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Abstract: Recurrent pregnancy loss (RPL) is typically defined as two or more consecutive pregnancy
losses prior to 20 weeks of gestation. Although the causes of idiopathic RPL are not completely
understood, vascular development and glucose concentration were reported to correlate with the
pregnancy loss. The TGF-β signaling pathway which plays a significant role in pregnancy is activated
by the interaction between high glucose and SMAD signaling and affects the vascular cells. SMAD5
and RUNX-1 are involved in the TGF-β signaling pathway and contribute to advanced glycation end
products (AGEs) production and vascular development. FN3KRP, a newly described gene, is also
associated with vascular diseases and suggested to relate to AGEs. Therefore, in the present study,
we investigated associations between RPL risk and genetic polymorphisms of SMAD5, FN3KRP, and
RUNX-1 in 388 women with RPL and 280 healthy control women of Korean ethnicity. Participants
were genotyped using real-time polymerase chain reaction and restriction fragment length poly-
morphism assay to determine the frequency of SMAD5 rs10515478 C>G, FN3KRP rs1046875 G>A,
and RUNX-1 rs15285 G>A polymorphisms. We found that women with RPL had lower likelihoods
of the FN3KRP rs1046875 AA genotype (adjusted odds ratio (AOR), 0.553; p = 0.010) and recessive
model (AOR, 0.631; p = 0.017). Furthermore, combination analysis showed that SMAD5 rs10515478
C>G and FN3KRP rs1046875 G>A mutant alleles were together associated with reduced RPL risk.
These findings suggest that the FN3KRP rs1046875 G>A polymorphism has a significant role on the
prevalence of RPL in Korean women. Considering that it is the first study indicating a significant
association between FN3KRP and pregnancy disease, RPL, our results suggest the need for further
investigation of the role of FN3KRP in pregnancy loss.

Keywords: SMAD5; FN3KRP; RUNX-1; polymorphism; recurrent pregnancy loss

1. Introduction

Recurrent pregnancy loss (RPL) is a relatively common condition defined as more
than two clinical pregnancy losses prior to 20 gestational weeks [1]. RPL occurs in 1–5% of
reproductive-aged women worldwide, but its exact cause is unknown in approximately
half of cases [2,3]. While possible causes are suggested, RPL has been understudied, with
multiple factors potentially involved, such as genetic factors, environmental factors and
certain organic diseases [4]. Gestational diabetes, which is a common complication of
pregnancy, is one factor that increases the risk of spontaneous abortion. Its main phenotype,
high blood sugar, can induce widespread damage to the body including blood vessel
dysfunction, which can contribute to infertility [5]. Adequate vascular function for carrying
nutrients is essential for uterine and embryo development and successful birth [6,7]; when
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the vascular complications of diabetes occur, several problems such as preeclampsia, early
birth and miscarriage can result [8]. In addition, high blood sugar contributes to the
formation of advanced glycation end-products (AGEs), which are toxic metabolic products
of lipids, nucleic acids, and proteins formed by non-enzymatic reactions with sugars [9].
Elevated levels of AGEs are associated with severe health issues such as cancer and vascular
diseases and may also play a role in infertility [4].

The transforming growth factor-beta (TGF-β) signaling pathway, which is important
for embryo development, is initiated by high glucose interacting with SMAD signaling [10]
and stimulates AGE activation by interconnection of SMAD5 and TGF-β1 [11]. Runt-related
transcription factors (RUNXs) are also involved in the TGF-β signaling pathway, working
synergistically with SMADs [12,13]. In particular, RUNX-1 plays a similar role as SMAD5
in mouse embryo, contributing to vascular system development [12,14–16], and was found
to promote the expression of endothelial-specific molecules for vascular formation in the
mouse yolk sac [17]. Moreover, RUNX-1 is known as a glucose-related gene and suggested
to mediate glucose-related disease [18–20]. Additionally, SMAD5 and RUNX-1 are target
genes of miR-27a, a promoter of angiogenesis and glucose metabolism [21–23]. However,
genetic variants of SMAD5 and RUNX-1 were not yet reported in pregnancy loss while
there are reports about the significant polymorphisms in vascular disease and platelet
dysfunction [24,25].

Fructosamine-3 kinase-related protein (FN3KRP) is a newly described gene that shares
65% similarity in structure with fructosamine-3-kinase (FN3K), which contributes to glucose
metabolism by preventing the formation of AGEs [26–29]. Although it is not clear whether
FN3KRP functions similarly to FN3K, a recent study indicates that a genetic polymorphism
of FN3KRP is associated with glucose products [30]. In particular, FN3KRP rs1046875 G>A
protects against cardiovascular diseases through HbA1c, glycated hemoglobin, and affects
the binding affinity of miR-34a [31] which acts as a suppressor of angiogenesis and glucose
metabolism [32,33]. Although the mechanism of HbA1c has to be elucidated, its increased
level has been reported in patients with cardiometabolic diseases and it has positive
correlation with the platelet dysfunction in diabetic mellitus [34–36]. As a precursor of
hemoglobin-AGE, higher HbA1c concentration is also associated with various diseases such
as vascular diseases, diabetes and pregnancy disorders [34–37]. Thus, FN3KRP rs1046875
G>A has a potential probability to play a significant role in pregnancy in relation to HbA1c.

