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High-throughput genotyping boosts genome-wide association studies (GWAS) in
crop species, leading to the identification of single-nucleotide polymorphisms (SNPs)
associated with economically important traits. Choosing a cost-effective genotyping
method for crop GWAS requires careful examination of several aspects, namely, the
purpose and the scale of the study, crop-specific genomic features, and technical
and economic matters associated with each genotyping option. Once genotypic data
have been obtained, quality control (QC) procedures must be applied to avoid bias
and false signals in genotype–phenotype association tests. QC for human GWAS has
been extensively reviewed; however, QC for crop GWAS may require different actions,
depending on the GWAS population type. Here, we review most popular genotyping
methods based on next-generation sequencing (NGS) and array hybridization, and
report observations that should guide the investigator in the choice of the genotyping
method for crop GWAS. We provide recommendations to perform QC in crop species,
and deliver an overview of bioinformatics tools that can be used to accomplish
all needed tasks. Overall, this work aims to provide guidelines to harmonize those
procedures leading to SNP datasets ready for crop GWAS.

Keywords: crops, GWAS, genotyping, quality control, bioinformatics tools

INTRODUCTION

High-throughput genotyping, which leads to the identification of a large number of single-
nucleotide polymorphisms (SNPs) is boosting the implementation of genome-wide association
studies (GWAS), linking DNA variants to phenotypes of interest (Taranto et al., 2018). In crop
species, GWAS enabled the mapping of genomic loci associated with economically important traits,
including yield, resistance to biotic and abiotic stresses, and quality (Boyles et al., 2016; Pavan et al.,
2017; Hou et al., 2018; Liu et al., 2018; He et al., 2019). This information has been further used
to perform marker-assisted selection (MAS) in breeding programs and discover genes underlying
phenotypic variation (Liu and Yan, 2019).

Frontiers in Genetics | www.frontiersin.org 1 June 2020 | Volume 11 | Article 447

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00447
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.00447
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00447&domain=pdf&date_stamp=2020-06-05
https://www.frontiersin.org/articles/10.3389/fgene.2020.00447/full
http://loop.frontiersin.org/people/311901/overview
http://loop.frontiersin.org/people/950713/overview
http://loop.frontiersin.org/people/631038/overview
http://loop.frontiersin.org/people/523027/overview
http://loop.frontiersin.org/people/392035/overview
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00447 June 5, 2020 Time: 18:26 # 2

Pavan et al. Genotyping/Quality Control for Crop GWAS

Several genotyping methods are available (reviewed by
Scheben et al., 2017), which are usually performed by
commercial parties upon the receipt of DNA samples. For
application in GWAS, widely adopted genotyping options fall
into three categories: whole genome resequencing (WGR),
reduced representation sequencing (RRS), and SNP arrays.
WGR and RRS are based on next-generation sequencing (NGS)
technologies and bioinformatics pipelines that align reads
to a reference genome and call both SNPs and genotypes
(Nielsen et al., 2011). SNP arrays rely on allele-specific
oligonucleotide (ASO) probes (including target SNP loci plus
their flanking regions) fixed on a solid support, which are used
to interrogate complementary fragments from DNA samples and
infer genotypes based on the interpretation of the hybridization
signal. Choosing the most appropriate (cost-effective) genotyping
method for crop GWAS requires careful examination of several
aspects, namely, the purpose and the scale of the study, crop-
specific genomic features, and technical and economic matters
associated with each genotyping method.

Raw SNP datasets resulting from genotyping experiments
are typically inaccurate and incomplete. In addition, genes
associated with phenotypes can have a small effect on genetic
variance. In this scenario, quality control (QC) procedures
are of pivotal importance to minimize false-positive or false-
negative associations, referred to as type I and type II errors,
respectively. QC includes filtering out poor-quality or suspected
artifactual SNP loci, filtering out individuals in relation to missing
data, anomalous genotype call and genetic synonymies, and the
characterization of ancestral relationships among individuals of
the GWAS population. Excellent reviews focused on QC of
human SNP data (Turner et al., 2011; Marees et al., 2018);
however, the QC procedure may be quite different for crop
species. In this case, variables that need to be considered include
the crop prevailing mating system (self- or open-pollinating) and
the breeding history of the specific GWAS population.

This review aims to provide recommendations on how to plan
genotyping experiments and best practices on how to perform
QC in crop species.

