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We propose a mini-max feedback control (MMFC) model as a robust approach to human
motor control under conditions of uncertain dynamics, such as structural uncertainty. The
MMFC model is an expansion of the optimal feedback control (OFC) model. According to
this scheme, motor commands are generated to minimize the maximal cost, based on an
assumption of worst-case uncertainty, characterized by familiarity with novel dynamics.
We simulated linear dynamic systems with different types of force fields–stable and
unstable dynamics–and compared the performance of MMFC to that of OFC. MMFC
delivered better performance than OFC in terms of stability and the achievement of tasks.
Moreover, the gain in positional feedback with the MMFC model in the unstable dynamics
was tuned to the direction of instability. It is assumed that the shape modulations of the
gain in positional feedback in unstable dynamics played the same role as that played by
end-point stiffness observed in human studies. Accordingly, we suggest that MMFC is a
plausible model that predicts motor behavior under conditions of uncertain dynamics.
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INTRODUCTION
It is necessary to interact with various environments to learn
how to use tools and to participate in unfamiliar sports, such
as tennis and swimming. Skilled actions are achieved via inter-
active forces, based on human compensation. A considerable
amount of research has focused on arm movement, to inves-
tigate learning mechanisms for adaptation to perturbed limb
dynamics. It has been suggested that there are different mech-
anisms for adapting to stable and unstable dynamics (Franklin
et al., 2003a,b; Osu et al., 2003). Under conditions where the
dynamics are stable, it is possible to learn the forces necessary
to compensate for perturbed dynamics in a feed-forward manner
(Shadmehr and Mussa-Ivaldi, 1994). However, unstable dynamics
make it necessary to learn the optimal mechanical impedance as
the magnitude, shape, and orientation of the end-point stiffness
(Figure 1A) (Burdet et al., 2001). Although an internal model
can compensate for both stable and unstable dynamics, mecha-
nisms have been identified for adapting to different approaches
(Franklin et al., 2003b; Osu et al., 2003). Osu et al. reported that
an inverse dynamics model that controlled the net joint torque
performed well in a stable environment. However, in an unstable
environment, the inverse dynamics model functions in parallel
with an impedance controller to compensate for a consistent per-
turbing force (Osu et al., 2003). It has also been suggested that
the impedance controller assists in the formation of the inverse
dynamics model and contributes to improved stability (Franklin
et al., 2003b). Both approaches are used selectively and combined
in accordance with environmental dynamics.

Optimal feedback control (OFC) theory (Todorov and Jordan,
2002), which has been supported by the results of experimen-
tal and simulation studies (Liu and Todorov, 2007; Lockhart
and Ting, 2007; Izawa and Shadmehr, 2008; Izawa et al., 2008;
Nagengast et al., 2009; Pruszynski et al., 2011; Ueyama and
Miyashita, 2013, 2014), suggests that the central nervous system
sets up feedback controllers that continuously convert sensory
input into motor output, optimally tuned to the task at hand, by
trading off energy consumption with constraints, such as accu-
racy, on performance. According to OFC, trajectory planning is
not required because the problems of motor planning and con-
trol are combined. An important feature of the model is the
concept of minimum intervention: i.e., setting up feedback con-
trollers only to correct variation deleterious to the task (Wolpert
and Flanagan, 2010). For example, in a tennis serve, variation
in the azimuth angle of the racket head should be corrected far
less strongly than variation in the elevation angle, because the
azimuthal variation has little effect on whether the ball will land
in the court, whereas elevation variability can threaten the goal of
landing the ball in the court. OFC is based on a linear-quadratic-
Gaussian (LQG) design, which is used to describe uncertain
linear systems disturbed by additive white Gaussian noise with
imperfect state information (Todorov, 2005). However, a precise
forward dynamics model is required. The control and sensory
noise must be modeled as Gaussian statistics; however, real-world
sensorimotor uncertainties are represented by non-Gaussian dis-
tributions (Orban and Wolpert, 2011). In the engineering field,
robust control design has been used in various situations, because
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FIGURE 1 | Stiffness modulation and mini-max feedback control

(MMFC). (A) Adaptation of stiffness geometry to unstable dynamics. The
stiffness changes to the red dotted ellipse from the initial blue solid

form. The long and short axes of the ellipse represent the directions of
maximal and minimal stiffness, respectively. (B) Block diagram of MMFC
with uncertainty.

it does not require precise dynamic models for the control objects.
It is necessary to represent the uncertainties of the dynamics
model in a quantitatively expressible form, because the objective
of robust control is to configure a control system to allow for
such uncertainties. There are essentially two ways of represent-
ing the uncertainties: as unstructural or structural uncertainties.
An unstructural uncertainty is represented as a perturbation of
the transform function in the frequency domain. In contrast, a
structural uncertainty is represented by an additive disturbance
combined with the process and sensory noise, such as environ-
mental dynamics, in the state-space model. H∞ control is a robust
control technique that addresses the issue of worst-case con-
troller design for linear plants subjected to unknown additive
disturbances and plant uncertainties, including problems of dis-
turbance attenuation and model matching and tracking (Djouadi
and Zames, 2002). Furthermore, the role of game theory in the
design of robust controllers, such as H∞ control, has also been
recognized (Anderson and Moore, 1979; Bernhard, 1995), with
the terminology “mini-max controller” adapted from statistical
decision theory (Savage, 1955). Moreover, the brain might also be
treated as an integrated robust control system in which compo-
nents for sensing, computation, and decision are useful primarily
to the extent that they affect action (Doyle and Csete, 2011).