Recent studies showed that either vascular function or glucose-related genes influence
RPL risk [38–40]. In addition, we previously found that pregnancy disorders are associated
with genetic polymorphisms in 3′-untranslated regions (3′-UTRs) [41,42]. 3′-UTR regulates
gene expression by binding with microRNA (miRNA), thereby modifying the stability
and function of mRNA; the single nucleotide polymorphisms (SNPs) which compose the
miRNA binding site in 3′-UTRs affect disease occurrence by regulating the affinity with
miRNA [43–45]. In the present study, we investigated whether RPL risk is related to specific
genetic polymorphisms in SMAD5, RUNX-1, and FN3KRP in Korean women. Specifically,
we evaluated potential associations between RPL and SMAD5 rs10515478 C>G, FN3KRP
rs1046875 G>A, and RUNX-1 rs15285 G>A, which are located in miRNA binding site-
containing 3′-UTRs and have >5% minor allele frequencies in the East Asian population.

2. Materials and Methods
2.1. Study Population

We obtained blood samples from women with RPL seen at the CHA Bundang Medical
Center’s Fertility Center (Seongnam, Korea) between March 1999 and February 2012. RPL
was diagnosed based on human chorionic gonadotropin levels, ultrasonography, and physi-
cal examination prior to 20 weeks of gestation. Women were excluded if they had pregnancy
loss caused by anatomic, hormonal, autoimmune, or thrombotic factors. Fetal anatomic
abnormalities were identified by hysterosalpingogram, sonography, computerized tomog-
raphy, hysteroscopy, or magnetic resonance imaging. Hormonal causes of RPL, such as
luteal insufficiency, hyperprolactinemia, or thyroid disease, were evaluated by measuring
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levels of thyroid-stimulating hormone, prolactin, follicle-stimulating hormone, free T4,
luteinizing hormone, and progesterone in peripheral blood. Autoimmune causes of RPL,
such as lupus and antiphospholipid syndrome, were evaluated using lupus anticoagulant
and anticardiolipin antibodies. Thrombotic causes of RPL were evaluated by deficiencies in
protein C and protein S and the presence of anti-β2 glycoprotein antibodies. Control blood
samples were obtained from healthy women seen at the CHA Bundang Medical Center
who were confirmed to have a normal 46 XX karyotype, regular menstrual cycle, history
of at least one naturally conceived pregnancy, and no history of pregnancy loss. In total,
we analyzed 388 samples from women with RPL and 280 samples from healthy control
women. No participants had a history of smoking or alcohol use, and all participants were
Korean. This study was approved by the Institutional Review Board of CHA Bundang
Medical Center (IRB number: BD2010-123D, 21 June 2011), and all participants provided
written informed consent.

2.2. Genotype Analysis

Genomic DNA was extracted from whole blood by obtaining the buffy coat after cen-
trifugation and employing the G DEX II Genomic DNA Extraction Kit (Intron Biotechnology
Inc., Seongnam, Korea). Genetic polymorphisms were determined by genotype analysis.
Real-time polymerase chain reaction (PCR) was performed for SMAD5 rs10515478 C>G and
FN3KRP rs1046875 G>A using the TaqMan SNP Genotyping Assay Kit (Applied Biosys-
tems, Foster City, CA, USA). RUNX-1 rs8134179 G>A was analyzed by PCR-restriction
fragment length polymorphism analysis with digestion by the MnlI restriction enzyme
using forward primer 5′- GGC ACA GAG AAG GAG ATA TAG ACT -3′ and reverse primer
5′- ATA GTA TGC CAG GGC TCA GG -3′.

2.3. Assessment of Homocysteine, Folate, Total Cholesterol, and Uric Acid Concentrations and
Blood Coagulation Status

Homocysteine levels were measured using a fluorescence polarization immunoassay
and the Abbott IMx Analyzer (Abbott Laboratories, Abbott Park, IL, USA). Folate lev-
els were measured using a radio-assay kit (ACS:180; Bayer, Tarrytown, NY, USA). Total
cholesterol and uric acid levels were determined using commercially available enzymatic
colorimetric tests (Roche Diagnostics, Mannheim, Germany). Platelets were measured
using the Sysmex XE 2100 Automated Hematology System (Sysmex Corporation, Kobe,
Japan). Prothrombin time and activated partial thromboplastin time were analyzed us-
ing an ACL TOP automated photo-optical coagulometer (Mitsubishi Chemical Medience,
Tokyo, Japan).

