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Abstract

Summary: Increasing sample size is not the only strategy to improve discovery in Genome Wide Association
Studies (GWASs) and we propose here an approach that leverages published studies of related traits to improve in-
ference. Our Bayesian GWAS method derives informative prior effects by leveraging GWASs of related risk factors
and their causal effect estimates on the focal trait using multivariable Mendelian randomization. These prior effects
are combined with the observed effects to yield Bayes Factors, posterior and direct effects. The approach not only
increases power, but also has the potential to dissect direct and indirect biological mechanisms.

Availability and implementation: bGWAS package is freely available under a GPL-2 License, and can be accessed,
alongside with user guides and tutorials, from https://github.com/n-mounier/bGWAS.

Contact: zoltan.kutalik@unil.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the last decade, Genome Wide Association Studies (GWASs) have
been widely used to identify genetic variants, usually single nucleo-
tide polymorphisms (SNPs), associated with complex traits. These
GWASs led to a large number of discoveries, helping to better
understand the underlying biology of the studied traits (Visscher
et al., 2017). However, large sample sizes (typically > 1 million) are
needed to achieve sufficient power to identify SNPs with small to
moderate effects.

Besides ever-increasing sample sizes one can borrow strength
from studies of related traits or risk factors (RFs). To leverage this
information, several methods have already been published, such as
MTAG (Turley et al., 2018) or GenomicSEM (Grotzinger et al.,
2019) for example and we developed a Bayesian GWAS approach,
first described by McDaid et al. (2017). The aim of our approach is
to increase power by comparing the observed Z-statistics from the
focal phenotype (representing association strength) to prior effects
using Bayes factors (BFs) and computing the corresponding P-val-
ues. Prior effects are estimated from publicly available GWASs for
RFs showing a significant multivariable causal effect (similar to
Sanderson et al., 2019) on the focal phenotype, established by
Mendelian randomization (MR). Such approach has previously been
used to identify new loci associated with lifespan (McDaid et al.,
2017; Timmers et al., 2019).

Here, we present substantial improvements to the method and
its implementation in an R package bGWAS. We optimized the

causal effect estimation and improved the step-wise selection ap-
proach used to identify relevant RFs. We derived and implemented a

fast analytical approach to accurately estimate BF P-values.
Notably, the method now also provides posterior- and direct effect
estimates (not acting through the RFs) that can be used for down-

stream analyses.

2 Materials and methods

The approach consists of five main steps: (i) Identification of rele-

vant RFs, (ii) Out-of-sample estimation of prior effects, (iii)
Computation of BFs and their respective P-values, (iv) Estimation of
posterior and direct effects, (v) Extraction and visualization of the

results (Supplementary Fig. S1).

2.1 Identification of relevant RFs
In the first step we identify relevant RFs to build the prior. The pack-
age currently includes 38 publicly available GWASs, which can eas-

ily be modified to include additional RFs. Using the package, all
available RFs can be displayed (list_priorGWASs()) and an arbitrary
subset can be selected (select_priorGWASs()). First, RFs with non-

significant (P>0.05) univariable causal effects are removed. Then, a
step-wise selection approach applied to multivariable MR models

identifies RFs that are jointly affecting the phenotype. Since Akaike
information criterion (AIC)-based model comparison assumes equal
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number of observations (instruments) in the compared models
(which is not the case for two-sample MR), we rather implemented

a P-value-based step-wise selection approach to identify all the RFs
that have a significant multivariable causal effect on our focal
phenotype (see Supplementary Section S1).

2.2 Out-of-sample estimation of prior effects
After identifying the RFs, prior effect estimates (l) and standard
errors r are calculated for each SNP by multiplying SNP-RF effects

with RF-trait causal effect estimates. To ensure that priors are inde-
pendent of the observed association for SNP i, we estimate multi-
variable causal effects based on SNPs that do not lie on the same

chromosome as SNP i (Fig. 1). Shrinking SNP-RF effects before esti-
mating the prior leads to poorer priors (Supplementary Fig. S2).

2.3 Computation of BFs and their respective P-values
We use BFs to quantify the evidence in favor of the prior by compar-
ing two competing hypotheses. Both our null and our alternative

hypotheses are assuming that for a SNP i, the observed Z-statistic zi

is following a normal distribution. Under H0, this distribution is
centered on zero and has a variance of 1, whereas under H1, the dis-

tribution is centered on li and has a variance of r2
i (prior parame-

ters). The BFs can be derived in closed form (Equation 1) (Murphy,
2007).

