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Alcohol as friend or foe in autoimmune diseases: a role for gut microbiome?
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ABSTRACT
Alcohol is well known for promoting systemic inflammation and aggravating multiple chronic 
health conditions. Thus, alcohol may also be expected to serve as a risk factor in autoimmune 
diseases. However, emerging data from human and animal studies suggest that alcohol may in fact 
be protective in autoimmune diseases. These studies point toward alcohol’s complex dose- 
dependent relationship in autoimmune diseases as well as potential modulation by duration and 
type of alcohol consumption, cultural background and sex. In this review, we will explore alcohol’s 
pro- and anti-inflammatory properties in human and animal autoimmune diseases, including 
autoimmune diabetes, thyroid disease, systemic lupus erythematosus, rheumatoid arthritis, experi
mental autoimmune encephalomyelitis and multiple sclerosis. We will also discuss potential 
mechanisms of alcohol’s anti-inflammatory effects mediated by the gut microbiome.
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Introduction

Autoimmune diseases arise from aberrant immune 
system activation against self-antigens and affect 
approximately 24 million people in the United 
States, with rising incidence in recent years.1 

Women tend to be disproportionately affected, with 
female-to-male odds ratios of up to 9:1 in some 
autoimmune diseases.2 While there are known 
genetic risk alleles,3 environmental factors are 
increasingly seen as major contributors to triggering 
autoimmunity.4 Among environmental factors, diet 
and the composition of the gut microbiome are being 
closely studied for their role in the initiation and 
progression of autoimmune disorders.5,6

Alcohol is a widely available dietary factor in our 
society and its pro-inflammatory effects and end- 
organ damage are well documented at high doses.7 

However, alcohol’s role in inflammation and auto
immunity at moderate doses has been relatively less 
well understood. While it may be hypothesized that 
alcohol could serve as an environmental inflamma
tory risk factor, recent evidence actually points 
toward alcohol’s protective effects in several auto
immune diseases, including autoimmune thyroid 
disease, autoimmune diabetes, systemic lupus 
erythematosus (SLE), rheumatoid arthritis (RA) 
and multiple sclerosis (MS), both in human and 

animal studies.8–15 Although it is perplexing to 
explain alcohol’s apparent protective role in auto
immune diseases given its pro-inflammatory prop
erties, current evidence suggests that alcohol has 
pleiotropic tissue-specific and sex-specific anti- 
inflammatory actions in the body at different doses.

In this review, we will examine alcohol’s dose- 
dependent effects and potential mechanisms in 
autoimmune diseases in human and animal studies 
with a focus on the role of alcohol in modulating 
the gut microbiome in autoimmunity.

Alcohol metabolism and dosing in human and 
animal studies

Shortly after consumption, alcohol is absorbed into 
the bloodstream from the stomach and small intes
tine, and subsequently diffuses to different body 
organs. Alcohol is metabolized to acetaldehyde 
and acetate primarily within the gastrointestinal 
(GI) tract, but also in other organs, such as the 
brain.16 Both alcohol and acetaldehyde can induce 
systemic inflammation via 1) activation of toll-like 
receptors (TLRs) 2, 3, 4 and NOD-like receptor 
family pyrin containing 3 (NLRP3) inflammasome 
complex on immune cells, 2) bacterial overgrowth 
in the GI tract and production of a bacterial 
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breakdown product, lipopolysaccharide (LPS) 
and 3) generation of free oxygen radical species 
and inducible nitric oxide synthase (iNOS), both 
of which directly affect the permeability of gut tight 
junctions leading to LPS leakage into the 
bloodstream17–20. LPS is a strong TLR agonist and 
leads to the activation and maturation of macro
phages and other innate immune cells.21 Thus, the 
combination of increased gut permeability, LPS 
translocation and alcohol-mediated immune acti
vation can predispose to a pro-inflammatory state 
(Figure 1).

In interpreting human and animal alcohol stu
dies, it is important to closely consider the admi
nistered quantity of alcohol. Patterns of human 
drinking are typically divided into light, moderate 
and heavy consumption. For humans, a standard 
alcoholic drink is defined as approximately 14 g of 
alcohol.22 According to the CDC, light drinking is 
considered to be three or fewer alcoholic drinks per 

week. Moderate drinking is defined as one alcoholic 
drink per day for women and two drinks per day 
for men, though variations across studies exist for 
this definition. Heavy alcohol consumption is 
defined as having four or more drinks/day for 
females and five or more drinks/day for males.22 

Accurate human consumption can be challenging 
to quantify due to participant subjective memory 
and accurate reporting.

In animal studies, it is also important to account 
for variable physiological effects due to adminis
tered dose, route of administration (e.g. oral vs. 
gavage vs. intravenous), consumption pattern (e.g. 
voluntary vs. non-voluntary), as well as differences 
in body weight and metabolism between animal 
species. Rodents, for example, metabolize alcohol 
approximately five times faster than humans, which 
results in relatively lower voluntary consumption as 
rodents rapidly experience the deleterious effects of 
acetaldehyde accumulation.23 In animal studies, 

Figure 1. Alcohol has pleiotropic effects in the body. At high doses, alcohol destabilizes the gut barrier and can lead to dysbiosis, 
increase in bacterial wall product, liposaccharide (LPS), which can stimulate toll-like receptors (TLR) on immune cells and lead to an 
increase in monocytes, T cells, cytokines and immunoglobulin (IgG) levels as well as a decrease in B cells. In turn, circulating 
inflammatory cytokines, IgGs and immune cells contribute to end-organ damage. At low-moderate doses, alcohol has been demon
strated to improve autoimmune disease risk and progression. Although the precise mechanism is not well understood, low-moderate 
alcohol may have a positive impact on inflammation via increase in Akkermansia muciniphila and other protective gut microbes, as well 
as contribute to increases in acetate, polyunsaturated fatty acids (PUFAs), high-density lipoprotein (HDL) and nitric oxide (NO).

e1916278-2 B. CASLIN ET AL.



Ta
bl

e 
1.