2.4. Statistical Analysis

For data on participant characteristics, categorical variables were analyzed using
Chi-square tests, and continuous variables were analyzed using Student’s t-tests. Multi-
variate logistic regression and Fisher’s exact tests were used to compare haplotype and
genotype frequencies between RPL and healthy control women. Adjusted odds ratios
(AORs) and 95% confidence intervals (CIs) were used to evaluate associations between
genetic polymorphisms and RPL occurrence [46]. Model-based multifactor dimensional-
ity reduction (MDR) was used to evaluate relationships between genotypes and partici-
pant characteristics [47–49]. Kruskal–Wallis tests were used for small sample sizes when
the p-value of Levene’s test was less than 0.05. Statistical analysis was performed us-
ing GraphPad Prism 4.0 (GraphPad Software Inc., San Diego, CA, USA) and Medcalc
version 12.7.1.0 (Medcalc Software, Mariakerke, Belgium). The HAPSTAT program (ver-
sion3.0, www.bios.unc.edu/~lin/hapstat/, accessed on 17 March 2022) was used to evalu-
ate the synergistic effects of polymorphic haplotypes. False discovery rate (FDR)-corrected
p-values < 0.05 were considered to be statistically significant [50]. Data are reported as
mean and standard deviation for continuous variables and frequencies and percentages for
categorical variables.

www.bios.unc.edu/~lin/hapstat/
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3. Results
3.1. Participant Characteristics

We performed the age-matching of patients and controls and then undertook the
comparison of clinical characteristics between two subjects. Compared with healthy control
women, women with RPL had significantly shorter mean gestational durations and altered
levels of pregnancy-related hormones (Table 1). Women with RPL also had significantly
higher total cholesterol, blood urea nitrogen, platelets, prothrombin time, activated partial
thromboplastin time, and hematocrit compared with healthy control women.

Table 1. Clinical characteristics of control and RPL groups.

Characteristic Control (n = 280) RPL (n = 388) p *

Age (year, mean ± SD) 33.02 ± 5.74 33.21 ± 4.55 0.339 *
BMI (kg/m2, mean ± SD) 21.58 ± 3.18 21.49 ± 3.84 0.730 *

Previous pregnancy losses (n) N/A 3.28 ± 1.84
Live births (n) 1.72 ± 0.72 N/A

Mean gestational age (weeks) 39.28 ± 1.67 7.36 ± 1.93 <0.0001 *
Homocysteine (µmol/L) 7.28 ± 1.58 6.98 ± 2.10 0.402 *

Folate (mg/mL) 13.71 ± 8.37 14.21 ± 11.94 0.887 *
Total cholesterol (mg/dL) 239.00 ± 85.19 187.73 ± 49.42 0.0004

Uric acid (mg/dL) 4.19 ± 1.44 3.80 ± 0.84 0.360 *
BUN (mg/dL) 8.03 ± 2.01 9.99 ± 2.77 <0.0001 *

Creatinine (mg/dL) 0.69 ± 0.08 0.72 ± 0.12 0.050 *
PLT (103/µL) 235.18 ± 63.60 255.43 ± 59.22 0.0007

PT (s) 11.53 ± 3.10 11.58 ± 0.86 <0.0001 *
aPTT (s) 30.78 ± 4.61 32.24 ± 4.33 0.006
Hct (%) 35.35 ± 4.26 37.31 ± 3.37 <0.0001 *

TSH (uIU/mL) N/A 2.18 ± 1.55
FSH (mIU/mL) 8.12 ± 2.85 7.52 ± 10.52 <0.0001 *
LH (mIU/mL) 3.32 ± 1.74 6.30 ± 12.09 <0.0001 *

E2 (Basal) 26.00 ± 14.75 35.71 ± 29.46 0.002 *
Prolactin (ng/mL) N/A 15.68 ± 12.98

FBS N/A 95.24 ± 16.97
Abbreviations: RPL, recurrent pregnancy loss; SD, standard deviation; N/A, not applicable; BMI, body mass
index; BUN, blood urea nitrogen; PLT, platelets; PT, prothrombin time; aPTT, activated partial thromboplastin
time; Hct, hematocrit; TSH, thyroid-stimulating hormone; FSH, follicle-stimulating hormone; LH, luteinizing
hormone; E2, estradiol; FBS, fasting blood sugar. p *: p-values were calculated by chi-square test for categorical
data and two-sided t-test for continuous data.

