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Abstract. Insertion of rabbit cytochrome P450IIC2 
and its modified form, [2-1ys,3-arg]P450IIC2, into 
microsomal membranes was studied in an in vitro 
transcription/translation/translocation system. Cyto- 
chrome P450IIC2, synthesized in the presence of 
chicken oviduct microsomal membranes, was resistant 
to extraction by alkaline solutions, but was sensitive to 
proteolytic digestion. In contrast, when [2-1ys,3-arg]- 
P450IIC2 was synthesized in the presence of mem- 
branes, two new species migrating more slowly during 
gel electrophoresis were observed. After treatment 
with endoglycosidase H, the more slowly migrating 
species comigrated with [2-1ys,3-arg]P450IIC2 synthe- 
sized in the absence of membranes, indicating that the 
proteins had been glycosylated. Both the glycosylated 
and nonglycosylated forms of [2-1ys,3-arg]P450IIC2 
were resistant to proteolytic digestion and to extraction 
from the membranes by alkaline solutions. Similar 
results were obtained for a truncated species, [2-1ys,3- 
arg]P450IIC2(1-155), except that only a single glyco- 

sylated species was observed, consistent with the sin- 
gle remaining glycosylation site. In contrast to the 
proteolytic processing observed previously in a hybrid 
[2-1ys,3-arg]P450IIC2/parathyroid hormone protein, 
little or no cleavage of the NH2-terminal peptide of 
[2-1ys,3-arg]P450IIC2 was observed in the presence of 
membranes. Since cleavage in the hybrid protein oc- 
curred after glycine 25, which is derived from [2-1ys, 
3-arg]P450IIC2, cytochrome P450 sequences COOH 
terminal to the cleavage site must decrease cleavage 
efficiency. These results demonstrate that cytochrome 
P450, which is normally localized on the cytoplasmic 
side of the membrane, can be entirely translocated to 
the luminal side when two basic amino acids precede 
the hydrophobic core of its NH2-terminal insertion/ 
stop-transfer signal. None of the several internal hy- 
drophobic regions of cytochrome P450, previously 
proposed as membrane spanning, function as a stop- 
transfer signal. 

C 
VTOCHROM~. P450 (P450) t is an integral membrane 
protein of the endoplasmic reticulum. The insertion 
of P450 into the membrane has been shown to be de- 

pendent on a signal recognition particle and is thus mediated 
by an uncleaved signal sequence in P450 (Sakaguchi et al., 
1984). The topology of the rest of the protein in the mem- 
brane has not yet been clearly defined. Several internal hy- 
drophobic regions of P450s are conserved and potentially 
could be membrane spanning. This has led to proposals that 
P450 loops through the membrane several times (Tarr et al., 
1983; Ozols et al., 1985; Leighton et al., 1984). Contrary 
to this view, antibodies to epitopes along the P450 molecule 
reacted with sequences on the cytoplasmic side of the mem- 
brane, except for those specific for the NH2-terminus (De- 
Lemos-Chiarandini et al., 1987). These results suggest that 

1. Abbreviations usedin thispaper: P450, cytochrome P450; PNTH, [Endo- 
prolaa-mett Sb-glylaC-met I~-PTH(19-52) ISe-met 18f]parathyroid hormone. 

P450 does not loop through the membrane several times, 
but is largely cytoplasmic and has one membrane-spanning 
region. 

An unusual type of topogenic sequence has been demon- 
strated for P450 (Sakaguchi et al., 1987; Szczesna-Skorupa 
et al., 1988). The sequence at the NH2-terminus of P450 
serves as an uncleaved signal sequence initiating insertion 
into the membrane and as a stop-transfer signal which halts 
the translocation of the rest of the protein across the mem- 
brane. The P450 signal, thus, has properties characteristic 
of each of the two types of topogenic sequences described for 
integral membrane proteins (Blobel, 1980; Garoff, 1985). 
As in class II proteins the P450 signal functions both as an 
uncleavable signal sequence and as a membrane anchor. 
However, unlike class II proteins, the COOH-terminal do- 
main of P450 remains on the cytoplasmic side of the mem- 
brane, which is characteristic of a class I protein. 