Here, we applied a mini-max feedback controller (MMFC)
to a sensorimotor control problem with environmental dynam-
ics as a structural uncertainty (Figure 1B). MMFC operates as
an extended model of OFC, by incorporating prior influence
characterized by familiarity with novel dynamics. Such expan-
sion of motor control and planning models has been recognized
as a major factor in movement generalization (Yan et al., 2013).
We performed numerical simulations and compared the per-
formance of MMFC with that of OFC, as a reference, in dif-
ferent types of force fields with stable and unstable dynamics.
In our simulations, mini-max feedback control showed bet-
ter performance than OFC under conditions of dynamics, and
could predict the impedance modulation in unstable dynamics

to improve stability. These observations suggest that MMFC is a
plausible model that predicts behaviors under structural uncer-
tainty. Preliminary results of this study were presented in the
proceedings of a conference (Ueyama and Miyashita, 2011).

MATERIALS AND METHODS
In this paper, the solution to a robust control problem was
obtained via a mini-max approach applied to dynamic game
problems (Başar and Bernhard, 1995). We modeled the dynamics
as structural uncertainties to apply the mini-max approach; the
simulations used simple Euler integration with a 5 ms sampling
time.

MINI-MAX CONTROL PROBLEM
The MMFC problem requires a control object to be represented as
a generalized plant model. We provide the model with structural
uncertainty, and the solution is obtained by minimizing energy
consumption under conditions of maximal uncertainty.

Problem definition
The dynamics of a system are described by the following equation:

{
xk+ 1 = Axk + Buk +Dw̄k

yk = Cxk + v̄k
, (1)

where xk, uk, and yk are the state, input, and output vectors,
respectively, at time step k (k = 0, 1, . . . , N − 1), and the dynam-
ics are described by the three matrices, A, B, and C. w̄k denotes a
disturbance vector, and v̄k is a sensory noise vector, represented as
zero-mean Gaussian white noise with unity covariance. The sys-
tem can be rewritten as follows when a disturbance, such as an
environmental perturbation or motor noise, affects the dynamics:

{
xk+ 1 = (A+�A) xk + (B+�B) uk

yk = (C+�c) xk + v̄k
, (2)
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where �A, �B, and �C represent disturbances corresponding to
the state, input, and output, respectively. A disturbance should
be modeled as an uncertainty in the internal model. Thus, these
disturbances are assumed to have the following form:

�A = DaFakEa,�B = DbFbkEb,�C = DcFckEc,

where Da, Db, Dc, Ea, Eb, and Ec are constant matrices, and Fak,
Fbk, and Fck are time-varying matrices satisfying the following
conditions: FT

ak Fak < I, FT
bk Fbk < I, FT

ck Fck < I. The system can
be transformed to the equivalent system as follows:

{
xk+ 1 = Axk + Buk +

[
Da Db 0

]
w̄k

yk = Cxk +
[

0 0 Dc
]

w̄k +Dyvk
,

where,

w̄k =
⎡
⎣ Fak 0 0

0 Fbk 0
0 0 Fck

⎤
⎦ zk, zk =

⎡
⎣ Ea

0
Ec

⎤
⎦ xk +

⎡
⎣ 0

Eb

0

⎤
⎦ uk.

Here, zk denotes the regulated output vector. Then, a system
with structural uncertainty can be reduced to the following form,
known as a generalized plant model (Zhou and Doyle, 1998):

⎧⎨
⎩

xk+1 = Axk + Buk +Dwk

zk = Hxk + Guk

yk = Cxk + Ewk

, (3)

where,

H =
⎡
⎣ Ea

0
Ec

⎤
⎦ , G =

⎡
⎣ 0

Eb

0

⎤
⎦ , D = [

Da Db 0 0
]
,

E = [
0 0 Dc Dy

]
, wk =

[
w̄k

vk

]
.

According to OFC, the cost function J(u) is given by,

J(u) =
N − 1∑
k= 1

zT
k zk + xT

N QN xN , (4)

where QN denotes a terminal state cost weight matrix. Instead,
our proposed model adopts the cost function Jγ (u,w), given by
the following equation:

Jγ (u, w) = J(u)− γ 2
N − 1∑
k= 1

wT
k wk, (5)

where γ is a scalar parameter representing the level of distur-
bance attenuation. The objective of robust control is to determine
the appropriate input for a worst-case disturbance. Thus, the
robust control problem is related to the mini-max problem of

minimizing the input u for a maximized disturbance w:

inf
u

sup
w

Jγ (u, w).

This cost function requires a task to be achieved with minimal
energy consumption for the worst case of uncertainty as the max-
imized disturbance, in a manner analogous to the OFC problem:
LQG design, which is described by a quadratic cost, and gives the
solution as a combination of the feedback control law and a state
estimator.

Solution
As in the LQG design, a solution of the MMFC problem can be
written in a state feedback form:

uk = −Lkx̂k, (6)

where x̂k and Lk are the estimated state and feedback gain,
respectively. The estimated state and feedback gain are computed
from two discrete Riccati differential equations of the following
form:

Mk = Qk + AT(M−1
k+ 1 + BBT − γ−2DDT)−1A

with MN = QN ,

�k+ 1 = A(�−1
k + CT N−1C− γ−2Qk)−1AT +DDT

with �1 = Q−1
0 ,

where Mk and �k denote the solutions of the Riccati equations
obtained by the respective backward and forward time calcula-
tions. Here, we adopt the following assumptions to simplify the
derivations:

GT G = I, HT G = 0, EET = N, HT H = Qk.