CHOOSING THE CORRECT
GENOTYPING METHOD

Genotyping methods differ with respect to the number of
identifiable SNPs and the cost of the analysis per sample,
and these two parameters are directly proportional. Given
this premise, choosing the correct option for GWAS requires
to have a clear idea on two key aspects, i.e., the number
of SNPs that is sufficient/desirable to fulfill the GWAS goals
and the cost associated with each genotyping alternative. In
addition, genotyping methods come with different technical
specifications that should be evaluated in relation to the particular
GWAS experiment.

Whole Genome Resequencing
WGR allows the highest number of SNP calls, up to several
millions as reported in peach (Cao et al., 2016) and cotton
(Du et al., 2018). This is a clear advantage when, rather than

MAS, gene isolation is the main aim of the GWAS project (Wang
et al., 2016; Happ et al., 2019). Indeed, in high-resolution GWAS,
SNP loci showing the highest evidence of association are usually
in tight linkage, or may even coincide, with loci underlying
phenotypic variation (e.g., Shang et al., 2014; Yano et al., 2016).
However, it should be pointed out that, even with a very high
marker density, the identification of causal polymorphisms can
be difficult in the case of GWAS populations displaying slow
decay of linkage disequilibrium (LD) (i.e., populations in which
the allelic state at two loci on the same chromosome tends to
be correlated even at high physical distance) (Korte and Farlow,
2013). As shown in Table 1, in populations of self-pollinating
crops, such as wheat or soybean, the average square correlation
coefficient (r2) between pairs of loci may take several Mb to decay
to values indicating substantial linkage equilibrium (0.2 or 0.1)
(Vos et al., 2017).

WGR is especially desirable for GWAS populations displaying
rapid LD decay. Indeed, in this case, low marker density may
result in missing genomic regions associated with phenotypic
traits. Extremely rapid LD decay (in the range of a few base
pairs) has been reported for highly heterozygous populations
of open-pollinating species (e.g., maize, carrot, olive), in which
recombination is effective in breaking up haplotypes (Table 1).
In this situation, even in the ideal case of equally spaced
SNPs, millions of markers would be required to have a SNP
distance lower than the LD decay distance. This is exactly
the condition that enables one to detect associations for most
genomic regions (Table 1).

WGR genotyping has been so far generally performed using
paired-end Illumina technology (e.g., Zhou et al., 2015; Cao et al.,
2016; Liang et al., 2019), which, according to our survey, roughly
costs $400 per sample for a genome of 1 Gb and 10× average
sequencing depth (this term indicating the number of times a
base is sequenced on average). This implies that WGR-based
GWAS, typically involving a few hundred individuals, may cost
several hundred thousand dollars for crops with large genomes,
as shown in Table 1. Decreasing the average sequencing depth
can lower the cost of WGR; however, this may result in an
unacceptable number of genotyping errors. This is especially the
case of heterozygous loci, which are associated with a larger
number of genotypic combinations (Kishikawa et al., 2019).
In practice, WGR in crops has been usually performed with
average sequencing depth ranging from ∼5×, as for cotton
(Du et al., 2018), tomato (Lin et al., 2014), and peach (Cao
et al., 2019), to ∼15×, as for watermelon (Guo et al., 2019)
and grapevine (Liang et al., 2019). A notable exception is
represented by strict self-pollinating species, such as rice and
soybean, for which very low average sequencing depth (1×
or lower) has been successfully applied (Wang et al., 2016;
Happ et al., 2019). Indeed, homozygous populations of pure
lines are effectively haploid, thus allowing easy reconstruction
of haplotypes and, consequently, accurate imputation of missing
data (Wang et al., 2016).

Reduced Representation Sequencing
RRS consists in sequencing only a small fraction of the
genome, thus reducing the cost of the analysis with respect
to WGR (Hirsch et al., 2014). Genotyping by sequencing
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TABLE 1 | List of some genomic and economic aspects that should be taken into consideration when planning GWAS in crops.