By analysis of a hybrid protein in which 25 NH2-terminal 
amino acids of rabbit P450HC2 were substituted for most of 
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the cleavable signal sequence of the "stretched" prepropara- 
thyroid hormone (preproPNTH), we have shown that the na- 
ture of the charge at the NH2-terminus plays an instrumen- 
tal role in the topogenic characteristics of the P450 signal 
sequence (Szczesna-Skorupa et al., 1988). Replacement of 
the single negatively charged amino acid with two positively 
charged residues at the NH2 terminus of the hybrid protein 
converted the NH2-terminal sequence from a combination 
insertion/stop-transfer signal t'o an insertion/translocation 
signal typical of class II proteins. It is possible, however, that 
the charge-dependent conversion to a translocation signal de- 
pended in part on the presence in the hybrid protein of a nor- 
mally translocatable sequence from parathyroid hormone. It 
has been suggested that amino acid sequences flanking the 
stop-transfer signal can play an important role in its function 
(Garoff, 1985; Boyd et al., 1987; Audigier et al., 1987; 
Paterson and Lamb, 1987). We report that the introduction 
of basic amino acids at the NH2-terminus of P450 results in 
the translocation of the entire protein across the membrane. 

Materials and Methods 

Enzymes and Chemicals 

DNA restriction and modifying enzymes were from Bethesda Research 
Laboratories (Gaithersburg, MD), Boehringer Mannheim Biochemicals 
(Indianapolis, IN), New England Biolabs (Beverly, MA), Promega Biotec 
(Madison, WI), and Pharmacia P-L Biochemicals (Milwaukee, WI). SP6 
and I"7 RNA polymerases and RNasin were from Promega Biotec, 
[3SS]methionine and L-[4,5-3H] lysine were from Amersham Corp. (Ar- 
lington Heights, IL), and endoglycosidase H was from ICN ImmunoBiolog- 
icals Inc. (Irvine, CA). 

Plasmids Construction 
The construction of plasmid pc2P1, coding for a [2-1ys, 3-arg]P450IIC2/ 
PNTH fusion protein has been described (Szczesna-Skorupa et al., 1988). 
This plasmid was used in constructing the P450IIC2 mutant which has 
aspartic acid and leucine at NH2-terminal positions 2 and 3 replaced with 
lysine and arginine, respectively. From plasmid pc2, which contains full- 
length P450IIC2 cDNA (Mead et al., 1986), an Ncol-BamHI fragment, 
containing the coding region for the amino acids 26-490, was isolated and 
ligated to pc2P1, from which an NcoI-BamHI fragment (coding for pro- 
PNTH) was deleted. The resulting plasmid (pc21) contains reconstructed 
full-length P450IIC2 eDNA in an SP6 promoter plasmid, with the desired 
mutations in the NH2-terminal coding region. 

Transcription and In Vitro Translation 

Plasmids pe2 and pc21 were linearized with Barn HI and transcribed with 
T7 or SP6 RNA polymerase, respectively, as described (Mead et al., 1985). 
Conditions of in vitro translations in reticulocyte lysate ceil-free systems 
with or without chicken oviduct microsomal membranes, protease protec- 
tion experiments, and membrane integration assays were as described 
(Szczesna-Skorupa et al., 198% 1988). 

Endoglycosidase H Treatment 
After the translation, membranes were pelleted by centrifugation for 10 min 
in an airfuge (Beckman Instrumen[s, Inc., Fullerton, CA) at 30 psi (1 psi 
= 6.895 × 103 Pascal) and resuspended in 12 #1 buffer containing 300 mM 
sodium acetate, pH 5.5, 0.2% SDS, 1% Triton X-100, 25 mM 2-mercapto- 
ethanol. The sample was boiled 2 min and cooled. After addition of 12 #l 
H20 and 1 mU (2 #1) endoglycosidase H, the sample was incubated at 
37°C for 5 h. The reaction was stopped by adding SDS gel loading buffer. 
Samples were analyzed by SDS-PAGE on 10 or 15% acrylamide gels, and 
radioactive bands were visualized by fluorography using EN3HANCE 
(New England Nuclear, Boston, MA). 