These assumptions do not affect the generalizability, and they
allow describing equations in simple forms, maintaining consis-
tency with the OFC. Using these solutions, the feedback gain and
estimated state are given by the following:

Lk = BT
(

M−1
k+ 1 + BBT − γ−2DDT

)−1

A
(

I− γ−2�kMk
)−1

, (7)

x̂k+ 1 = Ax̂k + Bûk + A
(
�−1

k + CT N−1C− γ−2Qk

)−1

·
{
γ−2Qkx̂k + CT N−1 (

yk − Cx̂k
)}

. (8)

The estimated disturbance diverges to infinity if the level of
disturbance attenuation γ is close to zero. Thus, the level
of γ cannot be chosen freely and must satisfy the following
constraints:

M−1
k+ 1 − γ−2DDT > 0 and �−1

k − γ−2Qk > 0. (9)

The strong concavity condition is given by
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�̃
−1
k+ 1 − γ−2Mk+ 1 > 0 or �−1

k − γ−2M̃k > 0, (10)

where

M̃k = AT(M−1
k+ 1 − γ−2DDT)−1A+Qk, M̃N = QN ,

�̃k+ 1 = A(�−1
k − γ−2Qk)−1AT +DDT, �̃1 = Q−1

0 .

The constraints above can be translated into equivalent condi-
tions on the spectral radius (i.e., the maximum of the abso-
lute values of the eigenvalues) because the spectrum radius is
equal to the norms of Mk+ 1DDT , �kQk, �̃k+ 1Mk+ 1, and
�kM̃k. Thus, Equations (9) and (10) require the following con-
ditions be satisfied: ρ(Mk+ 1DDT) < γ 2, ρ(�kQk) < γ 2, and
ρ(�̃k+ 1Mk+ 1) < γ 2 or ρ(�kM̃k) < γ 2, where ρ is the kernel of
the spectral radius.

APPLICATION TO A SENSORIMOTOR SYSTEM
We applied the MMFC approach to a sensorimotor system. The
dynamics model is based on previous studies (Todorov, 2005;
Izawa and Shadmehr, 2008; Izawa et al., 2008; Braun et al., 2009).
The dynamics were simulated with uncertainties, represented by
force fields: a velocity-dependent force field (VF) and a divergent
force field (DF), representing stable and unstable environments,
respectively (Franklin et al., 2003a,b; Osu et al., 2003). We also
designed both optimal and mini-max feedback controllers for the
problem and compared their performances.

Sensorimotor system
Dynamics model. We modeled a movement with two degrees of
freedom, such as multi-joint flexion and extension of the shoul-
der and elbow joints, as cursor movements on a screen, described
by shifting the position p(t) = [x(t), y(t)]T to designated targets
p∗ = [x∗, y∗]T :

mp̈(t) = f(t)− bṗ(t), (11)

where m and b are the end-point mass and viscosity, respectively,
and are set equal to m = 1.0 (kg) and b = 10 (Ns/m). The com-
bined action of all muscles is represented by the force vector f(t) ∈
R2 acting on the hand. The motor command u(t) ∈ R2 is trans-
formed into the force f(t) by adding control-dependent multi-
plicative noise and by applying a simplified first-order muscle-like
low-pass filter of the following form:

ḟ(t) = (I+ σ uε(t))u(t)− f(t)

τ
, (12)

with time constant, τ = 0.05 (s). The motor command u(t) is
disturbed by signal-dependent multiplicative noise that exists in
the neural system (Matthews, 1996), and plays an important
role in motor planning (Harris and Wolpert, 1998). The signal-
dependent noise (SDN) is given by the Gaussian white noise
ε(t) ∼ N(0, I) and the magnitude σ u is set equal to 0.5.

Observation model. In our model, the state variables cannot be
observed directly. The sensory output y(t) ∈ R8 is the position,

velocity, force, and target position disturbed by sensory noise, and
is given by:

y(t) =

⎡
⎢⎢⎣

p(t)
ṗ(t)
f(t)
p∗

⎤
⎥⎥⎦+ σyv(t), (13)

where v(t) ∈ R8 and σy ∈ R8×8 are the Gaussian white noise
v(t) ∼ N(0, I) and the diagonal matrix defined by σy =
diag([0.02c, 0.02c, 0.2c, 0.2c, c, c, 0, 0]), respectively. Here, c is
the scaling parameter, equal to the SDNs: i.e., c = σ u = 0.5, sim-
ilar to a previous study (Todorov, 2005). The task is to move the
hand from the starting position p(0) = [0, 0]T to the target posi-
tion p∗, which is located at a distance of 25 cm, and to stop at
the terminal period between 600 and 700 ms, in accordance with
experiments (Franklin et al., 2003a,b; Osu et al., 2003).

Environmental uncertainty
We assumed two different types of force field as uncertainty envi-
ronments, VF and DF. The force fields exert a force Fext(t) ∈ R2

on the hand. The force generated by the VF is

Fext(t) = FVF ṗ(t), FVF = α

[
13 −18
18 13

]
, (14)

where α is a scaling parameter, set equal to 0.1 to generate effective
perturbation for the trajectory. When reaching forward, the force
is directed forward and to the left, as the velocity along the y-axis
is increased (Figure 2A). DF produces a negative elastic force per-
pendicular to the target directions, with a value of zero along the
y-axis: i.e., no force is applied when the path of the hand follows
the y-axis, but the hand is pushed away whenever it deviates from
the y-axis (Figure 2B). DF teaches subjects to move in a straight
line, but to show no after-effects on the removal of the field. The
task is achieved by increasing the stiffness of the arm, but only
in the direction of maximum instability (Figure 1A). The force
generated by DF is described by

Fext(t) = FDFp(t), FDF = β

[
1 0
0 0

]
, (15)

where β is a scaling parameter, set equal to 100 to generate
effective perturbation for the trajectory. Although end-point tra-
jectories were almost straight without external dynamics, the
initial movement direction varied slightly from trial to trial, due
to motor output variability (Burdet et al., 2001). Thus, because
DF produces an unstable interaction with the arm to amplify such
variation by pushing the hand with a force proportional to the
deviation from the y-axis, the initial trials in DF exhibited unsta-
ble behavior, diverging widely to the right or left of the y-axis.
We also examined the additional DF case of a rotated divergent
force field (rDF), which is necessary to reach a rotated position
(Figure 2C). The exerted force is also rotated. If the target is
realigned at an angle θ in the clockwise direction, the force is then
given by
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FIGURE 2 | Illustration of force field dynamics. (A) Velocity-dependent force field (VF). (B) Divergent force field (DF). (C) Rotated divergent force field (rDF).
The target and applied force are rotated 30◦ in the clockwise direction.