Species Genome
size (Gb)

References LD decay References Minimum number
of SNPs for a
distance < LD

decay ∗

Estimated WGR
cost on 100

individuals ($) ∗∗

SNP array

Name Technology Size References

Brassicaceae
Brassica napus 0.49 Chalhoub et al.,

2014
800 Kb (r2 = 0.2, A
subgenome); 4.8 Mb
(r2 = 0.2, B subgenome)

Zhao et al.,
2016

980 (subgenome A)
143 (subgenome B)

19.4 K International
Brassica SNP
Consortium

Illumina Infinium
BeadChip

52K Clarke et al.,
2016

Solanaceae
Solanum lycopersicum 0.90 Sato et al.,

2012
665 Kb (r2 = 0.2) Ruggieri et al.,

2014
1353 36K SolCAP Tomato

2013
Illumina Infinium
BeadChip

9K Sim et al., 2012

Axiom Tomato
Genotyping Array

Affymetrix Axiom 52K Unpublished

Solanum tuberosum 0.84 Xu et al., 2011 1.5–0.6 Mb (r2 = 0.1) Vos et al., 2017 560–14,000 33.6K SOLCAP Potato
2013

Illumina Infinium
BeadChip

10K Hamilton et al.,
2011

SolSTW array Affymetrix Axiom 20K Vos et al., 2015
Capsicum annuum 3.30 Kim et al.,

2014; Qin
et al., 2014

100 Kb (r2 = 0.2) Taranto et al.,
2016

33,000 132K UCD
TraitGenetics
Pepper
(Capsicum)
Consortium

Illumina Infinium
BeadChip

19K Ashrafi et al.,
2012

Pepper
(Capsicum) SNP
Genotyping Array

Affymetrix Axiom 640K Unpublished

Cucurbitaceae
Cucumis sativus 0.35 Huang et al.,

2009
24 Kb (r2 = 0.09) Wang et al.,

2018
14,583 14K – Fluidigm 35K Rubinstein

et al., 2015
55–140.5 Kb (r2 = 0.2) Qi et al., 2013 6364–2491

Cucumis melo 0.45 Garcia-Mas
et al., 2012

100 Kb (r2 = 0.2) Gur et al., 2017 4500 18K

72–774 Kb (r2 = 0.2) Pavan et al.,
2017

6250–581

Fabaceae
Phaseolus vulgaris 0.59 Schmutz et al.,

2014
1 Mb (r2 = 0.1) Diniz et al.,

2019
587 23.48K BARCBean6K_1 Illumina Infinium

BeadChip
5K Song et al.,

2015
Glycine max 1.12 Schmutz et al.,

2010
8.5–15.5 Mb (r2 = 0.1) Liu Z. et al.,

2017
131–72 44.6K SoySNP50K Illumina Infinium

BeadChip
6K Song et al.,

2013
5.9–7 Mb (r2 = 0.1) Mamidi et al.,

2011
189–159 SoyaSNP180K

Axiom
Affymetrix Axiom 180K Lee et al., 2015

Apiaceae
Daucus carota 0.47 Iorizzo et al.,

2016
100–400 bp (r2 = 0.2) Ellison et al.,

2018
4,730,000–
1,182,500

18.92K

Poaceae
Oryza sativa 0.39 Sasaki, 2005 150 Kb (r2 = 0.2) Liu et al., 2020 2593 15.56K RiceSNP50 Illumina Infinium

BeadChip
50K Chen et al.,

2014
RICE6K Illumina Infinium

BeadChip
6K Yu et al., 2014

(Continued)
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TABLE 1 | Continued

Species Genome
size (Gb)

References LD decay References Minimum number
of SNPs for a
distance < LD

decay ∗

Estimated WGR
cost on 100

individuals ($) ∗∗

SNP array

Name Technology Size References

Axiom Rice
Genotyping Array

Affymetrix Axiom 50K Singh et al.,
2015

Triticum aestivum 16.00 International
Wheat Genome
Sequencing
and
Consortium,
2014

8 Mb (r2 = 0.08) Liu J. et al.,
2017

2000 640K US/Australia 9K
Wheat Consortium

Illumina Infinium
BeadChip

9K Cavanagh
et al., 2013

Wheat 90K iSelect Illumina Infinium
BeadChip

90K Wang et al.,
2014

Axiom Wheat
Breeders
Genotyping Array

Affymetrix Axiom 35K Allen et al.,
2017

Axiom Wheat HD
Genotyping Arrays

Affymetrix Axiom 817K Winfield et al.,
2016

Zea mays 2.50 Schnable et al.,
2009

6.34 Kb (r2 = 0.2) Dinesh et al.,
2016

394,322 100K MaizeSNP50
BeadChip

Illumina Infinium
BeadChip

50K Ganal et al.,
2011

500 bp (r2 = 0.2) Yan et al., 2009 5,000,000 Subset of
MaizeSNP50

Illumina Infinium
BeadChip

3K Rousselle et al.,
2015

1.5 Kb (r2 = 0.1) Remington
et al., 2001

1,666,667 Axiom Maize
Genotyping Array

Affymetrix Axiom 600K Unterseer et al.,
2014

Maize 55K Axiom Affymetrix Axiom 55K Xu et al., 2017
Rosaceae
Malus domestica 0.74 Velasco et al.,