BFi ¼ BFðzi; li : riÞ ¼
Lðzi ; li ; 1þ r2

i Þ
Lðzi ; 0 ; 1Þ (1)

with Lðz ; l ; r2Þ: the density of z under the corresponding Gaussian

distribution.
Since BF alone does not readily control type I error rate, we also

compute a corresponding P-value. The P-value pBF�i represents the
probability of observing any null BF (obtained for standard normal

Z statistics and the same genome-wide priors) larger than the
observed BFi. We have now analytically derived the P-values and
sample only certain percentiles of the null BF distribution (see

Supplementary Section S2), yielding highly concordant P-value esti-
mates with the ones from the (>8-times slower) gold-standard per-

mutation approach (Supplementary Fig. S3).

2.4 Estimation of posterior and direct effects
The posterior effect l0p�i and posterior standard error rp�i can be
easily derived for each SNP i (Equation 2) (Murphy, 2007).

lp�i ¼
r2

i

r2
i þ 1

li

r2
i

þ zi

� �
and rp�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

i

r2
i þ 1

s
(2)

We define the direct effect ld�i (and its standard error rd�i) as
the part of the observed effect that is not mediated through the RFs
and hence cannot be explained by the prior (Equation 3).

ld�i ¼ zi � li and rd�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

i þ 1
q

(3)

Analogous formulae based on observed effect sizes and standard
errors (instead of Z statistics) are implemented and provided in
Supplementary Section S3.

2.5 Extraction and visualization of the results
We implemented dedicated functions in the bGWAS package to list,
visualize and interpret the results (Supplementary Fig. S1). FDR
threshold and SNP-pruning stringency can be set in the bGWAS()
function to produce a final list of associated markers. Summary sta-
tistics (BFs, prior, posterior and direct effect) can be extracted from
the returned bGWAS object using the extract_results_bGWAS()
function. RFs causal effects can be obtained using extract_
MRcoeffs_bGWAS() or visualized using the coefficients_
plot_bGWAS() function. manhattan_plot_bGWAS() automatically
creates a Manhattan plot and heatmap_bGWAS() illustrates through
which RFs SNPs are exerting their (prior) effects on the focal
phenotype.

3 Application to lifespan

In order to see how the improved method [implemented in the
bGWAS R-package (v1.0.2)] compares to the original one (McDaid
et al., 2017), we applied both to the summary statistics from a
GWAS on lifespan (Timmers et al., 2019), which already included
the latter application. A full description of the analysis and the
results are available in Supplementary Section S4.

In the new analysis, we identified five RFs with a significant
causal effect on lifespan (Supplementary Fig. S5): years of schooling,
LDL cholesterol, diastolic blood pressure, coronary artery disease
and body mass index. The priors obtained from the improved
method are more informative: the squared correlation between prior
and observed effects has improved to 0.377 from 0.082. In the new
analysis, 28 SNPs reached genome-wide significance (pBF < 5e�8).
Among these variants, 15 are not identified by the conventional
GWAS at the same threshold and 11 of them have never been

Fig. 1. Prior estimation design. For each SNP i, its prior effect on the focal trait is calculated as the product of the effect of SNP i on the RF t (Ĉ i;t) and the causal effect of RF t

on the focal trait (b̂t , estimated using multivariable MR), summed over all T RFs identified in the step-wise selection approach. In our implementation, we use IT, a T�T iden-

tity matrix, as an approximation of VarðĈ i;:Þ to estimate r2
i . Adapted from McDaid et al. (2017)
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reported in any previous lifespan GWAS (Supplementary Table S1).
Four of the seven SNPs identified based on the old BF P-value in
Timmers et al. (2019) are confirmed in the new analysis, and three

have low prior effects (Supplementary Table S2) due to the change
in RFs. We identified nine additional loci with significant posterior

effect (pp < 5e�8) (Supplementary Table S3) and four loci with sig-
nificant direct effect (pd < 5e�8) (Supplementary Table S4), includ-
ing the highly pleiotropic APOE locus, which might be acting on

lifespan through RFs not included in the analysis (e.g. Alzheimer’s
disease) (Belloy et al., 2019).

4 Conclusion

Leveraging information from related traits is an efficient approach

to increase the power of GWAS of complex traits, which is now fully
implemented in the bGWAS R package. Through an application to

lifespan GWAS, we have demonstrated that this approach could
lead to meaningful new discoveries in lifespan genetics and dissect
direct from indirect mechanisms.
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