FDF = β

[
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

]
. (16)

In this study, the rotational angle θ was set equal to 30◦. With
these force fields, the dynamic uncertainties can be expressed as
follows:

�A =
⎡
⎣ 04×2 04×2 04×6

02×2 FVF 02×6

02×2 02×2 02×6

⎤
⎦ or �A =

⎡
⎣ 04×2 04×2 04×6

FDF 02×2 02×6

02×2 02×2 02×6

⎤
⎦ .

In both cases, the environmental uncertainties do not depend
on the motor command; however, the motor command is dis-
turbed by the SDN. Thus, the uncertainty of the motor command
is represented by �B = σ u · B · ε(t).

Controller design
We carried out numerical simulations using both OFC and
MMFC to compare their performances. In our simulations, the
dynamics model was rewritten as a discrete-time system, using a
state-space formulation:

xk+ 1 = Axk + B (I+ σ uεk) uk, (17)

yk = Cxk + σyvk, (18)

where xk ∈ R8 is a state-space vector at time step k, defined by
xk = [pT

k ,�T
k , fT

k , p∗T]T . The matrices describing the system, A ∈
R8×8, B ∈ R8×2, and C ∈ R8×8, are expressed as follows:

A =

⎡
⎢⎢⎣

I2×2 � · I2×2 02×2 02×2

02×2 I2×2 �/m · I2×2 02×2

02×2 02×2 (1−�/τ ) · I2×2 02×2

02×2 02×2 02×2 I2×2

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

02×2

02×2

�/τ · I2×2

02×2

⎤
⎥⎥⎦ , C = I,

where � is a single time step of the simulation, set equal to � =
0.005 s.

In these simulations, we assumed two types of condition: (i)
with structural uncertainty and (ii) without structural uncer-
tainty. Under the condition with structural uncertainty, the sys-
tem matrix A of the state-space Equation (3) is not equal to the
actual dynamics including the force field. In contrast, under the
condition without structural uncertainty, the force field dynam-
ics are completely represented in the internal model. Thus, the
system matrix A in Equation (3) is replaced by A+�A.

Optimal feedback controller. An optimal feedback controller also
generates motor commands, thus forming state feedback, as in
Equation (6). The feedback gain is computed to minimize the
following cost function:

J(u) =
N∑

k=Ns + 1

(
w2

p

∥∥pk − p∗
∥∥2 + w2

v

∥∥ṗk

∥∥2 + w2
f

∥∥fk

∥∥2
)

+
N − 1∑
k= 1

‖uk‖2 , (19)

where wp, wv, and wf are the cost weights of the end-point
position, velocity, and force, with the assigned values, wp = 104,
wv = 103, and wf = 102, respectively, to achieve the reaching task
adequately without external dynamics, i.e., null force field (NF).
In addition, the terminal cost is defined to evaluate the states
between Ns = 0.6/� and N = 0.7/� steps. Thus, the cost func-
tion requires the expected state to be stabilized at close to the
target in the terminal period (Ns < k < N). The feedback gain
is determined by

Lk = (BT Sk+ 1B+ I)−1BT Sk+ 1A, (20)

where Sk+ 1 is found by solving the Riccati equation

Sk = AT Sk+ 1(A− BT Lk)+Qk with SN = QN ,
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where Qk ∈ R8×8 is the task cost matrix, given by Qk = qT
k qk,

where

qk =

⎡
⎢⎢⎣

wp · I2×2 02×2 02×2 −wp · I2×2

02×2 wv · I2×2 02×2 02×2

02×2 02×2 wf · I2×2 02×2

02×2 02×2 02×2 02×2

⎤
⎥⎥⎦ (k > Ns),

or qk = 0 (k ≤ Ns).

The cost weights are also used in the mini-max feedback con-
troller design, and tuned to accomplish the tasks for all conditions
in the MMFC. The state of the system is estimated from noisy
observation using Kalman filtering and is expressed as follows:

x̂k+ 1 = Ax̂k + Buk + Kk(yk − Cx̂k), (21)

where Kk ∈ R8×8 is the Kalman gain: i.e., a function of the uncer-
tainty of the estimated state and the measurement noise. We
adapted a standard technique to calculate the gain, as follows:

Kk = Pk | k− 1CT(CPk | k− 1CT + σyσ
T
y )−1, (22)

where Pk|k−1 ∈ R8×8 is the predicted accuracy of the state estima-
tion and is given by

Pk|k− 1 = APk− 1|k− 1AT + (Bσuuk)(Bσuuk)T

with Pk|k = (I− KkC)Pk|k− 1.

The Kalman gain is computed concurrently at each time step
in the simulation, starting with the initial condition P0|0 =
10−3 × I.