Protein Sequence Determination 

The fusion protein [2-1ys, 3-arg]P450IIC2/PNTH was labeled biosyntheti- 
cally with [3H]lysine, and the processed protein was eluted from the gel by 
overnight soaking in 0.1% SDS. The eluate was lyophilized and subjected 
to automated Edman degradation using a protein sequenator (Applied Bio- 
systems, Inc., Foster City, CA). 

Results 

Translocation of [2-1ys,3-arg]P450IIC2 through the 
Microsomal Membranes 

Translation of P450IIC2 cRNA (encoded in plasmid pC2) 
resulted in the synthesis of a full-length protein and a number 
of smaller products (Fig. 1, lane 2). Initiation of translation 
at internal methionine codons, in addition to premature ter- 
mination, probably accounted for the smaller species. The 
major 23-kD protein, for example, corresponded in size to 
a protein being initiated at the AUG codon for met(271) 
which is the only AUG in P450IIC2 in a context favorable 
for initiation (Kozak, 1984). 

Translation of P450IIC2 cRNA in the presence of micro- 
somal membranes did not alter the size of the translation 
product (Fig. 1, lane 3), which is consistent with the reten- 
tion of the insertion signal in P450 (Bar-Nun et al., 1980; 
Sakaguchi et al., 1984). Since the substitution of two basic 
amino acids for an acidic amino acid converted the P450 
NH2-terminal region from a stop-transfer to a translocation 
signal in the P450-parathyroid hormone hybrid protein, the 
identical mutations were introduced into P450IIC2 to pro- 
duce [2-1ys,3-arg]P450IIC2 (encoded by plasmid pC21). 
Translation of [2-1ys,3-arg]P450IIC2 cRNA produced the 

Figure 1. Glycosylation and membrane integration of P450IIC2 
and [2-1ys,3-arg]P450IIC2. RNAs coding for native P450IIC2 and 
[2-1ys,3-arg]P450IIC2 were translated in a reticulocyte lysate sys- 
tem in the presence or absence of chicken oviduct microsomal mem- 
branes (RM). After translation was completed, membrane-con- 
taining reactions were treated with alkaline buffer and fractionated 
into supernatants (S) and pellets (P) as described in Materials and 
Methods. Samples in the supernatant and pellet lanes contain an 
amount of reaction mixture equivalent to twice that analyzed for the 
unfractionated samples. Shown are the products of [2-1ys,3-arg]- 
P450IIC2 translated in the presence of microsomes, before (lane 
10) and after (lane 11 ) treatment with endoglycosidase H. Samples 
were analyzed by SDS-PAGE on 10% acrylamide gels. 
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same sized products as those of P450IIC2 cRNA (Fig. 1, lane 
6). When [2-1ys,3-arg]P450IIC2 was translated in the pres- 
ence of microsomal membranes, two new protein bands with 
lower mobility were observed (Fig. 1, lane 7). This surpris- 
ing observation raised the possibility that [2-1ys,3-arg]P450- 
IIC2 had been glycosylated and, since glycosylation occurs 
in the endoplasmic reticulum lumen, that [2-1ys,3-arg]P450- 
IIC2 had been translocated across the membrane. Although 
P450s are not normally glycosylatext in vivo, P450IIC2 con- 
tains three potential N-glycosylation sites at amino acid posi- 
tions 56, 160, and 455 (see Fig. 5, top). 

To examine directly whether the altered mobility of [2- 
lys,3-arg]P450IIC2 synthesized in the presence of mem- 
branes was due to the addition of carbohydrate residues, the 
protein was incubated with endoglycosidase H. After treat- 
ment with this enzyme the slower migrating bands disap- 
peared and a major band was observed that comigrated with 
the protein synthesized in the absence of membranes, estab- 
lishing conclusively that [2-1ys,3-arg]P450IIC2 had been 
glycosylated (Fig. 1, lane / / ) .  The presence of two more 
slowly migrating glycosylated forms might result from mono- 
and diglycosylation, suggesting that only two of the three 
potential N-glycosylation sites were used. The synthesis of 
truncated [2-1ys,3-arg]P450IIC2(1-337), in which the last 
COOH-terminal glycosylation site was deleted, resulted in 
two more slowly migrating species (not shown), while syn- 
thesis of truncated [2-1ys,3-arg]P450IIC2(1-155), which re- 
tained a single glycosylation site resulted in a single gly- 
cosylated species (see below). These results indicate that 
glycosylation occurred at amino acid residues 56 and 160. 
Since glycosylation is confined to proteins that reach the lu- 
men of the endoplasmic reticulum (Lennarz, 1987), at least 
the first 160 amino acids of [2-1ys,3-arg]P450IIC2 must be 
translocated through the microsomal membrane. 