 A
lc

oh
ol

’s 
th

er
ap

eu
tic

 e
ffe

ct
s 

in
 a

ut
oi

m
m

un
e 

di
se

as
es

.

D
is

ea
se

St
ud

y 
D

es
ig

n
N

o.
 c

as
es

/c
on

tr
ol

s
Ev

al
ua

te
d 

Al
co

ho
l D

os
e(

s)
St

ud
y 

D
ur

at
io

n/
Re

gi
on

Im
pa

ct
 o

f L
ig

ht
- 

M
od

er
at

e 
Al

co
ho

l o
n 

D
is

ea
se

 R
is

k/
 

M
or

bi
di

ty
Re

fe
re

nc
e

Sy
st

em
ic

 L
up

us
  

Er
yt

he
m

at
os

us
Ca

se
  

Co
nt

ro
l

15
0/

30
0

Li
gh

t, 
M

od
er

at
e,

 B
in

ge
 (0

–1
0 

un
its

 o
f a

lc
oh

ol
)

19
93

–1
99

5 
N

ot
tin

gh
am

, U
K

↓
H

ar
dy

 C
J 

et
 a

l, 
19

98
Ca

se
 

Co
nt

ro
l

85
/2

05
M

od
er

at
e 

(1
–1

50
 g

/m
on

th
, >

15
0 

g/
m

on
th

)
19

81
–1

99
9 

Sw
ed

en
↓

Be
ng

ts
so

n 
AA

 
et

 a
l, 

20
02

M
et

a 
 

An
al

ys
is

82
2/

55
,3

63
 

6 
ca

se
 c

on
tr

ol
 

st
ud

ie
s

M
od

er
at

e
Ja

pa
n,

 S
w

ed
en

, U
S,

 U
K

↓
W

an
g 

J 
et

 a
l 

20
08

Co
ho

rt
12

7/
64

,5
00

M
od

er
at

e 
(w

in
e 

>
4 

dr
in

ks
/w

ee
k)

19
95

–2
01

5 
U

S 
Bl

ac
k 

W
om

en
’s 

H
ea

lth
 S

tu
dy

↓
Co

zi
er

 Y
C 

et
 a

l 
20

19
Co

ho
rt

67
/5

7,
61

3
Li

gh
t, 

M
od

er
at

e 
(<

1;
 1

–6
; >

7 
dr

in
ks

/w
ee

k)
19

97
–1

99
9 

U
S 

Bl
ac

k 
W

om
en

’s 
H

ea
lth

 S
tu

dy
N

o 
eff

ec
t

Fo
rm

ic
a 

M
K 

et
 a

l, 
20

03
Cr

os
s-

 
se

ct
io

na
l

50
5

Li
gh

t 
dr

in
ke

rs
 (1

–5
; >

6 
gl

as
se

s/
w

ee
k)

20
14

–2
01

6 
Ko

re
an

 L
up

us
 N

et
w

or
k

N
o 

eff
ec

t
Ki

m
 S

K 
et

 a
l, 

20
17

Cr
os

s-
 

se
ct

io
na

l
24

4/
20

4,
05

5
Li

gh
t 

to
 M

od
er

at
e 

(0
–5

 g
/d

 o
r 

>
5 

g/
d)

19
88

–1
99

0 
N

ur
se

 H
ea

lth
 S

tu
dy

 1
 a

nd
 

19
96

–1
99

9 
N

ur
se

 H
ea

lth
 S

tu
dy

 2
↓

H
ah

n 
J 

et
 a

l, 
20

20
, 

Ba
rb

ha
iy

a 
M

 e
t 

al
, 2

01
7

Rh
eu

m
at

oi
d 

Ar
th

rit
is

Cr
os

s-
 

se
ct

io
na

l
28

00
/2

10
2

H
az

ar
do

us
 v

s.
 n

on
-h

az
ar

do
us

 (1
–2

 d
rin

ks
, 3

–4
 d

rin
ks

, 5
–6

 d
rin

ks
, 7

–9
 

dr
in

ks
, >

10
 d

rin
ks

)
19

92
–2

00
5 

Sw
ed

en
; B

et
te

r 
An

ti-
 R

he
um

at
ic

 
Fa

rm
ac

O
Th

er
ap

y
↓

Be
rg

m
an

 
S 

et
 a

l, 
20

13
Cr

os
s-

 
se

ct
io

na
l

33
53

/2
83

6
Lo

w
, M

od
er

at
e 

(0
–1

6 
dr

in
ks

/w
ee

k)
19

96
–2

01
4 

Sw
ed

en
↓

H
ed

st
ro

m
 A

K 
et

 a
l, 

20
19

Co
ho

rt
11

,8
39

M
ild

 (≤
7 

un
its

 p
er

 w
ee

k)
; M

od
er

at
e 

(8
–1

4 
un

ite
s/

w
ee

k)
; M

od
er

at
e-

 
H

ig
h 

(1
5–

21
 u

ni
ts

/w
ee

k)
; H

ig
h 

(>
21

 u
ni

ts
/w

ee
k)

19
87

 a
nd

 2
01

6 
U

K 
Cl

in
ic

al
 P

ra
ct

ic
e 

Re
se

ar
ch

 
D

at
al

in
k

↓
H

um
ph

re
ys

 J
H

 
et

 a
l, 

20
17

M
et

a An
al

ys
is

18
78

/1
95

,0
29

 
8 

pr
os

pe
ct

iv
e 

st
ud

ie
s

Li
gh

t 
to

 M
od

er
at

e
St

ud
ie

s 
co

m
pl

et
ed

 p
rio

r 
to

 2
01

3
J 

sh
ap

ed
Jin

 Z
 e

t 
al

, 2
01

4

Cr
os

s-
 

se
ct

io
na

l
18

8
Li

gh
t t

o 
M

od
er

at
e 

(n
on

dr
in

ke
rs

, p
ar

tic
ip

an
ts

 w
ho

 c
on

su
m

e 
1–

7 
dr

in
ks

/ 
w

ee
k,

 8
–1

4 
dr

in
ks

/w
ee

k 
an

d 
>

14
 d

rin
ks

/w
ee

k)
20

13
–2

01
4 

Le
id

en
 E

ar
ly

 A
rt

hr
iti

s 
Cl

in
ic

J 
sh

ap
ed

M
an

gn
us

 
L 

et
 a

l, 
20

18
Co

ho
rt

59
6

M
od

er
at

e 
ab

st
in

en
t (

0 
g/

d)
, m

od
er

at
e 

(≤
20

 g
/d

 fo
r w

om
en

, ≤
30

 g
/d

 fo
r 

m
en

), 
an

d 
ab

us
e 

(>
20

 g
/d

 fo
r 

w
om

en
, >

30
 g

/d
 fo

r 
m

en
)