3.2. FN3KRP rs1046875 G>A Polymorphism Has Protective Role against RPL

Frequencies of SMAD5 rs10515478 C>G, FN3KRP rs1046875 G>A, and RUNX-1 rs15285
G>A polymorphisms were amplified and satisfied the Hardy–Weinberg principle (p > 0.05)
on both control and patient groups (Table 2). We evaluated the association between each
gene polymorphism and RPL and these results were adjusted by participant age. Among
the three polymorphisms, only the FN3KRP rs1046875 AA genotype and recessive model
differed significantly between women with RPL and healthy control women (Table 2).
Specifically, women with RPL had a lower likelihood of the FN3KRP rs1046875 AA genotype
and recessive model than healthy control women, and the protective role of rs1046875
AA genotype and recessive model became more pronounced when larger numbers of
pregnancy losses (PL) had occurred (PL ≥ 2; AA genotype; AOR, 0.553; p = 0.010; recessive
model; AOR, 0.631; p = 0.020; PL ≥ 3; AA genotype; AOR, 0.516; p = 0.016; recessive model;
AOR, 0.594; p = 0.027); PL ≥ 4; AA genotype; AOR, 0.311; p = 0.009; recessive model; AOR,
0.333; p = 0.006). After FDR correction, the association between the FN3KRP rs1046875 AA
genotype and RPL risk remained significant with all cases of PL but the recessive model
remained significant only when PL ≥ 4.
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Table 2. Genotype frequencies of gene polymorphisms in control and RPL groups.

Genotype Controls
(n = 280)

PL ≥ 2
(n = 388) AOR (95% CI)c p FDR-p PL ≥ 3

(n = 206) AOR (95% CI) p FDR-p PL ≥ 4
(n = 82) AOR (95% CI) p FDR-p

SMAD5 rs10515478 C>G
CC 92 (32.9) 137 (35.3) 69 (33.5) 1.000 (reference) 29 (35.4) 1.000 (reference)
CG 138 (49.3) 194 (50.0) 0.949 (0.949–1.339) 0.766 0.766 100 (48.5) 0.965 (0.641–1.451) 0.863 0.954 35 (42.7) 0.808 (0.462–1.414) 0.456 0.920
GG 50 (17.9) 57 (14.7) 0.771 (0.771–1.225) 0.271 0.407 37 (18.0) 0.996 (0.587–1.691) 0.989 0.989 18 (22.0) 1.174 (0.589–2.340) 0.650 0.650

Dominant (CC vs. CG + GG) 0.894 (0.894–1.237) 0.499 0.499 0.965 (0.658–1.415) 0.854 0.903 0.890 (0.530–1.493) 0.658 0.954
Recessive (CC + CG vs. GG) 0.789 (0.789–1.197) 0.265 0.398 0.981 (0.612–1.572) 0.935 0.935 1.270 (0.687–2.348) 0.446 0.590

HWE-p 0.888 0.382

FN3KRP rs1046875 G>A
GG 70 (25.0) 122 (31.4) 65 (31.6) 1.000 (reference) 25 (30.5) 1.000 (reference)
GA 141 (50.4) 200 (51.5) 0.820 (0.820–1.182) 0.288 0.687 108 (52.4) 0.819 (0.538–1.249) 0.354 0.954 49 (59.8) 0.972 (0.555–1.702) 0.920 0.920
AA 69 (24.6) 66 (17.0) 0.553 (0.553–0.866) 0.010 0.030 33 (16.0) 0.516 (0.302–0.882) 0.016 0.048 8 (9.8) 0.311 (0.130–0.742) 0.009 0.027

Dominant (GG vs. AG + AA) 0.733 (0.733–1.035) 0.078 0.234 0.723 (0.484–1.078) 0.111 0.333 0.761 (0.442–1.310) 0.324 0.954
Recessive (GG + AG vs. AA) 0.631 (0.631–0.922) 0.020 0.051 0.594 (0.374–0.943) 0.027 0.081 0.333 (0.153–0.725) 0.006 0.018

HWE-p 0.905 0.298

RUNX-1 rs15285 G>A
GG 218 (77.9) 292 (75.3) 159 (77.2) 1.000 (reference) 64 (78.0) 1.000 (reference)
GA 55 (19.6) 85 (21.9) 1.156 (1.156–1.694) 0.458 0.687 41 (19.9) 1.013 (0.643–1.596) 0.954 0.954 15 (18.3) 0.927 (0.491–1.751) 0.815 0.920
AA 7 (2.5) 11 (2.8) 1.167 (1.167–3.062) 0.753 0.753 6 (2.9) 1.136 (0.373–3.459) 0.823 0.989 3 (3.7) 1.423 (0.357–5.677) 0.618 0.650

Dominant (GG vs. AG + AA) 1.157 (1.157–1.666) 0.434 0.499 1.027 (0.667–1.582) 0.903 0.903 0.983 (0.542–1.782) 0.954 0.954
Recessive (GG + AG vs. AA) 1.135 (1.135–2.968) 0.796 0.796 1.140 (0.376–3.455) 0.816 0.935 1.460 (0.369–5.788) 0.590 0.590