2010
200 bp (r2 = 0.2) Larsen et al.,

2019
7,420,000 29.68K RosBREED Apple Illumina Infinium

BeadChip
8K Chagné et al.,

2012
Fruitbreedomics
Apple20k

Illumina Infinium
BeadChip

20K Bianco et al.,
2014

Axiom Apple
Genotyping Array

Affymetrix Axiom 480K Bianco et al.,
2016

Prunus persica 0.27 Verde et al.,
2013

1.2–3.2 Mb
(r2 = 0.1)

Li et al., 2013 221–83 10.6K RosBREEDPeach Illumina Infinium
BeadChip

9K Verde et al.,
2012

Vitaceae
Vitis vinifera 0.48 Jaillon et al.,

2007
43 Kb (r2 = 0.2) Nicolas et al.,

2016
11047 19K GrapeReSeq

Consortium
Illumina Infinium
BeadChip

20K Le Paslier et al.,
2013

GeneChip Vitis
vinifera (Grape)
Genome Array

Applied
Biosystems

15K Unpublished

Oleaceae
Olea europaea 1.46 Unver et al.,

2017
25 bp (r2 = 0.05) D’Agostino

et al., 2018
58,400,000 58.4K

Malvaceae
Gossypium hirsutum 2.43 Li et al., 2015 3.2–3.3 Mb

(r2 = 0.1)
Yuan et al.,
2018

759–736 97.2K International Cotton
SNP Consortium

Illumina Infinium
BeadChip

70K Hulse-Kemp
et al., 2015

900 Kb (r2 = 0.1) Wen et al.,
2019

2700 Axiom Cotton
Genotyping Array

Affymetrix Axiom 35K Unpublished

For several main crop species belonging to different botanical families, the following information is reported: estimated haploid genome size; linkage disequilibrium (LD) decay; the minimum number of equally distributed
SNPs providing a distance lower than the LD decay; estimated WGR cost on a panel of 100 individuals; the list of available SNP array(s).
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(GBS) (Elshire et al., 2011), restriction site-associated DNA
sequencing (RADseq) (Davey and Blaxter, 2011), and double
digest RAD sequencing (ddRAD-seq) (Truong et al., 2012),
which use restriction enzymes (REs) for the reduction of
genome complexity, are currently the most popular RRS
methods used to perform GWAS in crops, mainly due to their
moderate cost. At a minimum, this is approximately $35 per
sample independently from the genome size and including the
application of bioinformatics pipelines for SNP and genotype
calling (You et al., 2018). Another advantage of these RRS
methods is their scalability, meaning that different combinations
of restriction enzymes may be used to customize the percentage
of the genome captured.

The number of SNPs identified by RRS genotyping typically
varies from a few to several thousands (Pavan et al., 2018, 2019;
Colonna et al., 2019), depending on the amount of genome
sequenced and population diversity. As discussed above, this
output can be largely sufficient in GWAS experiments whose
main aim is to implement marker-assisted selection, and for crops
displaying slow LD decay (Table 1).

A major technical limitation of RSS is that the genomic
distribution of SNPs depends on the specific combination of REs
used (D’Agostino and Tripodi, 2017). In addition, sequencing
depth at individual SNP loci identified by RRS is typically
uneven, leading to under-calling of heterozygous loci and many
missing data. The latter issue can be mitigated by genotype
imputation strategies; however, we highlight that the success
of genotype imputation depends on the genetic makeup of the
GWAS population, which influences, among other things, the
occurrence of long homozygous segments useful to reconstruct
haplotypes (Glaubitz et al., 2014).

SNP Arrays
SNP arrays for agrigenomics have been developed for over
a decade to meet the needs for single research groups or
consortia and are still widely used for GWAS in crops despite
the decreasing cost of NGS-based technologies (LaFramboise,
2009; Rasheed et al., 2017; Table 1). In 2017, the two leader
manufacturers Affymetrix and Illumina had developed 46 SNP
array platforms for 25 crop species, associated with a number of
markers ranging from 3K to 820K (Rasheed et al., 2017). Pricing
of array genotyping is widely considered to exceed that of RRS;
however, this is subject to fluctuations over time and is volume-
dependent, as it varies with the number of samples and the array
SNP density. Indeed, Darrier et al. (2019), considering a set of
1000 barley accessions, found that genotyping with the Illumina
50K iSelect SNP array was cheaper than GBS, with respect to
both the cost per sample (£40 vs. £60.50) and the cost per marker
(£0.001 vs. £0.003).