Membrane Binding of  [2-1ys,3-arg]P450IIC2 

To determine whether [2-1ys,3-arg]P450IIC2 is entirely trans- 
located and released into the lumen of the microsomes or re- 
mains integrated in the membrane, membranes were treated 
with alkaline buffer (Mostov et al., 1981). P450IIC2 was re- 
covered in the pellet after alkaline extraction of the mem- 
branes (Fig. 1, lane 5) and thus behaved as an integral mem- 
brane protein. At the same time, the 23-kD protein was 
extracted into the supernatant, as expected if this protein 
resulted from initiation at an internal methionine and did not 
contain the hydrophobic NH2-terminus required for integra- 
tion into the membrane. When membranes containing [2- 
lys,3-arg]P450IIC2 were treated with alkaline buffer, both 
the glycosylated and unglycosylated forms were associated 
with the membrane (Fig. 1, lane 9). In contrast, the 23 kD 
protein and a reticulocyte endogenous protein were present 
in the supernatant. The results suggested that the NH2- 
terminal region of [2-1ys,3-arg]P450IIC2 continued to func- 
tion as a membrane anchor even though it now facilitated 
translocation and was presumably in an opposite orientation. 

On the basis of the previous experiments we could not ex- 
clude the possibility that internal hydrophobic domains con- 
tributed to anchoring the protein to the membrane. To test 
this possibility as well as to further define the glycosylation 
sites, cRNA was transcribed from pc21 that had been di- 
gested with Dde I. This truncated cRNA codes for the first 
155 amino acids of [2-1ys,3-arg]P450IIC2. As diagrammed 

in Fig. 5, in [2-1ys,3-arg]P450IIC2(1-155) only the NH2- 
terminal region is predicted to be a membrane-spanning he- 
lix by the Rao and Argos (1986) method and it retains only 
one glycosylation site. Translation of this cRNA produced a 
protein of the expected size and, in the presence of micro- 
somal membranes, a single new more slowly migrating spe- 
cies was observed (Fig. 2, lane 2), consistent with glycosyla- 
tion at a single site. This was established by treatment with 
endoglycosidase H which altered the gel mobility of the new 
species to that of unglycosylated [2-1ys,3-arg]P450IIC2(1- 
155) (Fig. 2, lane 5). When membranes containing [2-1ys,3- 
arg]P450IIC2(1-155) were extracted with alkaline buffer, 
both the glycosylated and unglycosylated forms were retained 
in the membrane-containing pellet (Fig. 2, lane 4). These 
results indicated that even in the absence of internal hydro- 
phobic domains, P450 is anchored to the membrane. 

Protection of  [2-1ys, 3-arglP450IIC2 from 
Proteolytic Digestion 

P450IIC2 contains several internal hydrophobic sequences, 
at least three of which (amino acids 165-182, 206-226, and 
445-458) are potential membrane-spanning helices by sev- 
eral criteria (see Fig. 5). Since the second glycosylation site 
is at position 159, at least the first 160 amino acids must be 
translocated across the membrane to the location of the 
glycosylation enzymes. The apparent lack of glycosylation at 
position 454 could result if one or more of the hydrophobic 
regions acted as a stop-transfer sequence. In this ease, the 
COOH-terminal domain would remain on the cytoplasmic 
side of the membrane. To test this possibility, the susceptibil- 
ity to protease of [2-1ys,3-arg]P450IIC2 was examined. 
When microsomes from the in vitro translation reactions 
were treated with protease, P450IIC2 protein was completely 