20
02

–2
00

5 
Fr

an
ce

 É
tu

de
 e

t 
Su

iv
i d

es
 

Po
ly

ar
th

rit
es

 In
di

ffé
re

nc
ié

es
 R

éc
en

te
s

↓
 in

 m
al

es
, ↑

 in
 

fe
m

al
es

Sa
ge

lo
li 

F 
et

 a
l, 

20
18

Co
ho

rt
16

6
M

od
er

at
e 

<
15

 o
r 

>
15

 b
ev

er
ag

es
 p

er
 m

on
th

20
02

–2
00

5 
Co

ns
or

tiu
m

 fo
r 

th
e 

Lo
ng

itu
di

na
l 

Ev
al

ua
tio

ns
 o

f A
fr

ic
an

 A
m

er
ic

an
s 

w
ith

 E
ar

ly
 

Rh
eu

m
at

oi
d 

Ar
th

rit
is

 (C
LE

AR
) r

eg
is

tr
y1

J 
sh

ap
ed

D
av

is
 M

L 
et

 a
l, 

20
13

Cr
os

s-
 

se
ct

io
na

l
17

4/
20

4,
05

5
M

od
er

at
e 

(0
–2

5 
g/

d)
19

88
–1

99
0 

N
ur

se
 H

ea
lth

 S
tu

dy
 1

 a
nd

 
19

96
–1

99
9 

N
ur

se
 H

ea
lth

 S
tu

dy
 2

U
 s

ha
pe

d
Lu

 B
 e

t 
al

, 2
01

0

Co
ho

rt
66

2/
11

00
M

od
er

at
e 

(5
.1

–1
0.

0 
g/

d)
20

03
–2

01
0 

Br
ig

ha
m

 a
nd

 W
om

en
’s 

H
os

pi
ta

l 
Rh

eu
m

at
oi

d 
Ar

th
rit

is
 S

eq
ue

nt
ia

l S
tu

dy
J 

sh
ap

ed
Lu

 B
 e

t 
al

, 2
01

4

An
im

al
  

Re
se

ar
ch

5–
10

/g
ro

up
M

od
er

at
e 

Co
ns

um
pt

io
n 

(1
0%

 v
/v

 e
th

an
ol

)
42

 d
↓

Az
iz

ov
 V

 e
t 

al
, 

20
20

An
im

al
 

Re
se

ar
ch

12
/g

ro
up

M
od

er
at

e 
al

co
ho

l (
10

%
 e

th
an

ol
 in

 w
at

er
)

6 
w

ee
ks

↓
Jo

ns
so

n 
IM

 
et

 a
l, 

20
07

(C
on

tin
ue

d)

GUT MICROBES e1916278-3



Ta
bl

e 
1.

 (C
on

tin
ue

d)
.

D
is

ea
se

St
ud

y 
D

es
ig

n
N

o.
 c

as
es

/c
on

tr
ol

s
Ev

al
ua

te
d 

Al
co

ho
l D

os
e(

s)
St

ud
y 

D
ur

at
io

n/
Re

gi
on

Im
pa

ct
 o

f L
ig

ht
- 

M
od

er
at

e 
Al

co
ho

l o
n 

D
is

ea
se

 R
is

k/
 

M
or

bi
di

ty
Re

fe
re

nc
e

Th
yr

oi
d 

D
is

ea
se

Ca
se

 
Co

nt
ro

l
14

0/
56

0
Lo

w
 (1

–1
0 

un
its

 p
er

 w
ee

k)
, m

od
er

at
e 

(1
1–

20
 u

ni
ts

 p
er

 w
ee

k)
, h

ig
h 

(>
21

 u
ni

ts
/w

ee
k)

19
97

–2
00

1 
D

en
m

ar
k

↓
Ca

rle
 A

 e
t 

al
, 

20
12

Ca
se

 
Co

nt
ro

l
27

2/
10

88
Li

gh
t, 

M
od

er
at

e 
an

d 
hi

gh
t 

(0
, 3

–1
0,

 1
1–

20
 o

r 
≥

21
 u

ni
ts

/w
ee

k)
19

97
–2

00
1 

D
en

m
ar

k
↓

Ca
rle

 A
 e

t 
al

, 
20

13
Ca

se
 

Co
nt

ro
l

80
3/

10
03

<
10

 o
r 

>
10

 u
ni

ts
/w

ee
k

5 
ye

ar
 s

tu
dy

 A
m

st
er

da
m

 A
ut

oi
m

m
un

e 
th

yr
oi

d 
di

se
as

e
↓

Eff
ra

im
id

is
 

G
 e

t 
al

, 2
01

2
Ca

se
 

Co
nt

ro
l

14
0/

51
54

 
(h

yp
er

th
yr

oi
di

sm
) 

20
6/

51
54

 
(h

yp
ot

hy
ro

id
is

m
)

35
 g

/d
20

07
–2

00
9 

Ch
in

es
e 

Sh
e 

po
pu

la
tio

n
↓

H
ua

ng
 Y

 e
t 

al
 

20
19

D
ia

be
te

s
Co

ho
rt

18
6/

27
81

H
U

N
T 

1:
 a

bs
ta

in
er

s,
 <

1,
 1

–4
, 5

–1
0 

an
d 

>
10

 t
im

es
 a

nd
 H

U
N

T 
2:

 
ab

st
ai

ne
rs

, v
er

y 
lo

w
 (0

.0
1–

4.
9 

g/
d)