From a technical standpoint, SNP array genotyping has a
series of advantages. First, genotype calls are generally accurate,
even for highly heterozygous species (Bourke et al., 2018). In
addition, polyploid crops represent an advantageous field of
application of SNP genotyping arrays, as: for allopolyploids,
NGS genotyping is complicated by sequence similarity among
subgenomes, which hinders the alignment of reads to the
reference genome; for autopolyploids, NGS genotyping requires

very high sequencing depth and specific polyploid haplotyping
algorithms, which make use of the sequence reads to determine
the sequence of alleles along the same chromosomes (Motazedi
et al., 2018). To date, array providers developed platforms
for nine polyploid species ranging from the tetraploid potato
to the dodecaploid sugarcane (reviewed by You et al., 2018),
together with software solutions suitable to genotype polyploid
datasets [i.e., Affymetrix’s Power Tools (APT) and the Polyploid
Genotyping Module within Illumina’s GenomeStudio]. We
highlight that while GWAS are commonly performed in
allopolyploids, GWAS in autopolyploids are complicated by
difficulties in the assessment of population structure and allele
dosage (Rosyara et al., 2016).

A main disadvantage of SNP arrays is that they suffer from
ascertainment bias (Lachance and Tishkoff, 2013), i.e., they
cannot identify marker-trait associations in the case of SNPs that
were not present in the population used for the development
of the array. In addition, a typical drawback in the use of SNP
arrays is the possibility that information (e.g., SNP chromosomal
location) used for the design of the array is outdated and that
there is no consistency in the use of SNPs among different
genotyping array formats.

RECOMMENDATIONS FOR QUALITY
CONTROL

Genotyping companies apply QC procedures depending on the
method used. For NGS genotyping, these consist in removing
loci with low sequencing depth (i.e., loci only supported by
a few reads) and loci with low PHRED-like quality score
(Q) (where Q indicates the probability that the base call is
incorrect). As for array genotyping, these mainly consist in
applying a clustering algorithm on fluorescence measurement
data of ASO probes to distinguish samples into genotype clusters
(allelic discrimination plot), and in assessing a set of QC
scores on the goodness of cluster separation and signal-to-
background ratio.

It should be clear that, in order to avoid bias and false
signals in genotype-trait association tests, the QC procedures
above mentioned are not enough and need to be complemented
by others performed by the investigator, which are the focus
of this paragraph. These include filtering procedures that are
either common to any GWAS experiment or depend on the
specific GWAS population type, as well as the characterization
of the GWAS population for duplicated samples and ancestral
relationships (Figure 1).

Application of Common Filters
A high rate of missing data at a SNP locus is considered an
indication of inaccurate genotype calls (Turner et al., 2011).
Therefore, filtering SNPs for call rate is typically the first step in
QC. A standard rule is filtering for SNPs with call rates ≥95 or
99% (Anderson et al., 2010); however, a lower threshold might
be chosen, especially in the case of NGS genotyping with low
sequencing depth. For example, GBS-derived SNP data in crops
have been filtered using call rate thresholds of 90% or lower
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FIGURE 1 | Overview of quality control procedures for crop GWAS. These include: filtering steps that are common to any GWAS experiment; filtering steps
depending on the GWAS population structure (homozygous or heterozygous); the removal of duplicated samples; the characterization of ancestral relationships,
starting from a SNP dataset pruned for markers in linkage disequilibrium.

(e.g., Nimmakayala et al., 2014; Pavan et al., 2016, 2017). The
overall distribution of call rates may be examined in order to
set up a threshold value that eliminates classes occurring at
suspiciously low frequency (Figure 2A).