Figure 2. Membrane integration of [2-1ys,3-arg]P450IIC2(l-155). 
Plasmid pc21 was digested with DdeI and transcribed with SP6 
RNA polymerase. The truncated cRNA, which codes for the first 
155 amino acids of [2-1ys,3-arg]P450IIC2, was translated in a re- 
ticulocyte lysate system without or with chicken oviduct micro- 
somai membranes (RM). Membrane-containing reactions were 
treated with endoglycosidase H (EH) or fractionated into superna- 
tants (S) and pellets (P) in alkaline buffer. 
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Figure 3. Translocation of [2-1ys,3-arg]P450HC2. RNAs were translated in a reticulocyte lysate system in the absence or presence of chicken 
oviduct microsomal membranes (RM). Samples were incubated with 0.4 mg/ml proteinase K with or without addition of 1% Triton X-100 
as indicated. (B) PreproPNTH cRNA was cotranslated with [2-1ys,3-arg]P450IIC2 RNA. PreproPNTH, which is not translocated and 
the translocated proPNTH (Szczesna-Skorupa et al., 1987) are indicated and serve as controls for protection from proteolytic digestion. 

digested, indicating that it remained exposed on the cytoplas- 
mic surface (Fig. 3 A, lane 4). In contrast, the full-length 
glycosylated [2-1ys,3-arg]P450IIC2 species were protected 
from digestion (Fig. 3 A, lane 8, and B, lane 3). Although 
occasional protection of shorter proteins was also observed, 
typically full-length glycosylated and nonglycosylated P450 
were the main protected species (Fig. 3). The major 23-kD 
protein was not protected from protease which is consistent 
with the hypothesis that this protein is derived from initiation 
at an internal AUG. As a further control preproPNTH, a 
secreted protein, was cotranslated with [2-1ys,3-arg]P450- 
IIC2. Under conditions that resulted in digestion of unpro- 
cessed preproPNTH, full-length [2-1ys,3-arg]P450IIC2 re- 
mained protected from protease (Fig. 3 B). If membranes 
were disrupted with detergent before protease treatment 
(Fig. 3 B, lane 4), the protein was completely digested. 
Therefore, no COOH-terminal domain of detectable length 
was left on the cytoplasmic side of the membrane. These ex- 
periments demonstrated that none of the internal hydropho- 
bic regions of P450IIC2 can function as a stop-transfer se- 
quence or, as shown in the previous section, are necessary 
for membrane integration. 

NH2-Terminal Cleavage of the P450-PNTH 
Hybrid Protein 
We have previously reported that synthesis of the hybrid pro- 
tein [2-1ys,3-arg]P450IIC2/PNTH in the presence of micro- 