HWE-p 0.128 0.122

Note: The odds ratio was adjusted by age of participants. RPL, recurrent pregnancy loss; AOR, adjusted odds ratio; CI, confidence interval; HWE, Hardy–Weinberg equilibrium; FDR,
False discovery rate.
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3.3. Synergistic Effects of SMAD5, FN3KRP, and RUNX-1 Polymorphisms on RPL

Considering that RPL etiology has polygenic traits, combination analyses were per-
formed to confirm associations with each allele or genotype combination and RPL. The
likelihood of all combinations containing the A allele of FN3KRP rs1046875 G>A compared
with the reference haplotype was lower among women with RPL than among healthy
control women even though some were not statistically significant (Table 3). In particular,
the combination of G, A, and G alleles in SMAD5 rs10515478 C>G, FN3KRP rs1046875
G>A, and RUNX-1 rs15285 G>A and of G and A alleles in SMAD5 rs10515478 C>G and
FN3KRP rs1046875 G>A were significantly less in women with RPL. After FDR correction,
the G-A combination but not the G-A-G combination remained significantly associated
with RPL. In addition, the likelihood of the combination of SMAD5 rs10515478 CG and
FN3KRP rs1046875 AA genotypes was significantly lower among women with RPL than
among healthy control women (Table 4) holding the significance of allele combination.

Table 3. Haplotype analysis of gene polymorphisms in control and RPL groups.

Allele
Combination

Controls
(2n = 560)

RPL
(2n = 776) OR (95% CI) p FDR-p

SMAD5 rs10515478 C>G/FN3KRP rs1046875 G>A/RUNX-1 rs15285 G>A
C-G-G 138 (24.6) 212 (27.4) 1.000 (reference)
C-G-A 20 (3.6) 42 (5.4) 1.367 (0.770–2.427) 0.285 0.55
C-A-G 146 (26.0) 192 (24.7) 0.856 (0.632–1.160) 0.316 0.553
C-A-A 18 (3.3) 22 (2.9) 0.796 (0.412–1.538) 0.496 0.578
G-G-G 112 (20.0) 167 (21.5) 0.971 (0.704–1.339) 0.856 0.856
G-G-A 11 (2.0) 23 (3.0) 1.361 (0.643–2.881) 0.419 0.578
G-A-G 96 (17.1) 98 (12.7) 0.665 (0.467–0.947) 0.023 0.163
G-A-A 19 (3.5) 20 (2.5) 0.685 (0.353–1.331) 0.262 0.553

SMAD5 rs10515478 C>G/FN3KRP rs1046875 G>A
C-G 159 (28.3) 253 (32.7) 1.000 (reference)
C-A 163 (29.2) 215 (27.7) 0.829 (0.624–1.102) 0.196 0.293
G-G 122 (21.9) 191 (24.6) 0.984 (0.728–1.330) 0.916 0.916
G-A 116 (20.6) 117 (15.1) 0.634 (0.458–0.877) 0.006 0.017

SMAD5 rs10515478 C>G/RUNX-1 rs15285 G>A
C-G 284 (50.8) 404 (52.0) 1.000 (reference)
C-A 38 (6.7) 64 (8.3) 1.184 (0.771–1.819) 0.440 0.660
G-G 207 (36.9) 265 (34.2) 0.900 (0.710–1.140) 0.383 0.660
G-A 31 (5.6) 43 (5.5) 0.975 (0.600–1.586) 0.919 0.919

FN3KRP rs1046875 G>A/RUNX-1 rs15285 G>A
G-G 250 (44.7) 379 (48.8) 1.000 (reference)
G-A 31 (5.5) 65 (8.4) 1.383 (0.876–2.184) 0.163 0.184
A-G 241 (43.0) 290 (37.4) 0.794 (0.628–1.003) 0.053 0.158
A-A 38 (6.8) 42 (5.4) 0.729 (0.457–1.163) 0.184 0.184

Note: RPL, recurrent pregnancy loss; OR, odds ratio; CI, confidence interval; FDR, False discovery rate.

Table 4. Combination analysis of gene polymorphisms between control and RPL groups.

Genotype
Combination

Controls
(n = 280)

RPL
(n = 388) AOR (95% CI) p FDR-p

SMAD5 rs10515478 C>G/FN3KRP rs1046875 G>A
CC/GG 23 (8.2) 42 (10.8) 1.000 (reference)
CC/GA 46 (16.4) 68 (17.5) 0.810 (0.431–1.523) 0.514 0.821
CC/AA 23 (8.2) 27 (7.0) 0.640 (0.300–1.365) 0.248 0.497
CG/GG 35 (12.5) 58 (14.9) 0.886 (0.457–1.716) 0.719 0.821
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Table 4. Cont.