, l
ow

 (5
–9

.9
 g

/d
), 

m
od

er
at

e 
(1

0–
14

.9
 g

/d
) a

nd
 h

ig
h 

co
ns

um
er

s 
(>

15
 g

/d
)

19
84

–2
00

8 
N

or
w

ay
 N

or
d-

Tr
on

de
la

g 
H

ea
lth

 
Su

rv
ey

 (H
U

N
T)

 s
tu

di
es

↓
Ra

so
ul

i B
 e

t 
al

, 
20

13

M
et

a-
 

an
al

ys
is

13
 c

oh
or

ts
M

od
er

at
e 

(5
–3

0 
g 

al
co

ho
l/d

)
Ca

uc
as

ia
ns

, J
ap

an
es

e,
 A

fr
ic

an
 A

m
er

ic
an

s,
 

N
au

ru
an

s
↓

Ca
rls

so
n 

S 
et

 a
l, 

20
05

Ca
se

 
Co

nt
ro

l
19

05
/5

1,
52

9
Li

gh
t 

(0
–4

.9
 g

/d
) v

s.
 M

od
er

at
e 

(5
.0

–2
9.

9 
g/

d)
19

86
–2

00
4 

H
ea

lth
 P

ro
fe

ss
io

na
ls

 F
ol

lo
w

-U
p 

St
ud

y
↓

Jo
os

te
n 

M
M

 
et

 a
l, 

20
11

Co
ho

rt
82

89
0,

 lo
w

 (l
es

s 
th

an
 o

r 
eq

ua
l t

o 
14

/7
 (m

en
/w

om
en

) d
rin

ks
/w

ee
k)

, r
is

ky
 

(m
or

e 
th

an
 1

4/
7 

dr
in

ks
 a

nd
 le

ss
 t

ha
n 

28
/1

4 
dr

in
ks

/w
ee

k)
, a

nd
 h

ig
h 

(m
or

e 
th

an
 2

8/
14

 d
rin

ks
/w

ee
k)

19
79

–2
01

2 
U

S 
N

at
io

na
l L

on
gi

tu
di

na
l S

ur
ve

y 
of

 
Yo

ut
h

↓
Ke

rr
 W

C 
et

 a
l, 

20
18

M
et

a-
 

an
al

ys
is

26
 s

tu
di

es
Li

gh
t 

(0
–1

2 
g/

d)
, M

od
er

at
e 

(1
2–

24
 g

/d
), 

or
 H

ea
vy

 (>
24

 g
/d

)
↓

Li
 X

H
 e

t a
l, 

20
16

Ca
se

 
Co

nt
ro

l
25

0/
10

12
N

on
dr

in
ke

rs
, 0

.0
1–

4.
9,

 5
–1

4.
9,

 1
5–

24
.9

, a
nd

 >
25

 g
 a

lc
oh

ol
/d

20
10

–2
01

3 
Sw

ed
en

 E
pi

de
m

io
lo

gi
ca

l s
tu

dy
 o

f 
ris

k 
fa

ct
or

s 
fo

r 
LA

D
A 

an
d 

ty
pe

 2
 d

ia
be

te
s

↓
Ra

so
ul

i B
 e

t 
al

, 
20

14
M

ul
tip

le
 S

cl
er

os
is

An
im

al
 

Re
se

ar
ch

19
–2

0/
gr

ou
p

M
od

er
at

e 
(2

.6
%

 a
lc

oh
ol

)
65

 d
↓

Ca
sl

in
 B

, 
M

ag
ui

re
 

C 
et

 a
l, 

20
19

Ca
se

 
Co

nt
ro

l
74

5/
17

61
Lo

w
 (<

50
 g

/w
ee

k 
fo

r 
w

om
en

 a
nd

 <
10

0 
g/

w
ee

k 
fo

r 
m

en
), 

m
od

er
at

e 
(5

0–
11

2 
g/

w
ee

k 
fo

r w
om

en
 a

nd
 1

00
–1

68
 g

/w
ee

k 
fo

r m
en

), 
an

d 
hi

gh
 

(>
11

2 
g/

w
ee

k 
fo

r 
w

om
en

 a
nd

 >
16

8 
g/

w
ee

k 
fo

r 
m

en
)

20
05

–2
01

1 
Ep

id
em

io
lo

gi
ca

l I
nv

es
tig

at
io

n 
of

 
M

ul
tip

le
 S

cl
er

os
is

 2
00

9–
20

11
 E

nv
iro

nm
en

t 
in

 M
ul

tip
le

 S
cl

er
os

is
 s

tu
di

es
 S

w
ed

en

D
os

e-
de

pe
nd

en
t 

in
ve

rs
e 

as
so

ci
at

io
n

H
ed

st
ro

m
 A

K 
et

 a
l 2

01
4

Ca
se

 
Co

nt
ro

l
17

17
/4

68
5

N
o 

co
ns

um
pt

io
n,

 0
 u

ni
ts

/w
ee

k 
fo

r 
w

om
en

 (m
en

); 
lo

w
: 1

–7
 (1

–1
4)

; 
m

od
er

at
e:

 8
–1

4 
(1

5–
21

); 
an

d 
hi

gh
 >

 1
4

20
09

–2
01

4 
D

an
is

h 
M

S 
Bi

ob
an

k 
D

en
m

ar
k

In
ve

rs
e 

as
so

ci
at

io
n

An
de

rs
en

 
C 

et
 a

l, 
20

19
Co

ho
rt

92
3

N
on

 d
rin

ke
r, 

<
1 

dr
in

k/
w

ee
k,

 >
1-

4 
dr

in
ks

/w
ee

k,
 >

4 
dr

in
ks

/w
ee

k
Co

m
pr

eh
en

si
ve

 L
on

gi
tu

di
na

l I
nv

es
tig

at
io

n 
of

 
M

ul
tip

le
 S

cl
er

os
is

 a
t 

th
e 

Br
ig

ha
m

 a
nd

 
W

om
en

’s 
H

os
pi

ta
l U

ni
te

d 
St

at
es

↓
D

ia
z-

Cr
uz

 
C 

et
 a

l, 
20

17

Cr
os

s-
 

se
ct

io
na

l
42

9/
54

7,
28

8
Al

co
ho

l a
bu

se
, a

lc
oh

ol
 d

ep
en

de
nc

e,
 a

nd
 a

lc
oh

ol
 u

se
19

99
–2

01
1 

En
gl

is
h 

N
at

io
na

l H
ea

lth
 S

er
vi

ce
 

ho
sp

ita
ls

↑
Pa

kp
oo

r 
J 

et
 a

l, 
20

14
Cr

os
s-

 
se

ct
io

na
l

25
8/

23
8,

37
1

0 
g/

d,
 0

.1
–4

.9
 g

/d
, 5

.0
–1

4.
9 

g/
d,

 1
5.