SNP loci displaying rare variants may arise from genotyping
errors and, in addition, have low statistical power to reveal
association with phenotypic traits, thus they are commonly
excluded by QC procedures. In this sense, a widely adopted
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FIGURE 2 | Frequency distribution analysis to define filtering solutions for (A) SNP call rate; (B) genotype call rate; (C) SNP inbreeding coefficient (F IT); (D) SNP
proportion of heterozygosity. Dashed lines indicate possible filtering thresholds, based on classes occurring at suspiciously low (A,B) or high (D) frequency, and
distribution gaps (C). Genotypic data used to build histograms are all relative to published genotyping-by-sequencing experiments, carried out in the self-pollinated
crops Cicer arietinum L. (Pavan et al., 2017, A,C) and Lens culinaris Medik (Pavan et al., 2019, B), and the open-pollinated crop Cynara cardunculus L. (Pavan et al.,
2018, D).

solution is filtering for minor allele frequency (MAF). Filtering
for MAF ≥1–5% has been commonly applied for crop GWAS
involving populations of a few hundred individuals (Pavan et al.,
2017; Yu et al., 2018), however the same thresholds might be too
stringent for larger GWAS populations. Filtering for minor allele
count (MAC) allows to set-up thresholds independent from the
GWAS population size, commonly ranging from 5 to 10 (e.g.,
Taranto et al., 2016; Thomson et al., 2017).

As for loci, the presence of individuals with high rates of
missing data is also suggestive of technical issues, often related
with poor quality and/or quantity of DNA samples. This can
generate inaccuracies and bias in downstream analyses. We
emphasize that filtering for SNP missingness should normally
precede filtering for individual missingness, as the opposite
procedure may result in unnecessary removal of individuals.
In literature, very different cutoff thresholds for individual
missingness have been reported (Begum et al., 2015; Pavan et al.,
2018). Our suggestion is to inspect the distribution of missing
data across individuals and select a threshold that allows the
elimination of classes occurring at suspiciously low frequency
(Figure 2B). In addition, for binary traits (e.g., the response
to a pathogen, for which individuals of the GWAS population

can be classified in either resistant or susceptible), it is of main
importance that there are no systematic differences of call rate
between the two groups, in order to avoid bias in association tests.

Application of Filters Depending on the
GWAS Population Type
SNP loci characterized by excessive heterozygosity should be
filtered out, as they are indicative of technical artifacts or
paralogous/repetitive regions that could not be distinguished
through the genotyping procedure (Glaubitz et al., 2014).
Therefore, specific SNP filters are applied based on the extent
of heterozygosity expected in the GWAS population. For crops,
this depends on the natural mating system, which may favor
self-pollination or open-pollination, and anthropic interventions,
such as artificial inbreeding.

Natural populations of self-pollinating crops, as well as
populations of inbred lines, are highly homozygous. Therefore,
in these cases, even loci with modest heterozygosity rates are
suspicious. Glaubitz et al. (2014) suggested the use of the FIT
inbreeding coefficient (given by 1-Ho/HE, with Ho and HE being
the observed heterozygosity and the expected heterozygosity
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at Hardy–Weinberg equilibrium, respectively) to filter SNPs in
homozygous populations, and applied a minimal FIT threshold
of 0.8 in case of a large population of maize inbred lines. The
identification of gaps in the distribution of FIT across all loci
may help to set up a threshold that allows the elimination of
most of the genotyping errors while retaining the highest possible
number of loci (Figure 2C).

For natural populations of open-pollinating crops, filtering
SNPs that significantly deviate from the Hardy–Weinberg
equilibrium (HWE) (e.g., through chi-square or exact tests)
can be performed to remove excessively heterozygous loci. In
accordance with GWAS on human genotypic data, the HWE
filter in open-pollinating crops has been generally applied using a
threshold p-value of 10−4, e.g., in, cassava, olive and watermelon
(Anderson et al., 2010; Nimmakayala et al., 2014; D’Agostino
et al., 2018; Zhang et al., 2018). We stress here that, in crops,
the HWE filter should be used with care, as there is the risk of a
significant and unnecessary loss of the GWAS resolution power.
Indeed, it should be firstly noticed that the HWE assumption
of random mating is not respected when the population has
strong genetic structure (see next paragraph) and contains some
inbred individuals. Secondly, loci under selection violate by
definition the HWE, thus the HWE filter might exclude loci
associated with important traits under investigation. All of this
considered, solutions might be to (i) adopt a relaxed threshold
to eliminate markers, e.g., p < 10−6, as previously performed
on apple and globe artichoke (Bianco et al., 2016; Pavan et al.,
2018); (ii) apply the HWE filter separately to each sub-population
identified by the analysis of genetic structure; (iii) apply the HWE
filter only to individuals not showing the phenotype supposedly
under selection, in case of GWAS on binary traits. In other
circumstances, including that of partially outbreeding crops, it
might be advisable to avoid the HWE filter and, as a possible
alternative, to eliminate SNPs with unexpected high levels of
heterozygosity (Figure 2D).