Genotype
Combination

Controls
(n = 280)

RPL
(n = 388) AOR (95% CI) p FDR-p

CG/GA 66 (23.6) 103 (26.5) 0.865 (0.476–1.572) 0.635 0.821
CG/AA 37 (13.2) 33 (8.5) 0.482 (0.241–0.967) 0.040 0.306
GG/GG 12 (4.3) 22 (5.7) 0.934 (0.387–2.255) 0.879 0.879
GG/GA 29 (10.4) 29 (7.5) 0.572 (0.275–1.190) 0.135 0.361
GG/AA 9 (3.2) 6 (1.5) 0.345 (0.106–1.120) 0.077 0.306

SMAD5 rs10515478 C>G/RUNX-1 rs15285 G>A
CC/GG 71 (25.4) 103 (26.5) 1.000 (reference)
CC/GA 20 (7.1) 30 (7.7) 0.999 (0.522–1.912) 0.999 0.999
CC/AA 1 (0.4) 4 (1.0) 3.196 (0.344–29.734) 0.307 0.859
CG/GG 109 (38.9) 147 (37.9) 0.923 (0.624–1.366) 0.688 0.999
CG/GA 25 (8.9) 41 (10.6) 1.162 (0.647–2.087) 0.616 0.999
CG/AA 4 (1.4) 6 (1.5) 0.960 (0.259–3.560) 0.951 0.999
GG/GG 38 (13.6) 42 (10.8) 0.763 (0.447–1.302) 0.322 0.859
GG/GA 10 (3.6) 14 (3.6) 0.963 (0.405–2.291) 0.932 0.999
GG/AA 2 (0.7) 1 (0.3) 0.291 (0.025–3.352) 0.322 0.859

FN3KRP rs1046875 G>A/RUNX-1 rs15285 G>A
GG/GG 54 (19.3) 95 (24.5) 1.000 (reference)
GG/GA 16 (5.7) 24 (6.2) 0.875 (0.427–1.795) 0.716 0.832
GG/AA 0 (0.0) 3 (0.8) NA 0.994 0.994
GA/GG 111 (39.6) 141 (36.3) 0.729 (0.480–1.107) 0.138 0.275
GA/GA 27 (9.6) 52 (13.4) 1.107 (0.624–1.964) 0.728 0.832
GA/AA 3 (1.1) 7 (1.8) 1.343 (0.333–5.414) 0.678 0.832
AA/GG 53 (18.9) 56 (14.4) 0.609 (0.368–1.008) 0.054 0.241
AA/GA 12 (4.3) 9 (2.3) 0.434 (0.171–1.098) 0.078 0.241
AA/AA 4 (1.4) 1 (0.3) 0.147 (0.016–1.352) 0.090 0.241

Note: The odds ratio was adjusted by age of participants. RPL, recurrent pregnancy loss; AOR, adjusted odds
ratio; CI, confidence interval; N/A, not applicable; FDR, False discovery rate.

3.4. Associations between Participant Characteristics and Genetic Polymorphisms

As women with RPL and healthy control women showed differences in clinicopatho-
logical factors (Table 1), we examined relationships between participant characteristics and
each genetic polymorphism using MDR analysis. Both FN3KRP rs1046875 G>A (p = 0.046)
and RUNX-1 rs15285 G>A (p = 0.038) were significantly associated with platelet count,
with the lowest level for hetero genotype (Table 5). In addition, SMAD5 rs10515478 C>G
was significantly associated with gestational duration with a longer duration for the GG
genotype than for the CG or CC genotypes (CC, 18.45 ± 15.62; CG, 20.29 ± 15.64; GG,
25.82 ± 16.18).
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Table 5. Association between various clinical parameters and gene polymorphisms.

Genotype
BMI

(kg/m2)

Previous
Pregnancy
Losses (n)

Mean
Gestational
Age (Weeks)

Hcy
(umol/L)

Folate
(ng/mL)

T.chol
(mg/dL)

BUN
(mg/dL)

Creatin
(mg/dL)

PLT
(103/uL)

PT
(s)

aPTT
(s)

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

SMAD5
rs10515478

C>G
CC 21.45 ± 3.08 2.99 ± 1.58 18.45 ± 15.62 7.12 ± 2.07 13.77 ± 11.13 194.84 ± 59.44 9.34 ± 2.78 0.71 ± 0.11 240.17 ± 60.58 11.70 ± 2.08 31.12 ± 4.64
CG 21.71 ± 4.27 2.94 ± 1.47 20.29 ± 15.64 6.92 ± 2.06 14.23 ± 12.51 187.54 ± 52.18 9.83 ± 2.83 0.72 ± 0.12 246.52 ± 59.86 11.39 ± 1.02 32.10 ± 4.44
GG 21.06 ± 2.57 3.33 ± 1.49 25.82 ± 16.18 6.90 ± 2.17 14.98 ± 9.76 198.36 ± 49.86 9.89 ± 2.37 0.73 ± 0.12 250.13 ± 73.55 11.90 ± 2.41 32.02 ± 4.07
P a 0.374 0.222 0.023 0.722 0.885 0.546 0.382 0.512 0.480 0.155 0.184