0–
29

.9
 g

/d
, a

nd
 3

0+
 g

/d
19

80
–2

00
4 

N
ur

se
 H

ea
lth

 S
tu

dy
 1

 1
99

1–
20

05
 

N
ur

se
 H

ea
lth

 S
tu

dy
 2

N
o 

eff
ec

t
M

as
s 

J 
et

 a
l, 

20
13

e1916278-4 B. CASLIN ET AL.



alcohol consumption is usually measured in grams 
of pure ethanol per kilogram of body weight (g/kg), 
though some studies may report values as blood 
ethanol concentration (BEC) or as alcohol by 
volume (ABV).24 For murine alcohol studies, 
light, moderate and heavy alcohol consumption 
are generally within 0–1.5 g/kg, 2.5 g/kg and 
3–6 g/kg, respectively.25–27

Protective role of light-moderate dose of 
alcohol in autoimmune diseases

Alcohol consumption may be expected to contri
bute toward an increased risk of or exacerbation of 
autoimmune diseases given its pro-inflammatory 
properties. Indeed, in some inflammatory diseases, 
such as irritable bowel syndrome (IBS) and peren
nial allergies, there is a direct correlation between 
consumption of high alcohol doses and disease 
onset.28,29 However, impressively, in multiple stu
dies across autoimmune diseases, light-moderate 
alcohol consumption appears to reduce the disease 
risk, severity and progression (Table 1). In the 
following section, we will delineate the known alco
hol dose-dependent effects on autoimmune 
diseases.

Autoimmune diabetes

The beneficial effects of moderate alcohol have 
been documented in both non-autoimmune type 
2 diabetes and in autoimmune type 1 diabetes in 
adults (LADA)30–34 (Table 1). In a study of LADA, 
there was a 60% risk reduction in patients who 
consumed 2–7 g/day compared with patients con
suming 0.01–2 g/day. This study also noted higher 
anti-glutamic acid decarboxylase antibody (GAD 
Ab) levels and lower C-peptide in abstainers com
pared with alcohol consumers, with a more pro
nounced effect in men. In another LADA study, 
a 46% risk reduction was noted in men and 
women consuming greater than 25 g/day.34 The 
effect appeared to be strongest in patients with 
low anti-GAD Ab levels and was restricted to 
wine drinkers compared to beer or liquor 
consumers.34 The authors surmised that patients 
with low anti-GAD Ab levels may be most similar 
to patients with type 2 diabetes, and it may be 

polyphenols and hydroxystilbenes in wine that pro
mote anti-oxidative or anti-inflammatory effects of 
alcohol in autoimmunity.34

Autoimmune thyroid diseases

Similarly to diabetes, moderate alcohol has been 
demonstrated to be protective in both autoimmune 
hypothyroidism and hyperthyroidism (Table 1). 
For example, moderate alcohol was correlated 
with decreased risk of hypothyroidism and 
Grave’s disease in a dose-dependent manner com
pared to controls, regardless of gender or type of 
alcohol consumed.10,35 Several studies also found 
that moderate alcohol consumption of >10 units/ 
week36 or at least 35 g of alcohol per day37 was 
associated with a lower probability of autoimmune 
thyroid disease and development of positive thyr
oid peroxidase antibodies.

Systemic lupus erythematosus

A significant dose-dependent association between 
moderate alcohol and SLE risk has been identified 
in multiple case-control, cohort and cross-sectional 
studies9,38–41 (Table 1). In a meta-analysis, protec
tive effects of moderate alcohol were tied to the 
duration of SLE, with significance seen in patients 
treated for less than 10 years compared to patients 
treated for less than 5 years.40 Another study con
cluded that moderate alcohol may lower the chance 
of ANA-positive patients to progress to SLE.42 

Smaller case–control SLE studies, which tend to 
be more prone to recall bias and reverse causation 
bias, have either not identified an association with 
alcohol consumption and SLE risk or have detected 
a slightly higher risk.43,44

Rheumatoid arthritis

Similar to thyroid disease, diabetes and SLE, 
multiple epidemiological studies and several 
mechanistic studies support the protective role 
of light to moderate alcohol in RA in a J- or 
U-shaped dose-dependent manner8,15,45–54 

(Table 1). In a meta-analysis study, both men 
and women had a reduction in RA risk over 
10 years, with women experiencing the highest 
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risk reduction.49 In other studies, women con
suming moderate alcohol reported lower disease 
activity and higher quality of life compared to 
men.48 However, it has also been documented 
that alcohol may prevent radiological progres
sion in men and increase radiological progres
sion in women.53 A significantly lower Modified 
Health Assessment Questionnaire scores (sugges
tive of improved functional status) have also 
been found in RA patients consuming moderate 
alcohol compared to nondrinkers.55 This effect 
was stronger in patients who were positive for 
HLA-DRB1 shared epitope.55 Thus, there is 
likely to be a beneficial but complex relationship 
between alcohol, gender and genetic make-up 
in RA.