Checking for Sample Duplication and
Ancestral Relationships
In the case of crops, GWAS populations might contain several
genetically identical samples. This is often caused by the
occurrence, in germplasm collections, of unintended duplication
of anonymous accessions and/or the occurrence of synonymous
accessions. For example, genotyping with the 9K SNP array of
the USDA grapevine collection revealed that 568 out of 950
accessions (58%) were genetically identical to at least another
accession (Myles et al., 2011).

The identification and removal of duplicated samples is
usually performed on the basis of pairwise identity-by-state
(IBS) or identity-by-descent (IBD). Pairwise IBS refers to the
proportion of alleles shared by two individuals, whereas pairwise
IBD refers to the proportion of two individuals’ genome tracing
back to the same recent common ancestor (Purcell et al., 2007;
Manichaikul et al., 2010). The latter is commonly estimated
from pairwise IBS and allele frequency using a method-of-
moment algorithm (Purcell et al., 2007). Many studies have used
IBS/IBD thresholds of 95 or 99% to declare samples as identical

(Myles et al., 2011). The examination of the IBS/IBD distribution
associated with a few known identical samples, included on
purpose in the GWAS population, might also be used to set up
a threshold to estimate identity (Pavan et al., 2019).

Ancestral relationships generate LD between unlinked loci,
so they are considered in the GWAS model to limit spurious
associations (Astle and Balding, 2009). Therefore, a crucial step
in the QC procedure is the characterization of ancestry within
the GWAS population. Genetic structure (i.e., the occurrence of
sub-populations with different allele frequencies) reflects remote
differences in ancestry; in crops, it often originates from physical
barriers to random mating and anthropic selection for specific
traits, such as seed/fruit size and phenological features (Pavan
et al., 2017, 2019; Siol et al., 2017). Instead, kinship reflects recent
ancestry, often related to pedigree connections among modern
cultivars (Taranto et al., 2020).

Starting from genotypic data, the analysis of population
structure can be carried out through different approaches.
Parametric methods, such as those implemented in the
popular software STRUCTURE (Pritchard et al., 2000) and
ADMIXTURE (Alexander et al., 2009), typically estimate
the allele frequency of each sub-population jointly with the
membership of individuals to each sub-population, using
maximum-likelihood or Bayesian statistics. The resulting matrix
(known as Q-matrix), which indicates, for each individual, the
proportion of the genome referable to various sub-populations,
can be conveniently incorporated in GWAS models. However, it
should be noticed that parametric methods are based on several
genetic assumptions, including those of linkage equilibrium (LE)
among markers and HWE within sub-populations. Approximate
LE from the original SNP dataset can be obtained by removing
markers through LD pruning algorithms (Joiret et al., 2019); on
the other hand, HWE may not be met even in populations of
open-pollinating crops, due to displacements, breeding activities,
and clonal propagation (Campoy et al., 2016).

Non-parametric methods such as principal component
analysis (PCA) and multidimensional scaling (MDS) can be
used to account for population structure, using coordinates of
each individual along the main PCA/MDS axes as covariates in
association models (Wang et al., 2009). While non-parametric
methods have the advantage of being independent on genetic
assumptions, they also come with a number of issues that need
to be considered. Importantly, the top PCA/MDS axes may
not adequately capture variation due to population structure
in the presence of other strong sources of variation, such as
outlier sub-populations/individuals or family groups (Price et al.,
2010; Liu et al., 2013). These latter may be frequent when
the GWAS population contains many cultivars with similar
pedigrees. Finally, as for parametric models, it is advisable to
perform LD pruning prior to non-parametric analysis, in order
to avoid noise from correlated marker data (Liu et al., 2013).

Kinship ultimately depends on the proportion of the genome
that is identical-by-descent. Therefore, in order to account for
kinship, the GWAS model can use IBD estimates from pedigree
notes. However, it is clear that pedigrees of crop species might be
in several cases unknown or inaccurate. As mentioned above in
this paragraph, methods to estimate pairwise IBD from genotypic
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data have been also developed. These yield a kinship matrix, also
referred to as K-matrix, which has been widely used together
with the Q-matrix or PCA/MDS covariates to implement the
so-called Q + K and P + K GWAS models (Yu et al., 2006;
Zhao et al., 2007).