Mini-max feedback controller. To apply the MMFC approach,
uncertainty must be modeled as familiarity with itself. Thus, we
represent the familiarity by the matrices Da ∈ R8×8, Db ∈ R8×8,
Dc ∈ R8×8, and Dy ∈ R8×8, given by Da = κ�A, Db = λσ uB,
Dc = 0, and Dy = λσy, where κ and λ are the scaling param-
eters of familiarity. The parameter κ was set to a range of a
closed interval [0, 1]. When the force field dynamics cannot be
predicted—i.e., Da = 0 (κ = 0)–the structural uncertainty is not
modeled. When the force field dynamics are modeled completely
as the structural uncertainty, Da = �A(κ = 1). The controller is
then designed to maximize the effect of the dynamics as the worst-
case assumption. In addition, Db and Dy must be sufficiently large
to exceed the maximum value of distribution, and hence the scal-
ing parameter λ is set to λ = 5. This seems sufficient for the
disturbances, because the SDN and sensory noise have a standard
Gaussian white noise distribution.

Matrices representing the regulated outputs Ea ∈ R8×8, Eb ∈
R8×8, and Ec ∈ R8×8 were given to satisfy the assumption GT G =
I and HT G = 0 by:

Ea =
{

qk (k > Ns)
I (k ≤ Ns)

, Eb = I, Ec = 0. (23)

The terminal cost matrix QN has already been defined in the opti-
mal feedback controller design, and the initial error cost Q0 ∈

R8×8 is defined as Q0 = P0|0. Finally, the disturbance attenuation
level γ is set equal to 107 to satisfy Equations (9) and (10).

RESULTS
We performed numerical simulations of point-mass reaching
movement in different types of force fields–VF, DF, and rDF–
using OFC and MMFC. The simulations were carried out 100
times for each case.

COMPARISON OF TRAJECTORIES
We compared the trajectories of OFC and MMFC. Then, the end-
point distributions were computed from the lateral distances of
the target direction (based on curvature > 0.03 mm−1), follow-
ing a previous report (Osu et al., 2003). The trajectories were
almost straight lines for OFC in NF (Figure 3A). However, under
conditions of a force field, reaching the target was difficult. In
VF, the trajectories curved to the left (Figure 3B). In DF and
rDF, the trajectories diverged to the left and right in accordance
with the directions of the targets (Figures 3C,D). When the force
field dynamics were modeled internally, i.e., A← A+�A, the
trajectories in VF came close to the targets with a curve; how-
ever, the trajectories of DF and rDF did not achieve their targets
(Figures 3E–G). Under the rDF condition, in particular, some
trajectories could not aim toward the target even immediately
after the onset of movement. The behavior difference from DF
was caused by cross talk in the coordinates. In DF, deviance
on the x-axis was independent on the hand position on y-axis,
because the diagonal components of the feedback gain were zero.
In rDF, conversely, the lateral deviancy affected the vertical dis-
tance between the target hand positions through the feedback
gain, and the task required more motor effort to reach the same
distance to DF because each actuator acted on only the x- or
y-axis.

As with OFC, the trajectories of MMFC were almost straight
lines in NF (Figure 4A). In VF, although the trajectories curved
gradually after the onset of movement, they turned suddenly
toward the target, even when the force field dynamics was not
completely known (Figure 4B). In DF and rDF, even if the tra-
jectories had diverged after the onset of movement, they finally
converged to the target (Figures 4C,D). These trajectories were
similar to those obtained from the results of initial trials, during
adaptation to the same types of dynamics, in human experiments
(Osu et al., 2003). However, in VF without structural uncer-
tainty of force fields, i.e., A← A+�A and κ = 0, the trajectories
curved slightly to the right direction and achieved the target
(Figure 4E). Subsequently, the trajectories were straight lines in
DF and rDF (Figures 4F,G).

The familiarity parameter κ(0 ≤ κ ≤ 1) affects the perfor-
mance of MMFC directly, because the structural uncertainty of
the force fields was not reflected in the motor control when κ = 0.
Thus, we evaluated the effect on the trajectories (Figure 5). When
κ = 0, the trajectories could not reach the targets in all condi-
tions, and those of DF and rDF diverged. With the increase in
the parameter κ , the trajectories were close to the targets under
all conditions. The variability of the trajectories as well as the
end-point errors were decreased in DF and rDF. In addition, the
quadratic costs, given by Equation (19), decreased to a slightly
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FIGURE 3 | Simulated trajectories of optimal feedback control (OFC).

Solid lines indicate the simulated trajectories for 10 randomly selected
simulations. Gray circles denote the targets. Histograms at the bottom of the

trajectories show distributions of the end-point positions (based on curvature
> 0.03 mm−1). (A) Null force field (NF) condition. (B–D) With structural
uncertainty of force fields. (E–G) Without structural uncertainty of force fields.

greater degree than those of the end-point errors, and the perfor-
mances were saturated at around κ = 0.5 in VF, and κ = 0.01 in
DF and rDF.

FEEDBACK GAIN GEOMETRIES
There are mathematical difficulties in incorporating the
impedance generated by non-linear muscular properties with
a feedback control law. However, several studies have provided
evidence that sensorimotor control systems can and do regulate
feedback gains for impedance control (Franklin et al., 2007;
Krutky et al., 2010; Franklin and Wolpert, 2011). Although
the impedance is not actually equal to the feedback gains
computed by OFC or MMFC, the gains must contribute to
the modulation of impedance. Thus, we computed sensory
feedback gains, transferring sensory feedback errors to the motor

command as products of the state feedback and filter gains. The
sensory feedback gains for OFC and MMFC were then given
by products of the state feedback and filter gains, as Lk · Kk

and Lk · A(�k + CT N−1C − γ−2Qk)−1CT N−1, respectively. We
visualized the patterns of the positional gain at the midpoints of
the movement time (350 ms) as ellipses, similar to the stiffness
ellipses used previously (Burdet et al., 2001; Franklin et al., 2003a,
2007; Ueyama and Miyashita, 2014). The orientation, shape, and
size of the ellipse are obtained by singular value decomposition
of the positional gain matrix.