Multiple sclerosis

Likewise, in MS there is also evidence for protective 
effects of moderate alcohol in decreasing disease 
risk and/or disease progression (Table 1). Several 
large population studies have demonstrated a dose- 
dependent inverse association between alcohol and 
MS risk in both sexes.12,56 Moderate consumption 
of red wine appears to correlate with a lower 
Expanded Disability Status Scale score, suggesting 
improved function, though patients drinking mod
erate alcohol exhibited an increase in T2 lesion 
volume on brain MRI.57 Conversely, high doses of 
alcohol may contribute to increased risk of MS, 
particularly in men.58,59

Some studies have noted no association between 
different doses of alcohol and the risk of developing 
MS. In these studies, gender may be a variable that 
may explain alcohol’s effects in MS. For example, in 
a female Nurses’ Health Study (NHS) I and II, there 
was no association between different types of alco
hol and the risk of MS.60 Although this was a large 
study of >90,000 women between the two NHS 
studies, the cohort of MS patients of 258 cases was 
relatively smaller and it is also possible that females 
may not experience the degree of protective effects 
of alcohol compared to males. For example, in an 
animal model of MS, experimental autoimmune 
encephalomyelitis (EAE), it was recently shown 
that primarily male mice improved in disease 
scores on a moderate alcohol diet.11

Alcohol’s pro- and anti-inflammatory effects on 
the immune system

It is well known that chronic high-dose alcohol 
consumption can lead to a higher infectious disease 
burden in alcoholics and more difficulty in clearing 
pathogens such as Listeria monocytogenes, 
Mycobacterium tuberculosis and influenza.61–63 

However, while chronic high-level alcohol con
sumption is known to induce systemic inflamma
tion, there is an increasing understanding that 
alcohol’s effects on the innate and adaptive immune 
system are dose-dependent.

For example, alcohol has prominent dose- 
dependent effects on microglia, the innate immune 
cells of the central nervous system (CNS). In mouse 
models of acute alcohol abuse, cerebellar microglia 
display no inflammatory cytokine production fol
lowing a single moderate-dose alcohol exposure of 
3 g/kg and only a transient IL-1β/TNF-α increase 
following high-dose administration 5 g/kg.64 At 
much higher alcohol doses of up to 10 g/kg/day, 
microglia display increased activation in associa
tion with the production of different inflammatory 
cytokines, including IL-1β, IL-18, IL-10, interferon- 
gamma (IFN-γ), transformative growth factor beta 
(TGF-β) and chemokines, CXCL2, CX3CL1. In 
turn, these cytokines and chemokines can lead to 
peripheral lymphocyte translocation across the 
blood–brain barrier (BBB) and further CNS 
inflammation.65–68

Alcohol also modulates the adaptive immune 
system in a dose-dependent manner. Chronic mod
erate alcohol consumption leads to T and B cell 
activation and proliferation,69 while chronic heavy 
consumption is associated with T and B cell deple
tion and apoptosis as well as an increase in 
immunoglobulins.70 Additionally, chronic binge 
alcohol consumption changes T cell phenotypes 
leading to a decreased percentage of naive 
T lymphocytes and higher percentages of memory 
T-cells.71,72 Conversely, moderate alcohol con
sumption has been linked to modulation of 
T follicular helper (TFH) cells.8

Cytokines and inflammatory markers are also 
affected by alcohol in a dose-dependent manner. 
For instance, C-reactive protein (CRP) and inter
leukin 6 (IL-6) are elevated in human heavy drin
kers but relatively reduced in moderate drinkers 
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compared to nondrinkers.73 CRP effects may also 
be sexually dimorphic, with some studies indicating 
that alcohol-induced CRP reduction is specific to 
women,74 though other studies suggest that mod
erate consumption reduces CRP in a U-shaped pat
tern regardless of sex.75

Pro- and anti-inflammatory dose-dependent alcohol 
effects on the immune system in rheumatoid 
arthritis

In RA, a J-shaped association has been noted with 
CRP levels, with patients consuming 1–7 drinks/ 
week had the lowest CRP levels.51 RA patients 
consuming moderate alcohol display a U-shaped 
association with IL-6 levels prior to symptom 
development and an inverse relationship between 
alcohol consumption and soluble tumor necrosis 
factor receptor 2 (TNFR2) levels.76 As alcohol can 
contribute to liver damage, a study evaluating the 
relationship between alcohol consumption and 
liver inflammation reported that >21 units per 
week correlated with transaminitis, while <14 
units per week did not.48 Moderate alcohol con
sumption has also been associated with 50% reduc
tion in RA risk in patients positive for 
anticitrullinated protein antibodies (ACPA), and 
a 30% disease risk reduction in ACPA-negative 
RA in an inverse dose–response relationship.47

Dose-dependent effects of alcohol on the 
immune system are also noted in RA mouse mod
els. In a model of collagen-induced arthritis (CIA), 
mice on a moderate alcohol diet experienced a 40% 
lower incidence of CIA and >50% decrease in radi
ological disease severity compared to non-alcohol 
controls.8 Alcohol-consuming mice also had lower 
levels of IL-21 and IL-17A, neutrophils, monocytes, 
plasma B cells and IgG levels.8 The authors also 
found that both alcohol and acetate affected the 
functional state of T follicular helper (TFH) cells 
in vitro and in vivo, leading to suppression of IL- 
21 secretion.8 These findings are intriguing as TFH 
cells are often found in synovial joints in RA 
patients and are also important mediators of gut 
immunity, suggesting a possible link between 
immune processes in the gut and RA. In another 
CIA study, moderate alcohol (10% ethanol in 
water) delayed the onset and ameliorated the pro
gression of CIA via an increase in endogenous 

testosterone, inhibition of nuclear factor 
B activation and down-regulation of leukocyte 
migration.77

Alcohol’s pro- and anti-inflammatory effects on 
the gut

The gut microbiome, composed of trillions of 
microorganisms, is increasingly considered to be 
one of the critical environmental factors in modu
lating the immune system and risk of autoimmune 
diseases. For example, fecal transplantation of gut 
bacteria from patients with SLE and MS to animal 
models can reproduce disease symptoms in 
animals.78,79 Conversely, supplementation of 
a dysbiotic microbiome with diverse commensal 
species through fecal transplant has therapeutic 
benefits in IBS and MS.80–82 Similarly, in animal 
studies, antibiotic ablation of the gut flora is suffi
cient to prevent EAE onset entirely, while the intro
duction of strains of Erysipelotrichaceae and 
Lactobacillus reuteri exacerbates EAE symptoms 
and increases autoreactive T-cells.83 In an RA 
model in germ-free mice, the introduction of seg
mented filamentous bacteria (SFB) was sufficient 
for the development of arthritis via Th17 
response.84 Likewise, in non-germ-free RA mice, 
oral gavage of SFB drove the differentiation and 
migration of TFH cells systemically, leading to auto
antibody generation and arthritis exacerbation.85

As alcohol is largely metabolized within the GI 
tract, it is a prime factor to impact gut microbiome 
composition, gut immune system and downstream 
systemic immune communications with other 
organs. In the following section, we will focus on 
alcohol’s effects on the gut, gut immune system and 
gut metabolism of fatty acids and how these effects 
may translate into pro-inflammatory vs protective 
effects in autoimmune diseases.