We finally highlight that several works showed that a simple
pairwise IBS matrix could efficiently capture both remote and
recent ancestry (Zhao et al., 2007). Therefore, many GWAS
models today accommodate the IBS matrix in the framework
of linear mixed models, under the assumption that phenotypic
variation is positively correlated with genetic distance (e.g.,
Kang et al., 2008, 2010).

BIOINFORMATICS TOOLS TO
PERFORM QC

QC can be carried out using several bioinformatics tools, which
may differ with respect to the specific action(s) performed and the
file requested as input. Therefore, the investigator is often called
to the conversion of genotypic data among different formats,
the most common being variant call format (VCF), haplotype
map (hapmap), pedigree/map (ped/map), binary (bed/bim/fam),
Affymetrix chip (chp), Illumina sample map and final report, and
structure. PGDSpider1 (Lischer and Excoffier, 2012) is a dedicated
tool for the conversion of genotypic data among a wide range of
formats. Among other powerful conversion tools, we mention the
one implemented in the software suite TASSEL (Bradbury et al.,
2007), which deals with the most common formats associated
with NGS genotyping, and the gene_converter function within the
R package radiator (Gosselin, 2017), accepting and delivering 13
and 29 file formats, respectively.

Several open-source software suites are available for QC.
Among the most widely used, PLINK (Purcell et al., 2007),
starting from common genotypic data file formats (ped/map,
bed/bim/fam and VCF), enables the application of all the
SNP and individual filters presented in Sections “Application
of Common Filters” and “Application of Filters Depending
on the GWAS Population Type,” with the exception of the
FIT filter. In relation to the study of genetic ancestry, it has
options for LD pruning and MDS, and for the estimation of
pairwise IBS and IBD.

Compared with PLINK, the abovementioned TASSEL
(Bradbury et al., 2007) accepts a wider range of file formats
(also including hapmap) and does not perform filtering for
HWE departure. On the other hand, having been developed for
GWAS on maize inbred lines, TASSEL provides the possibility
to perform the FIT filter. As for the genetic ancestry options, it
can perform PCA/MDS and estimate pairwise IBS. While PLINK
is based on command lines, thus requiring specific training by
the user, TASSEL also implements a graphical user interface.
Another important feature of TASSEL is the possibility to easily
build histograms for SNP and individual missingness and SNP
heterozygosity, which, as discussed above, are useful to set up
cutoff thresholds specific for each GWAS experiment.

1http://www.cmpg.unibe.ch/software/PGDSpider/

Investigators with some bioinformatics skills may be
interested in QC tools also enabling filtering procedures
depending on the genotyping method, which, as stated above,
are commonly performed through external services. For NGS
genotyping, we cite VCFtools (Danecek et al., 2011), a command
line software suite developed for the VCF format, which allows,
among other options, filtering SNP sites and individuals based
on sequencing depth and PHRED-quality score. For array
genotyping, we cite the following: (i) the proprietary packages
GenomeStudio and Axiom Analysis Suite, for data generated
on Illumina or Affymetrix SNP array platforms, respectively;
(ii) freeware tools that directly accept raw data in the original
format generated by array genotyping platforms, including
fluorescence intensity data necessary for QC of genotype calls.
Among the many available options, we cite here the R packages
argyle (Morgan, 2016) and SNPQC (Gondro et al., 2014), and
the Python package ASSIsT (Di Guardo et al., 2015), for data
generated on Illumina SNP array platforms, and AffyPipe
(Nicolazzi et al., 2014), for data generated on Affymetrix SNP
array platforms.

Finally, concerning the study of genetic structure, besides
the above mentioned STRUCTURE (Pritchard et al., 2000)
and ADMIXTURE (Alexander et al., 2009), the EIGENSOFT
utilities SMARTPCA and SMARTEIGENSTRAT are popular
bioinformatics tools for, respectively, detecting and analyzing
population structure via PCA, and correcting for population
stratification in association studies (Price et al., 2006).

CONCLUSION

This work is thought to provide researchers, who mainly focus
on the biology and breeding of crop species, with essential
technical and economic aspects required to plan and carry out
cost-effective and accurate GWAS. To the best of our knowledge,
this is the first work specifically addressing the issue of QC in
crop species, so we expect that it may contribute to the future
harmonization of the procedures leading to the obtainment of
high-quality SNP datasets ready for GWAS.
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