In NF, the gain of OFC was a vertically long ellipse (Figure 6A).
In VF and DF of OFC, the gains with structural uncertainty were
quite similar to the gain in NF. However, the gain in VF without
structural uncertainty was rather small, and varied by ∼4◦ in the
clockwise direction; that of DF decreased in a lateral direction.
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FIGURE 4 | Simulated trajectories of MMFC for 10 randomly selected simulations. The format is the same as in Figure 3. In (A–D), the parameter of
familiarity with the uncertainty κ is set equal to 1. In (E–G), the familiarity parameter κ is set equal to 0.

In rDF, the gain with structural uncertainty was directed to the
target at 30◦ in a clockwise direction. However, the gain without
structural uncertainty was diminished and directed to −60◦ in
a clockwise direction. As mentioned in Section Comparison of
Trajectories, the lateral deviancy and target directed movement
influenced each other through feedback gain. In particular, the
y-axis movement was more dependent on the x-position than
the y-position. Thus, the task required complicated cooperative
action, and the gain geometry was squashed. However, the gain
of mini-max feedback control in NF was a true circle, and larger
than that of OFC (Figure 6B). The gains in VF also indicated true
circles, even if they were larger than those of NF. In DF and rDF,
the gains were tuned by the force field, according to the direction
of instability, as in the experimental measurements of stiffness
(Franklin et al., 2007). In DF, only the lateral axes of the gains

were expanded, although the anteroposterior axes were the same
as those of NF. In rDF, the gains were similar to the 30◦ rotations
of those in DF. The gain without structural uncertainty of VF
was a little smaller than that with uncertainty dynamics. In con-
trast, the gains in DF and rDF also increased toward the unstable
directions, as in the conditions with structural uncertainty.

DISCUSSION
In this study, MMFC is presented as an extension of OFC for
use as a robust control technique. This method uses time-varying
feedback control for estimated states, including worst-case distur-
bances expected by familiarity with novel dynamics. The uncer-
tainties of dynamics and noise are defined as disturbances in
accordance with a robust control theory. In previous research, the
uncertainties were assumed to have a Gaussian distribution (Bays
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FIGURE 5 | Effect of the range of structural uncertainty on the

trajectories in MMFC. Green dotted, red dashed, and blue solid lines indicate
lower, middle, and higher uncertainties, respectively, given by the familiarity
parameter κ. The top row indicates the end-point trajectories. The middle and

bottom rows are single logarithmic plots of the terminal end-point error (mean
± SD) and the mean quadratic costs and the 95% confidence intervals (CIs).
The CIs were estimated using a bootstrapping procedure with re-sampling
10,000 times. (A–C) represent VF, DF, and rDF conditions, respectively.

FIGURE 6 | Positional sensory feedback gain geometries at the

midpoint of the movements in Figures 3, 4. Red dotted and blue
solid lines indicate the condition with uncertainty and without

uncertainty, respectively. Each row indicates NF, VF, DF, and rDF
conditions from the left. (A) Ellipses for OFC. (B) Ellipses for
MMFC.

and Wolpert, 2007; Izawa and Shadmehr, 2008; Crevecoeur et al.,
2010); however, it seems unlikely that real-world uncertainties
would do so. Accordingly, we modeled the uncertainties of envi-
ronmental dynamics as structural uncertainties, using the robust
control design. The computational method seems adequate,
because the central nervous system can minimize the uncertainty
of sensory input in two ways: by combining multiple sensory

signals with prior knowledge to refine sensory estimates, and by
predictive filtering of sensory input to remove less informative
components of the signal (Bays and Wolpert, 2007). The sim-
ulation results indicated greater performance for environmental
dynamics of force fields in terms of robustness and stability, and
also reproduced behavioral characteristics. Thus, we consider that
MMFC could predict motor behavior in the presence of structural
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uncertainty, and explain the early process of motor adaptation
because it was able to predict a behavior, and achieve the task
without environmental information. Furthermore, the feedback
gain was increased in unstable directions like the stiffness mod-
ulation of a multi-joint arm in arm-reaching movements with
unstable dynamics. This suggests that the brain modulates opti-
mal stiffness to obtain efficient robustness, overwhelming the
instabilities of the environmental dynamics. Moreover, a recent
study suggested that reflex gains (feedback gains) are modulated
by the accumulated evidence in support of an evolving deci-
sion before the onset of movement (Selen et al., 2012). This
seems to support our theory, in that the feedback gains are deter-
mined according to the uncertainty of the movement in the motor
planning phase before the onset of movement.

The trajectories in VF were somewhat different between our
simulations and experimental measurements (Osu et al., 2003).
Our simulations of the OFC and MMFC models could not pre-
dict the straight trajectory observed in the human study. The
result may give the false impression that a trajectory control strat-
egy to reduce motor effort requires a distinct deviation from the
nominal straight line. However, the theoretical framework such
as OFC actually may not be incompatible with the trajectory
control by a cost function that trades off the discordant require-
ments of target accuracy, motor effort, and kinematic invariance
in an acceleration-dependent force field (Mistry et al., 2013). This
approach could be considered a MMFC representing the devia-
tion from the straight line with a disturbance. During the period
of movement (k ≤ Ns), we defined the regulated output matrix Ea

as an identity matrix to generalize the MMFC model for motor
adaptation problems. However, it was assumed that Ea trans-
fers the state vector into a disturbance, which is determined by
the kinematic constraints, bootstrapping the process of explo-
ration and learning. The kinematic constraints appear reasonable

to improve the task, particularly in the early phase of motor
adaptation. Thus, we carried out extra VF simulations to exam-
ine this assumption. Then we modified the MMFC to replace Ea

(k ≤ Ns) in Equation (23) with 100 · diag([1, 0, 1, 0, 0, 0, 0, 0])
as a kinematic constraint penalizing lateral deviances of the
position and velocity (Mistry et al., 2013). Unsurprisingly, the
modified MMFC resulted in trajectories that were close to linear
(Figure 7A). Furthermore, the modified MMFC showed closer
trajectories to the linear behavior than other models. These results
suggest that kinematic constraints may be applied to determine
an MMFC with environmental dynamics to ensure kinematic
invariance.