Pro-inflammatory effects of high-dose alcohol on 
the gastrointestinal tract, gut microbiome, gut 
metabolites and nutrients

Microbiome transfer from high-dose alcohol-fed 
mice to alcohol-naïve germ-free mice has been 
shown to induce intestinal inflammation in the 
recipient mice.86 Potential explanations for how 
high-dose alcohol may induce gut inflammation 
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include alteration of the gut microbiome (dys
biosis) in alcohol-metabolizing species, bacterial 
cytotoxicity, changes to enteric peristalsis and 
hepatotoxicity (liver steatosis and cirrhosis).87–90 

Microbiome dysbiosis can lead to impaired 
intestinal permeability and promote inflamma
tion via systemic translocation of gut bacterial 
endotoxin, LPS, activation of TLR and nuclear 
factor-κB (NF-kB) on immune cells and induc
tion of inflammatory iNOS17,19,20. In turn, hepa
totoxicity interferes with the liver’s ability to 
detoxify substances, which results in systemic 
accumulation of alcohol’s toxic metabolite, 
acetaldehyde.91 In addition, LPS-mediated activa
tion of liver-resident macrophages, Kupffer cells, 
further contributes to pro-inflammatory cytokine 
release and propagation of systemic 
inflammation.92

There are also specific microbiota changes that 
have been described in animal and human high- 
dose alcohol studies (Table 2). In human alcohol 
use disorder (AUD) studies, dysbiosis has been 
characterized by lower Bacteroidetes,89,93 lower 
Akkermansia muciniphila,9412195 and higher 
Proteobacteria.89 In animal models of high-dose 
alcohol consumption, alcohol-consuming animals 
have reduced bacterial diversity along with lower 
Bacteroidetes, elevated Proteobacter, elevated 
Actinobacter,94 reduction in Firmicutes and eleva
tion in Bacteroidetes.96 However, not all studies 
have noted a reduction in Firmicutes in response 
to high-dose alcohol. For example, voluntary self- 
administration of chronic high-dose alcohol in 
macaques resulted in reduced Bacteroidetes, ele
vated Firmicutes and a complete absence of 
Akkermansia muciniphila during the drinking per
iod, while abstinence from drinking restored base
line bacterial species.90

In addition to changes in microbiota, high-dose 
alcohol can also decrease immunomodulatory gut 
metabolites such as aryl hydrocarbon receptor 
(AhR).97 AhR is a transcriptional factor expressed 
in immune cells and is known to impact T cell 
differentiation, effector and regulatory T cell func
tions. AhR aberrant expression has also been linked 
to autoimmune dysregulation.98,99 As AhR ligand 
administration is beneficial in autoimmune dis
eases, lower levels of AhR due to chronic high- 

dose alcohol may potentially contribute to autoim
mune disease exacerbation.

Lastly, chronic high-dose alcohol intake can 
cause malabsorption and nutrient deficiencies.100 

In turn, nutrient deficiencies for vitamins such as 
thiamine, cyanocobalamin and vitamin D can 
exacerbate different autoimmune conditions.101

Anti-inflammatory effects of low-to-moderate 
alcohol on the gut microbiome, gut metabolites and 
fatty acids

An important way in which alcohol may beneficially 
impact autoimmune inflammation is via its effects 
on fatty acid metabolism in the gut. While at high 
doses alcohol is known to lead to fatty acid dysregu
lation and development of fatty liver disease,102–104 

at lower doses, alcohol may contribute to the gen
eration of gut-derived anti-inflammatory fatty acids, 
such as short-chain fatty acids (SCFAs) and polyun
saturated fatty acids (PUFAs)103,104 (Figure 1).

SCFAs, including formate, acetate, propionate and 
butyrate, are a class of carboxylic acids produced 
primarily through microbial fermentation of dietary 
fiber.106 Importantly, SCFAs are known to have 
important anti-microbial and anti-inflammatory 
properties and to reduce inflammation in autoim
mune diseases.107,108 Oral supplementation of SCFA 
cocktail has been shown to be sufficient to reduce 
autoreactive Th1 and Th17 cell activity and to dam
pen disease severity in animal models of autoimmune 
colitis and EAE.109,110

There are potentially two ways in which low-to- 
moderate alcohol consumption can modulate SCFA 
production. First, low-to-moderate alcohol can alter 
SCFA-producing microbial communities in the gut, 
such as Akkermansia muciniphila.111 Caslin, Maguire 
et al. showed that moderate alcohol consumption 
(2.6% ABV Lieber-DeCarli diet) increased levels of 
Akkermansia muciniphila in the gut in association 
with reducing disease severity in EAE.11 Similarly, 
Lee et al. found that short-term alcohol consumption 
(5 days of 0.8 g/kg intragastric) elevated Akkermansia 
muciniphila levels in mice, an elevation not observed 
in groups consuming fermented rice liquor (FRL) of 
equivalent alcoholic strength.112 In addition, alcohol 
itself is metabolized into the SCFA, acetate,113 and 
animals fed a Lieber-DeCarli diet for 8 weeks show 
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elevated levels of acetic acid compared to controls.114 

Thus, low-to-moderate alcohol could impact SCFA 
balance both by influencing SCFA producing bacteria 
and via acetate production (Figure 1).