FN3KRP
rs1046875

G>A
GG 21.76 ± 4.75 2.95 ± 1.28 19.56 ± 15.74 7.08 ± 2.13 14.22 ± 11.25 198.73 ± 59.39 9.69 ± 2.29 0.71 ± 0.11 256.76 ± 69.35 11.82 ± 2.42 32.13 ± 4.39
GA 21.33 ± 3.12 3.17 ± 1.78 20.86 ± 15.97 6.85 ± 1.81 13.51 ± 8.02 183.88 ± 42.74 9.45 ± 2.87 0.72 ± 0.12 239.37 ± 61.55 11.54 ± 1.33 31.80 ± 4.44
AA 21.67 ± 2.98 2.68 ± 0.86 21.94 ± 15.96 7.22 ± 2.63 16.29 ± 20.17 201.78 ± 71.12 10.11 ± 3.06 0.71 ± 0.13 242.67 ± 52.12 11.24 ± 0.96 30.96 ± 4.64
P a 0.465 b 0.376 0.675 0.462 b 0.977 b 0.470 0.373 0.905 0.046 0.155 0.274

RUNX-1
rs15285 G>A

GG 21.57 ± 3.86 3.05 ± 1.51 20.12 ± 15.78 6.87 ± 1.98 14.22 ± 12.16 189.80 ± 54.17 9.68 ± 2.72 0.72 ± 0.12 246.53 ± 61.83 11.59 ± 1.82 31.60 ± 4.51
GA 21.35 ± 3.03 2.87 ± 1.50 22.73 ± 16.25 7.30 ± 1.96 13.91 ± 10.32 202.42 ± 57.42 9.32 ± 2.67 0.70 ± 0.10 233.34 ± 60.17 11.54 ± 1.04 32.29 ± 4.26
AA 21.47 ± 2.65 3.27 ± 1.85 21.46 ± 16.19 8.07 ± 3.99 14.27 ± 7.36 167.75 ± 16.68 10.72 ± 4.58 0.70 ± 0.10 281.60 ± 80.81 11.30 ± 1.81 32.16 ± 5.20
P a 0.853 0.541 0.507 b 0.166 0.988 0.309 0.509 0.592 0.038 0.909 0.540

Note: BUN, blood urea nitrogen; T.chol, total cholesterol; BMI, body mass index; Hcy, homocysteine; PLT, platelet count; PT, prothrombin time; aPTT, activated partial thromboplastin
time. a One-way analysis of variance test. b Kruskal–Wallis test.
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4. Discussion

AGEs are products of the glycation of proteins or lipids resulting from exposure to
sugars. High levels of AGEs are implicated in aging and the development or worsening
of degenerative diseases including diabetes, atherosclerosis, chronic kidney disease, and
Alzheimer’s disease [51]. The pathological contribution of AGEs to various diseases is
under active investigation [4,52,53]. In particular, the accumulation of AGEs was found
to contribute to sterility via damage to ovarian cells [31]. However, the role of AGEs
in pregnancy loss has not previously been investigated. Therefore, we examined three
genes previously linked to AGE formation and successful birth to determine their potential
association with RPL. Furthermore, based on the contribution of non-coding regions to
gene expression, regarding miRNA, we identified SNPs located in miRNA binding sites-
containing 3′UTRs.

AGEs, which are produced by non-enzymatic glycation, have a deleterious impact on
biological macromolecules via the formation of toxic compounds. However, the FN3KRP
isoform of FN3K may protect proteins from non-enzymatic glycation [54]. Recent researches
suggest that FN3KRP polymorphisms have protective effects against diabetes and cardio-
vascular diseases [26,28], which share common risk factors with pregnancy disorders such
as vascular dysfunction and high glucose levels. Furthermore, a previous study reports
increased FN3KRP expression when FN3KRP rs1046875 contains mutant alleles that alter its
binding affinity with miR-34a [31]. As miR-34a is a negative regulator of angiogenesis and
glucose metabolism [55], we hypothesize that FN3KRP rs1046875 mutations reduce levels
of AGEs that can increase the risk of pregnancy loss (Figure 1). Consistent with previous
studies, we found that women with RPL had a lower likelihood of a FN3KRP rs1046875
mutant genotype and recessive model, with stronger associations observed among women
who experienced a larger number of pregnancy losses. These findings are the first to
suggest the involvement of FN3KRP in RPL and possibly other pregnancy disorders.