It has been suggested that a cost function should be modu-
lated to increase the ratio of the energy cost, according to the
uncertainty of the internal model (Crevecoeur et al., 2010), and
standard forms for quantifying cost may not be sufficient to accu-
rately examine whether human motor behavior abides by opti-
mality principles (Berniker et al., 2013). In the model proposed
here, the terms expressing the familiarity with the uncertainty are
related to the cost values. That is, the cost function is indirectly
modulated via the uncertainty of the internal model, which itself
may also be reflected in the nervous system’s use of impedance
control to change the dynamic properties of the body (Burdet
et al., 2001; Takahashi et al., 2001; Lametti et al., 2007; Mitrovic
et al., 2010). These studies support our proposed model.

LIMITATIONS OF THIS MODEL
In our simulation results, the changes in the gain in the direction
of instability for the DF and rDF of MMFC model are fairly small
compared to the magnitude of the experimental measurement
(Franklin et al., 2007). This non-conformity may be caused by
differences between actual and modeled muscle dynamics. In this
study, arm dynamics was simplified as a linear point-mass model.

FIGURE 7 | Additional simulations for VF conditions, and state

feedback gain profiles for NF conditions. (A) Simulated trajectories
of the modified MMFC for VF conditions, and the after-effects of each
model. (B) Gains for OFC. (C) Gains for MMFC. In (B,C), each row

indicates position, velocity, and force gains from the left. With the
position gains, the solid and dotted lines indicate the hand and target
position gains, respectively, which are opposites in sign. Note that
γ = 108 to satisfy Equations (9) and (10).
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However, the biological arm movement is actually induced by
many muscles with non-linear dynamics. The muscle action
forms limb stiffness geometry depending on task requirements.
Our model did not reflect actual muscle dynamics. Especially,
passive muscle mechanisms were not considered in the model.
Even when the muscle is relaxed (the activation level is decreased),
the active force disappears and the resting length is restored by the
passive force (Huxley and Hanson, 1954). Then, limb stiffness is
retained during maintained posture without muscle contraction,
and the magnitude is not small, compared to muscle contraction
effects on that (Osu and Gomi, 1999; Shin et al., 2009). Because
the passive limb stiffness acts to inhibit the intended movement,
agonist muscles are required to generate active force overwhelm-
ing the passive force retaining the posture to initiate movement.
Thus, actual limb stiffness may be much higher than that in our
simulations.

However, the feedback gain magnitude was small compared
to the proprioceptive and visual feedback responses measured in
human subjects (Bennett, 1994; Dimitriou et al., 2013). The dif-
ference between our simulation and the proprioceptive feedback
response (the reflex response) may be attributable to the rigid-
ity of the muscle model, analogous to the magnitude of stiffness
modulation. The visual feedback gains measured in humans were
purposed not to fall into the sensory feedback gain but the state
feedback gain (Dimitriou et al., 2013). Moreover, the response
was computed from a time window of 180–230 ms after pertur-
bation onset, and it was not considered how the state estimation
was updated for feedback latency. In fact, although the magnitude
did depend directly on the cost weights and our model did not
separate the visual feedback response from other feedback, our
simulations for OFC and MMFC models showed sufficiently large
feedback gains, exceed the feedback response reported in humans
(Figures 7B,C). It has been suggested that the feedback gains
show different time profiles. The visual feedback gain showed
peaking at the middle of the movement and dropping rapidly
at the movement end (Liu and Todorov, 2007; Dimitriou et al.,
2013). In contrast, intrinsic feedback gain, measured as stiffness,
showed a contrary profile, peaking at the movement onset and
end, and dropping in the middle of the movement (Gomi and
Kawato, 1997; Ueyama and Miyashita, 2014).

OTHER MODELS
Although an adaptation algorithm for uncertain dynamics has
been proposed (Franklin et al., 2008), it is based on a feedback-
error-learning strategy and requires a desired trajectory (Kawato,
1996; Ueyama and Miyashita, 2014). Thus, the adaptation process
and motor planning of the desired trajectory must be consid-
ered separately and handled as different problems. In contrast,
a MMFC can deal with both issues in the same context, as
does OFC.

Friston raised the question of differences between internal
models in motor control and perceptual inference in OFC, and
suggested that active inference, a corollary of the free-energy prin-
ciple, reduces to simply suppressing proprioceptive prediction
errors (Friston, 2011). Moreover, it has been reported that active
inference could acquire complex and adaptive behaviors using a
free-energy formulation of perception (Friston et al., 2009), and

generate movement trajectories shown to be remarkably robust to
perturbations on a limb (Friston et al., 2010). In active inference,
the cost function is absorbed into prior beliefs about state transi-
tions and terminal states. Thus, active inference seems attractive
as a means of recognizing biological optimization mechanisms,
because OFC and MMFC have many free parameters (e.g., cost
function and terminal time) that intricately affect the behavior.
However, the behavior of active inference seems to be influenced
by the estimated probability (i.e., prior assumption of noise and
uncertainty) as a substitute for the definition of cost function. We
consider that active inference and OFC are not mutually exclu-
sive, and that the free-energy principle is just a “principle” that
could unify motor control theories, based on the optimization of
a cost. Although the free-energy principle has not been derived
from empirical evidence, it can predict neurobiological imple-
mentation from the perspective of functional anatomy (Friston
et al., 2012). For motor control studies, therefore, the free-energy
principle seems to be a useful tool to connect the computational
level to the hardware level.