Another potential mechanism of low-to-moderate 
alcohol’s protection in autoimmune diseases may rely 
on alcohol’s important role in the metabolism of 
essential PUFAs, such as docosahexaenoic acid 
(DHA) and eicosapentaenoic acid (EPA).103,105 

These PUFAs can reduce reactive oxygen species for
mation and act as anti-inflammatory molecules. Low- 
to-moderate dose alcohol has been shown to increase 
PUFA production,115 while at high alcohol doses, 
PUFA concentration decreases due to increased fatty 
acid catabolism.103 Of note, PUFAs and PUFA deri
vatives, such as resolvins, lipoxins and protection, 
have been linked to the mitigation of autoimmune 
diseases.116,117 In addition, an increase in PUFAs has 
also been shown to be cardioprotective in multiple 

studies.118–120 As cardiovascular health is becoming 
an important factor in autoimmune disease outcomes, 
it is possible that this may be another protective 
mechanism mediated by low-to-moderate alcohol 
(Figure 1).

Protective effects of low-moderate alcohol on the 
gut microbiome in models of multiple sclerosis

In an animal model of MS, EAE, Caslin, Maguire et al. 
administered a 2.6% moderate alcohol or isocaloric 
diet to both male and female C57BL/6 J mice and 
observed that males on the diet exhibited a greater 
long-term disease remission while females initially 
experienced remission and a subsequent disease 
exacerbation.11 In this study, a moderate alcohol diet 
resulted in sex-specific gut microbiota alterations in 
individual immunoregulatory taxa, such as 
Turicibacter, Akkermansia and Prevotella, and also 

Table 2. Alcohol induced gut microbiota alterations by dose and alcohol diet duration.

Alcohol Model Alcohol Model Details Diet Duration
Subject 
Model Microbiota Reference

Chronic 
(Alcohol Liver Disease)

National Institute on Alcohol 
Abuse and Alcoholism, 
criteria for alcoholism (Men: 
>14 drinks/wk or >4 drinks/ 
occasion Women: >7 drinks/ 
wk or >3 drinks/occasion)

Alcohol consumption ≥10 yrs Human ↑Proteobacteria 
↑Gammaproteobacteria 
↑Bacilli 
↓Clostridia 
↓Bacteriodetes 
↓Verrucomicrobiae

Mutlu et al., 
2012

Chronic (Alcohol 
Dependence (AD))

Diagnostic and Statistical 
Manual of Mental Disorders 
IV criteria for AD

19 days of rehab/alcohol 
abstinence in patients with AD

Human ↑Ruminococcaceae 
↑Bifidobacterium 
↑Lactobacillus 
↓Erysipelotrichaceae 
↓Holdemania

Leclercq et al., 
2014

Chronic (Alcohol Use Disorder 
(AUD))

Less heavy drinkers (<10 
drinks/d) vs high heavy 
drinkers (≥10 drinks/d)

4 weeks of abstinence in patients 
with AUD

Human Less Heavy Drinkers 
↑ Erysipelotrichaceae 
↑ Lachnospiraceae

Ames et al., 
2020

Chronic (Alcohol 
Dependence Syndrome 
(ADS))

ICD-10 definition of alcohol 
dependence syndrome +/- 
liver cirrhosis

ADS: ≥8 years Human ↑ Klebsiella 
↑ Lactobacillus 
↑ Bifidobacterium 
↓ Prevotella, 
↓ Faecalibacterium 
prausnitzii 
↓ Acidaminococcus 
↓ Clostridiales

Dubinkina et 
al., 2017

Chronic 0.8-2.2 g/kg 5 years Macaque ↑Firmicutes: 
Streptococcaceae 
↑ Firmicutes : 
Bacteriodes ratio

Zhang et al., 
2019

Chronic 2.6% Lieber-DeCarli diet 65 days Mouse ↑ Turicibacter 
↑ Akkermansia 
↑ Prevotella 
↑ Clostridium 
↑ Verrucomirobia : 
Firmicute

Caslin, Maguire 
et al., 2019

Chronic Vapor chamber 
175 ± 25 mg/dL

4 weeks Mouse ↑Rikenellaceae 
↑Alistipes 
↓Clostridium lV 
↓Clostridium XiVb  
↓Dorea 
↓Coprococcus 
↓Propionibacterium

Peterson et al., 
2017

GUT MICROBES e1916278-9



led to significant enrichment in beneficial Clostridial 
and Firmicute networks of bacteria.11 Another study 
evaluating a moderate alcohol model of 10% (vol/vol) 
in EAE also documented EAE amelioration in alco
hol-consuming C57BL/6 J mice and implicated gut- 
related TFH cells mechanistically.8

Conclusions and future directions

Overall, current evidence points to a dose-dependent 
association between alcohol and disease severity in 
multiple autoimmune diseases, including autoim
mune thyroid disease, diabetes, SLE, RA and MS. At 
low-to-moderate doses, alcohol appears to have pro
tective effects, while at higher consumption patterns, 
alcohol can be addictive and can contribute to detri
mental symptomatic effects on the host and worse 
autoimmune disease outcomes.

Though the exact mechanism by which low-to- 
moderate alcohol mediates autoimmune disease 
amelioration remains to be fully understood, emer
ging mechanistic studies suggest that low-to- 
moderate alcohol likely has both a systemic 
immunomodulatory role, such as shifting the bal
ance of anti-inflammatory innate and adaptive 
immune cells and cytokines/chemokines, as well as 
a role in sculpting the composition of the gut micro
biome and their fatty acid metabolites, such as 
SCFAs and PUFAs.

Future prospective patient studies that account 
for sex, age, cultural and socioeconomic back
ground, alcohol type, timing of administration 
and mechanistic animal model studies on the gut 
microbiome and the immune system will be critical 
to better understand alcohol’s role in autoimmune 
diseases. In turn, this knowledge will help guide the 
creation of specific clinical recommendations on 
alcohol consumption in patients with autoimmune 
diseases as well as help identify protective immune 
and gut-derived biomarkers that could be used in 
the treatment of autoimmune diseases indepen
dently of alcohol.
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