somal membranes resulted in the apparent cleavage of the 
NH2-terminal region (Szczesna-Skorupa et al., 1988). Since 
in this construction 25 NH2-terminal amino acids of P450- 
IIC2 were followed by 4 COOH-terminal residues of the 
PNTH signal sequence, the natural cleavage site was retained 
and assumed to be recognized by signal peptidase during 
translocation. To establish the site of cleavage, we have iso- 
lated the hybrid cleavage product, which was labeled with 
[3H]lysine, and determined the location of the lysines by se- 
quence analysis. As shown in Fig. 4, disregarding the wash- 
out radioactivity in the first two cycles, radioactivity was 
released in cycles 5, 8, 9, and 23. This pattern of release es- 
tablished that the cleavage took place after glycine at position 
25, which represents the last residue of P450IIC2 in the 
hybrid protein, rather than after the glycine at position 29, 
the normal cleavage site for preproparathyroid hormone 
(Habener et al., 1978). An analysis based on the probability 
of occurrence of amino acids in a window - 1 3 - + 2  relative 
to the cleavage site (von Heijne, 1986) predicted that the ob- 
served cleavage location in the hybrid protein was the op- 
timal site instead of the PNTH cleavage site (Fig. 4 B). A 
similar analysis of P450IIC2 and [2-1ys,3-arg]P450IIC2 pre- 
dicts several potential cleavage sites but cleavage after the 
same glycine at position 25 is preferred. This raised the pos- 
sibility that the translocation-competent form of P450 (i.e., 
[2-1ys,3-arg]P450IIC2) could also be proteolytically pro- 
cessed. However, synthesis of [2-1ys,3-arg]P450IIC2 or its 
truncated 1-155 form resulted in little or no NH2-terminal 
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Figure 4. Cleavage site of [2-1ys,3-arg]P450IIC2/PNTH by micro- 
somal signal peptidase. (A) RNA coding for the fusion protein was 
translated in a reticulocyte lysate system in the presence of micro- 
somal membranes with [3H]lysine. The processed protein was iso- 
lated and subjected to automated Edman degradation. Radioactivity 
released at each cycle was monitored by scintillation counting. The 
NH2-terminal sequence of [2-1ys,3-arglP450IIC2/PNTH is shown 
at the top of the figure and asterisks indicate the positions of the 
lysine residues in the protein sequence. Cleavage occurred at the 
glycine numbered as -1 and the arrow indicates the glycine at the 
normal cleavage site of preproPNTH. (B) The NH2-terminal se- 
quences of preproPNTH and P450IIC2/PNTH are shown. The two 
substitutions in [2-1ys,3-arg]P450IIC2 are shown below the se- 
quence of P450IIC2. The presence of charged amino acids is indi- 
cated below the sequences. Above the sequences, values calculated 
as described (von Heijne, 1986) which predict the most probable 
cleavage site are plotted. Only scores with a positive value are 
presented. Asterisks indicate the predicted cleavage sites. The 
closed arrows indicate the normal site of cleavage for preproPNTH 
and the open arrow indicates the observed site in the hybrid protein. 

processing. Although a protein that migrated slightly faster 
than [2-1ys,3-arg]P450IIC2 was observed in reactions con- 
taining membranes (Fig. 1, lanes 7, 9, and 1/), the amount 
of the protein produced was insufficient for definitive iden- 
tification of the putative cleaved form by sequence analysis. 
These observations suggest that the amino acids COOH- 
terminal to the cleavage site affect cleavage efficiency. 

Discuss ion  

We have shown that the substitution of two basic amino acids 
for the single amino acid near the NH2-terminus of P450- 
IIC2 converts the NH2-terminal region from a combination 
insertion/stop-transfer to an insertion/translocation signal. 
The glycosylation of [2-1ys,3-arg]P450IIC2 by microsomal 

membrane enzymes and its protection from proteolysis pro- 
vide unequivocal evidence that the modified P450 is translo- 
cated across the membrane. The same modification in the 
P450IIC2 NH2-terminal region fused to parathyroid hor- 
mone, a secreted protein, also led to the translocation of the 
hybrid protein across mic~osomal membranes (Szczesna- 
Skorupa et al., 1988). Since similar results were observed 
with the modified NH2-terminal region in both full-length 
P450IIC2 and the hybrid protein, the basic amino acids in- 
troduced are both necessary and sufficient for its conversion 
to a translocation signal. Thus, a relatively small change of 
only two NH2-terminal amino acids of the 490 amino acids 
in P450IIC2, which is normally localized on the cytoplasmic 
side of the endoplasmic reticulum (DeLemos-Chiarandini et 
al., 1987; Sakaguchi et al., 1987), is sufficient to cause its 
complete transfer to the luminal side. 

The present results obtained with intact P450ilC2 are con- 
sistent with our model (based on studies of a P450IIC2/ 
PNTH hybrid) which proposes that the negatively charged 
NH: terminus is inserted "head inward" into the membrane, 
which halts further transfer, whereas the positively charged 
NH2 terminus may interact with the cytoplasmic anionic 
surface of the membrane, resulting in a loop structure and 
allowing for further translocation (Szczesna-Skorupa et al., 
1988). Alternatively, the charged amino acids in the mod- 
ified P450IIC2, independent of a change in orientation, may 
alter interaction of the NH2 terminus with membrane com- 
ponents that mediate either translocation or stop-transfer 
functions. Since protease protection of both intact P450IIC2 
and the P450IIC2/PNTH hybrid indicates that the COOH- 
terminal sequences of the native and mutated forms are on 
opposite sides of the microsomal membrane, it seems likely 
that the NH2-terminal regions are also in opposite orienta- 
tions. Consistent with this, partial cleavage of the NH2-ter- 
minal sequence of [2-1ys,3-arg]P450IIC2/PNTH, but not 
P450IIC2/PNTH (Szczesna-Skorupa et al., 1988), indicates 
that the cleavage sites are on opposite sides of the membrane. 
Audigier et al. (1987) also suggested that expression of the 
stop-transfer function in mutants of opsin may be dependent 
on the orientation of a transmembrane segment. 