Regarding allele combinations, we found that the G-A-G combination of FN3KRP
rs1046875 G>A, SMAD5 rs10515478 C>G, and RUNX-1 rs15285 G>A was less likely in
women with RPL than in healthy control women. SMAD5 and RUNX-1 are components
of the TGF-β signaling pathway, which influences AGE formation (Figure 1). Specifically,
SMAD5 and RUNX-1 appear to play similar roles in embryonic vascular development. A
meshwork of blood vessels acts as an indispensable bridge for nutrient transmission from
the mother to the fetus and is crucial for successful birth [7]. The importance of SMAD5 and
RUNX-1 in pregnancy is confirmed by our finding of their interconnection with FN3KRP.
Interestingly, the synergistic effect between SMAD5 rs10515478 C>G and FN3KRP rs1046875
G>A maintained a significant association with decreased RPL occurrence in both allele and
genotype combination analysis. Therefore we infer that an interaction between FN3KRP
rs1046875 G>A and SMAD5 rs10515478 C>G may reduce RPL risk and this interpretation
is supported by previous reports that SMAD5 but not RUNX-1 influences AGEs directly
through binding with TGF-β1.

Through additional analysis, we found association between RUNX-1 rs15285 G>A
and platelet count. Platelet formation is affected by high glucose levels, and platelet
aggregation is reduced by insulin [56,57]. As a hematopoiesis gene, RUNX-1 is believed to
be closely linked to platelet count, with one study demonstrating that conditional knockout
of RUNX-1 in mice results in an 80% reduction in platelets [58]. Thus, RUNX-1 rs15285 G>A
may be the functional polymorphism underlying the involvement of RUNX-1 in aspects of
hematopoiesis for platelet formation, although this possibility requires further study. Unlike
RUNX-1, there are no previous reports of a relationship between FN3KRP and platelets.
However, we found that FN3KRP rs1046875 G>A was also associated with platelet count
in Table 4. Based on the link between platelet formation and glucose concentration, our
results suggest that FN3KRP rs1046875 G>A is involved in glucose metabolism and AGE
formation, which should be confirmed by future research. In addition, SMAD5 rs10515478
C>G was associated with gestational duration, consistent with our observation that mutant
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alleles of SMAD5 rs10515478 C>G had protective effect against RPL when they occurred in
combination with mutant alleles of FN3KRP rs1046875 G>A.

Figure 1. Overview of the formation and impact of AGEs. Proteins in the blood, such as albumin
and hemoglobin, react with plasma glucose and generate glycated proteins including fructosamine
and HbA1c, leading to the formation of AGEs through non-enzymatic glycation. The AGE formation
process is restricted by FN3K, which is similar in structure to FN3KRP. The high level of AGEs can
induce multiple diseases such as cancer, diabetes mellitus, vascular system dysfunction and infertility
and interacts with the TGF- β signaling pathway. In our study, we indicated the association between
FN3KRP rs1046875 G>A and RPL. Therefore, we propose that FN3KRP may inhibit the formation of
AGEs and affect the RPL, infertility diseases.

In summary, our results suggest that a FN3KRP rs1046875 G>A mutant genotype is
associated with RPL risk. However, some limitations of our study should be considered.
First, the mechanism by which each gene affects the development of RPL remains unclear;
thus, future functional studies are required to unravel these processes. Second, the in-
vestigation of additional participant characteristics is needed to clarify the nature of the
associations between genetic polymorphisms and RPL. Third, the population of our study
was restricted to Korean women. To ensure that the investigated genetic polymorphisms
can serve as biomarkers of RPL, studies involving more diverse ethnic populations are
needed. Finally, larger sample sizes are required to more robustly support our conclusions.

5. Conclusions

In conclusion, we evaluated associations between SMAD5 rs10515478 G>A, FN3KRP
rs1046875 G>A, and RUNX-1 rs15285 G>A polymorphisms and idiopathic RPL. To the
best of our knowledge, this is the first study investigating the involvement of these SNPs
with RPL risk. In particular, the role of FN3KRP in pregnancy disorders has not previously
been explored. Here, we indicated the probability that the mutant genotype and recessive
model of FN3KRP rs1046875 G>A may reduce the pregnancy loss, and its mutant allele
may act synergistically with mutant allele of SMAD5 rs10515478 G>A to protect against
RPL. Furthermore, FN3KRP rs1046875 G>A and RUNX-1 rs15285 G>A were associated



Biomedicines 2022, 10, 1481 11 of 13

with platelet count, which is linked to glucose concentration. Therefore, our study provides
a valuable cornerstone for further FN3KRP research offering the hypothesis that FN3KRP
may be associated with pregnancy loss regarding AGEs. The FN3KRP rs1046875 G>A
polymorphism could serve as a therapeutic target for RPL by reducing HbA1c levels and
thereby contribute to the lower level of AGEs, preventing pregnancy loss.
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