Recently, behavioral studies have focused on understanding
how uncertainty, or risk, is represented in motor control tasks,
as well as in economic behaviors (Trommershäuser et al., 2008).
Violations of risk neutrality have been reported various motor
control tasks. For example, subjects exhibited risk-seeking behav-
ior in a pointing task, because they systematically underestimated
small probabilities and overestimated large probabilities (Wu
et al., 2009). In addition, subjects exhibited risk-average behav-
ior in a motor task that required them to control a Brownian
particle with different levels of noise, which is consistent with
the notion of a trade-off between the mean and the variance of
movement cost (Nagengast et al., 2010). Moreover, it has also
been suggested that the sensitivity of the risk is an important
factor in motor tasks with speed/accuracy trade-offs (Nagengast
et al., 2011). In contrast, when the uncertainty is assumed to
have a Gaussian distribution and an exponential-quadratic error
criterion, such as the expected unity function describing risk
sensitivity, is used as the cost function, the MMFC problem is
identified with the risk-sensitive optimal control problem of opti-
mizing the exponential-quadratic error criterion (Speyer et al.,
1992). Furthermore, an equivalence has already been established
between a deterministic robust control that achieves a prescribed
bound on the H∞ norm of a given closed-loop transfer func-
tion and a stochastic optimal control problem (Glover and Doyle,
1988). It has also been shown that the robust control directly
connects to the risk-sensitive control via results on maximizing
an entropy integral (i.e., the terminal time N →∞). In addi-
tion, when the risk sensitivity parameter is equal to zero (in a
risk-neutral case), the risk-sensitive control has been identified
as an OFC problem. Although, in contrast to previous studies,
the MMFC in this paper is derived as a time-varying controller,
it is the same as OFC at two conditions: N →∞ and γ →∞.
Thus, a risk-sensitive OFC seems to be a specific case of MMFC
with Gaussian uncertainty. However, when there is uncertainty
in the equations of motion themselves (e.g., the dynamics of a
power tool such as a drill or a screwdriver are different from those
of a can, resulting in strikingly different relationships between
states and motor commands), structural uncertainty cannot be
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represented by a Gaussian distribution, and these different struc-
tures must be identified and learned (Orban and Wolpert, 2011).
The MMFC proposed in this paper can handle the structural
uncertainty. However, exploratory risk-taking is directly related
to uncertainty in decision-making modulation (Doya, 2008), and
the decision making itself may directly relate to motor control sys-
tems (Selen et al., 2012). However, the uncertainty problem may
not be completely equivalent to the risk-taking problem, because
the problems are distinguishable and could be identified as two
independent problems (Bach et al., 2011).

LEARNING PROCESS FOR MOTOR ADAPTATION
Feedback, adaptation, learning, and evolution have been identi-
fied as instances of wide sense adaptation, where sensory infor-
mation is integrated and employed to change the control signals
in various techniques and timescales (Karniel, 2011). Adaptive
control is the change in the parameters of the control systems
generated after the observation of previous control and sensory
signals, and learning control is a structural change in the con-
trol system to generate a new type of behavior. In human studies,
when we perform new or uncertain motor tasks, performance
has been found to vary in accordance with the learning process
(Shadmehr et al., 2010). Smith et al. reported that adaptation
exhibited multiple timescales, driven by fast and slow processes
(Smith et al., 2006). They suggested that the fast process, which
decays quickly, is strongly affected by errors, but does not pro-
duce motor memory, whereas the slow process, which shows little
decay, is weakly affected by errors but produces motor memory.
On the other side, there are different mechanisms for adapting
to stable and unstable dynamics (Osu et al., 2003). It has been
proposed that adaptation learning is achieved by a combination
of impedance control and an inverse dynamics model. In the
early phase of learning, the impedance control also contributes
to the formation of the inverse dynamics model, and helps to
generate the necessary stability (Franklin et al., 2003b). Previous
studies have shown that the function of the fast learning process
is to increase the robustness of motor control systems, thereby
improving their stability, and the internal model is obtained from
multiple trials by impedance control during the slow learning
process. We consider that the fast process is provided by instances
of feedback and adaptation, whereas the slow process is achieved
by adaptation and learning concepts. Thus, we propose MMFC
as a robust control to increase the familiarity of both the uncer-
tainty and the impedance in the adaptation of the fast process to
improve the stability and reduce the error. The internal model, if
it could improve the stability while achieving the task, would learn
the actual dynamics across multiple trials, thereby decreasing the
uncertainty in the learning of the slow process. Thus, it was
recently proposed that complex behaviors in unstable dynamics
cannot be explained in terms of a global optimization criterion,
but rather require the ability to switch between different sub-
optimal mechanisms (Zenzeri et al., 2014). We have assumed that
the difference between the adaptation and learning mechanisms
of stable and unstable dynamics requires that the internal model
be represented in different forms, depending on the behavioral
policies, off-policy and on-policy algorithms such as Q-learning
and SARSA, respectively (Sutton, 1992). For example, unstable

dynamics may require a deterministic behavior with an off-policy
algorithm, because the cost (or reward) is assumed to be opti-
mized through multiple trials fixing the policy to achieve the
motor task in the unstable dynamics. That is, the estimated costs
in any trials are required to converge to a value, similar to the idea
of the worst-case design in the MMFC. In contrast, stable dynam-
ics are assumed to require stochastic behavior with the on-policy
algorithm, because it seems the best way to access the dynamics
according to estimations by each trial. In addition, the off-policy
algorithm has been recognized as an alternate strategy named
“good-enough” control, in which the organism uses trial-and-
error learning to acquire a repertoire of sensorimotor behaviors
that are known to be useful, but not necessarily optimal (Loeb,
2012).
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