Availability of [2-1ys,3-arg]P450IIC2 with a translocation 
signal allowed us to test for the presence of other topogenic 
sequences. Complete translocation of modified P450IIC2 
across the membrane was observed indicating the absence of 
internal stop-transfer sequences. In contrast, Monier et al. 
(1988) demonstrated a stop-transfer activity in the region 
165-186 of rat cytochrome P450IIB1. The hydrophobicity of 
this region in P450IIB1 and P450IIC2 is not detectably differ- 
ent. Presumably a difference in the amino acid context of the 
hydrophobic region or the in vitro systems used (canine pan- 
creatic vs. chicken oviduct microsomal membranes) may ex- 
plain the results. Regardless of the observation of stop-trans- 
fer activity of an internal region in vitro, the halting of 
translocation by the NH2-terminal region and the lack of 
membrane insertion of P450s in which the NH2-terminal 
region has been deleted (Monier et al., 1988; Browne, N., 
and B. Kemper, unpublished results) indicate that no internal 
stop-transfer regions are required in vivo. These results to- 
gether with the immunological studies showing all segments of 
P450, except the NH2-terminal region, on the cytoplasmic 
side of the membrane (DeLemos-Chiarandini et al., 1987) 
indicate that P450 is anchored to the membrane only by the 
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NH2-terminal region. The other hydrophobic regions are 
probably involved either in protein folding or in interactions 
with the membrane from the cytoplasmic side. 

The above model of P450 topology, based on experimental 
evidence, differs from those proposed earlier based on the 
protein hydrophobicity (Tart et al., 1983; Ozols et al., 1985; 
Leighton et al., 1984). Hydrophobic profiles for P450IIC2, 
generated by using three different indices, are shown in Fig. 
5. In each case three or more membrane-spanning domains 
are predicted: 8 major hydrophobic regions by the Kyte and 
Doolittle (1982) method; 4 regions that exceed a value of 
1.26, recommended as the criteria for membrane-spanning 
regions (Eisenberg, 1984); and 8 regions above 0 for the 
membrane helix parameter. The number of potential span- 
ning regions is reduced to 3 (indicated by the stippling) if a 
minimum of 12 amino acids in the hydrophobic sequence is 
required. Since only the NH2-terminal region of P450IIC2 
functions as a membrane stop-anchor sequence, the limita- 
tions of the prediction value of hydrophobicity profiles alone 
is illustrated. The prediction may be refined further by con- 
sidering acrophilicity which is based on the frequency of 
amino acids in turns at the cytoplasmic interface of mem- 
brane-spanning regions (Hopp, 1985). Only the sequence af- 
ter the NH2-terminal hydrophobic region is strongly pre- 
dicted to be adjacent to a membrane-spanning domain. 
Therefore, consideration of acrophilicity and the fact that the 
NH2-terminal sequence is by far the most hydrophobic re- 
gion suggest that only the NH2-terminal region spans the 
membrane, in accordance with experimental observations. 

Recently, Nelson and Strobel (1988) proposed a model for 
the membrane topology of P450 based on the comparative 
analysis of the sequences of 31 microsomal P450s. This 
model also predicts that, except for the NH2-terminal re- 
gion, P450 resides on the cytoplasmic side of the membrane. 
However, since the NH2-terminal amino acid is postulated 
to be on the cytoplasmic side of the membrane, a second 
transmembrane region (residues 29-45 in P450IIC2) is 
needed to form a hairpin loop. The evidence that the NH2- 
terminal amino acid is on the cytoplasmic side of the mem- 
brane is that the NH2-terminus of P450 was blocked if iso- 
lated by SDS-PAGE from microsomal membranes that had 
been treated with a membrane-impermeant reagent that 
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Figure 5. Prediction of potential membrane-spanning regions of 
P450IIC2. The bar at the top is a schematic representation of 
P450IIC2. The open bars indicate three regions that are potential 
membrane-spanning u-helices predicted with minor modifications 
as described by Rao and Argos (1986). For selection, peak heights 
>1.128 were required and membrane helices were terminated when 
the membrane turn potential exceeded the helix potential. (A) 
Hydropathy is estimated using values of hydrophobicity of Kyte and 
Doolittle (1982) over a sliding window of 19. The curve was 

