

2005). The deformation of an acinar unit and airflow fraction to each acinar unit were 

calculated from image registration and 1D CFD simulation. Comparing with the 3D CFPD 

acinar simulations of Hofemeier et al. (2018), our acinar model captured the characteristics 

of deposition in respiratory region for tidal and deep breathing (Fig. S7). Our model also 

captured the features of deep inhalation in the 3D CFPD deep lung model simulations of 

Koullapis et al. (2020) that the fraction of aerosols retained in conducting region decreases 

and the major deposition occurs in acinar units, resulting in higher total deposition fraction 

than that of tidal breathing (Fig. 4). A comparison of the deep lung model in Fig. 4 and 

the subject-specific whole-lung model in Fig. 8 shows that the deposition in conducting 

region is dominant only in the latter. It is because the former simulated a single distal branch 

and associated higher-generation airways, while the latter considered the entire airways. 

Furthermore, Fig. 9 shows that with decreasing particle size to 0.01 μm, the deposition in 

conducting region remains significant, residing in distal small airways.

Comparing with CT/SPECT data, our 1D CFPD model captured deposition heterogeneity 

by lobe (Fig. 10) and by severity (Fig. 11). The discrepancy in the CV of deposition 

fraction between subgroups is correlated with the degree of air trapping, which is a disease 

phenotype in COPD (Zou et al., 2021). The CVs of air-trapped voxels (categorial variable) 

are 0.634±0.016 and 0.979±0.153 for GOLD 0-1 and GOLD 2-3 subgroups, respectively 

(p < 0.05). On the other hand, the symmetric model, by design, was not able to capture 

deposition heterogeneity in COPD patients.

The current 1D CFPD model has several limitations. For example, the model does not 

consider acinar morphology in diseased lungs. The CT/SPECT study cohort for validation 

is small and limited to COPD patients. Further validation based on large studies for various 

diseases, such as COPD and asthma, is needed. Since COPD and asthma exhibit different 

structural and functional characteristics (Choi et al., 2017a), it is important to assess 

the sensitivity of the model to capture differential deposition patterns between them. In 

comparison with 3D CFPD, 1D CFPD is inadequate to model accurately regional transport 

and biological processes from airway walls to tissues due to dimension reduction.

5. Conclusion

We proposed a CT imaging-based subject-specific 1D CFPD to predict whole-lung particle 

deposition in human lungs. We validated this model against in silico 1D and 3D CFPD 

data as well as in vivo CT/SPECT imaging data. Specifically, the proposed model could 
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differentiate deposition heterogeneity by COPD subgroups. Thus, the model has the 

potential for the benefit-risk analysis of inhaled particles in human lungs, subject to various 

risk factors and disease severities, for large population studies.
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Fig. 1. 
Probability distributions of subject-specific terminal bronchioles by generation (with trachea 

as generation 0) and by lobe: left upper lobe (LUL), left lower lobe (LLL), right upper lobe 

(RUL), right middle lobe (RML) and right lower lobe (RLL). Lobar probabilities peak at 

generation 16 except RLL at 18 where additional branches are needed to reach this lobe.
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Fig. 2. 
Schematic of the first four generations for an acinar unit (see also Table 1).
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Fig. 3. 
Schematic of the workflow of the subject-specific 1D CFPD model.
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Fig. 4. 
Comparison of deposition fractions between 1D CFPD and 3D deep lung model (DLM) 

by Koullapis et al. (2020). IN=Inspiration, EX=Expiration. (a) 420 mL tidal breathing (p > 

0.10, NRMSD = 0.027) and (b) 1250 mL deep breathing (p > 0.10, NRMSD = 0.029).
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Fig. 5. 
Distributions of enhancement factors in proximal airways and by lobe. Left: (a) central 

airways such as trachea (generation 0), left main bronchus and right main bronchus 

(generation 1) and lobar bronchi (generation 2), (b) RUL, (c) LUL, (d) RML, (e) LLL, 

and (f) RLL.
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Fig. 6. 
Contributions by different deposition mechanisms to total deposition for varying particle 

sizes predicted by 1D CFPD: (a) without enhancement factor and (b) with enhancement 

factor. “Brownian motion” and “Sedimentation at end” correspond to PD
P  and PS

P , 

respectively, in Eq. (S2) (supplementary materials), referring to deposition probabilities of 

non-penetrating particles calculated by pause equations (Schum and Yeh, 1980).
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Fig. 7. 
Comparison of total deposition fractions predicted by the subject-specific 1D CFPD with 

and without enhancement factor, Yeh and Schum (1980) symmetric model (against 1D 

CFPD without enhancement factor: p > 0.10, NRMSD = 0.048; against 1D CFPD with 

enhancement factor: p < 0.05) and Asgharian et al. MPPD stochastic model (Asgharian 

et al., 2001) (against 1D CFPD without enhancement factor: p > 0.10, NRMSD = 0.051; 

against 1D CFPD with enhancement factor: p < 0.05).
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Fig. 8. 
Comparison of deposition fractions of the subject-specific 1D CFPD results with and 

without enhancement factor during breathing phases of inspiration (IN) and expiration (EX) 

in conducting and respiratory (acinar) regions. Symbol ‘*’ indicates a significant difference 

(p < 0.05) in the same color-coded region and breathing phase. Symbol ‘*’ indicates a 

significant difference (p < 0.05) in the total deposition fraction.
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Fig. 9. 
Deposition fractions by generation for particle sizes of 0.01, 1.0 and 10.0 μm, predicted by 

the subject-specific 1D CFPD with and without enhancement factor.
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Fig. 10. 
Comparison of lobar particle distributions between 1D CFPD and CT/SPECT data. p > 0.10 

for all lobes, and NRMSD = 0.04 (LUL), 0.12 (LLL), 0.05 (RUL), 0.07 (RML), 0.04 (RLL). 

The results based on the 5-lobe symmetric model (Yeh and Schum, 1980) are also provided 

for comparison. Symbol ‘*’ indicates a significant difference from CT/SPECT (p < 0.05).
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Fig. 11. 
Comparison of the coefficient of variation (CV) values of particle distributions among 

subgroups. p > 0.10 between 1D CFPD and CT/SPECT for GOLD 0-1 (NRMSD = 0.09) 

and GOLD 2-3 (NRMSD = 0.10). p < 0.05 for any pairs of CV from the three subgroups, 

and p < 0.05 for CV between CT/SPECT and 5-lobe symmetric model (Yeh and Schum, 

1980).
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Fig. 12. 
Comparison of the spatial distributions of 1D CFPD-predicted deposition fractions between 

a nonsevere-mild COPD subject and a moderate-severe COPD subject.
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Table 2

Model constants used in Eq. (12) for calculating enhancement factors.

Generation α β γ η

0 9710 −0.33 0.48 0.56

1 21,162 −0.66 0.35 12.59

2 22,345 −0.57 0.39 4.92

3 12,703 −0.58 0.40 5.79

4 4986 −0.23 0.52 5.33

5 1665 −0.31 0.52 14.79

6 388 −0.33 0.50 16.35

7 60 −0.37 0.50 15.45
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