smoothed once by averaging a sliding window of 7. (B) Hydropathy 
is estimated using the normalized consensus hydrophobicity values 
of Eisenbeg (1984) which have been multiplied by three. Peaks that 
exceed the value indicated by the dashed line are predicted to be 
membrane spanning. (C) Potential for a membrane-spanning helix 
is estimated from the frequency of occurrence of individual amino 
acids in known membrane-spanning helices as described by Rao 
and Argos (1986). Values have been scaled by subtracting 1.05 and 
multiplying by 6.73 so that the zero line corresponds to the value 
recommended by Rao and Argos as indicating the probability of 
a membrane-spanning helix. Mean values were calculated for a 
sliding window of 7 with two rounds of smoothing by averaging over 
sliding windows of 7. (D) Acrophilicity is estimated as described 
by Hopp (1985) based on the frequency of amino acids in turns adja- 
cent to membrane-spanning regions. Mean values were determined 
for a sliding window of 5 with one round of smoothing by averaging 
over a sliding window of 5. The computer programs AMPHI and 
MCE developed by Antony Crofts, University of Illinois at Urbana- 
Champaign, were used for all the analyses. 

The Journal of Cell Biology, Volume 108, 1989 1242 



reacts with s-amino groups (Bernhardt et al., 1983). As 
noted (Nelson and Strobel, 1988), some data conflict with 
this hairpin model. Antibodies presumably specific for seg- 
ments within the proposed second membrane-spanning re- 
gion react with cytoplasmic determinants in the endoplasmic 
reticulum (DeLemos-Chiarandini et al., 1987) and 20-29 
NH2-terminal amino acids of P450 are sufficient to anchor 
hybrid proteins to the membrane (Sakaguchi et al., 1987; 
Szczesna-Skorupa et al., 1988; Monier et al., 1988). More- 
over, it is difficult to explain the conversion of the NH2- 
terminal peptide to a translocation signal by substitution of 
positive charges at residues 2 and 3, if the native P450 is al- 
ready in a loop form, although conformational changes or di- 
rect effects on the translocation apparatus could be invoked. 
In P450IIC2 much of the region proposed as the second 
transmembrane segment is highly acrophilic (Fig. 5) sug- 
gesting that it is more likely involved in a turn out of the 
membrane rather than membrane spanning. Finally, in con- 
trast to the NH~-terminal hydrophobic region, which is one 
of the least conserved regions of P450s in primary sequence, 
the second region is highly conserved including the sequence 
PPGP which is almost perfectly conserved in all P450I and 
P450II members. Such conservation suggests a more specific 
structural/functional requirement than spanning the mem- 
brane. 

After the initial submission of this manuscript, Monier et 
al. (1988) proposed a model of P450 insertion into the mem- 
branes which predicts luminal localization of the extreme 
NH2 terminus of its insertion/stop-transfer signal. How- 
ever, these authors postulate formation of a transient loop as 
the signal enters the membrane and subsequent reorienta- 
tion. The basis for this proposal is that partial cleavage of the 
P450 NH2-terminal region occurred in a P450/growth hor- 
mone hybrid, indicating that the COOH-terminal portion of 
the signal sequence reached the luminal side of the mem- 
brane. In contrast, little or no cleavage occurred with similar 
hybrids of P450 with parathyroid hormone (Szczesna- 
Skorupa et al., 1988) or interleukin (Sakaguchi et al., 1987). 
Additional studies will be required to define the initial con- 
formation of the P450 NH2-terminal region in the mem- 
brane. 
This work was supported by National Institutes of Health grant GM35897. 
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