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Abstract

Statistical modeling produces compressed and often more easily interpretable descriptions of experimental data in form of
model parameters. When experimental manipulations target selected parameters, it is necessary for their interpretation that
other model components remain constant. For example, psychophysicists use dose rate models to describe how behavior
changes as a function of a single stimulus variable. The main interest is on shifts of this function induced by experimental
manipulation, assuming invariance in other aspects of the function. Combining several experimental conditions in a joint
analysis that takes such invariance constraints into account can result in a complex model for which no robust standard
procedures are available. We formulate a solution for the joint analysis through repeated applications of standard
procedures by allowing an additional assumption. This way, experimental conditions can be analyzed separately such that
all conditions are implicitly taken into account. We investigate the validity of the supplementary assumption through
simulations. Furthermore, we present a natural way to check whether a joint treatment is appropriate. We illustrate the
method for the specific case of the psychometric function; however the procedure applies to other models that encompass
multiple experimental conditions.
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Introduction

Many experiments in the quantitative sciences are set up to

manipulate a single or a few selected model parameters, assuming

that other parameters of the model remain constant across the

different experimental conditions. Thus, there are some param-

eters in the model that are determined by the general experimental

setup; there are other parameters in the model that are expected to

vary with experimental conditions.

The so-called dose rate model is an important model in many

natural sciences. Dose rate models describe the probability that

some event occurs as a function of some independent ‘‘dose’’

variable. In psychophysics, for example, dose rate models describe

the probability that an observer detects a given pattern as a

function of the contrast of the pattern [1–5]. Other examples can

be found in medicine—the probability of therapeutic success as a

function of dose of some medication, or in toxicology—the

fraction of test animals that die after application of some toxic

substance [6,7]. To compare sensitivity changes for several

patterns, medications or toxic substances, several experimental

conditions are measured, their corresponding dose rate models are

computed and contrasted.

In the simplest case, all dose rate models can be handled within

the framework of generalized linear models [8,9] which provides

numerically efficient ways of estimation and has well established

procedures to check for goodness-of-fit. Estimation of generalized

linear models is also easy for multiple dependent variables and

thus for multiple conditions. For generalized linear models to be

applicable, the dependent variable, a probability, must take the

lowest plausible value of zero and the highest plausible of one.

However, in many of the above examples the lowest plausible

value for the dependent variable is actually larger than zero,

though; and the highest plausible value for the dependent variable

is smaller than one. In psychophysics, observers might have a

certain probability to guess correctly, even if the stimulus was

much too weak to be detected by the eye [2]. In medicine, there

might be spontaneous remissions, and in toxicology, some of the

test animals might be resistant to the toxic substance. In these

cases, the asymptotic levels (spontaneous remissions, guesses,...)

curve [3]. However, including these parameters renders the

likelihood function of the model non-concave and in many cases

multimodal—a fact that seriously complicates model estimation.

Consequently, software that can be used to perform inference in

such models [3] typically employs methods for global optimization

such as grid searches or Monte Carlo procedures.

A dose rate model with asymptotic levels is designed for and

works well with the estimation of a single condition. An extension

of the model to encompass multiple conditions bears a few

difficulties. First of all, the parameter space that would need to be

searched by these global optimization routines grows exponentially

with the number of added conditions. Thereby, numerical stability
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in estimation biases for the actual parameters of the dose response

need to be estimated, too. If they are not estimated, this might result
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and efficiency might be sacrificed. Furthermore, goodness-of-fit

[10] as well as other routines, e.g. determining influential

observations in the data set [11], becomes more difficult to judge.

From a practical point of view it can be said that fitting a dose rate

model for individual cases is a standard routine for a psychophys-

icist or toxicologist. A deviation from standards needs always a

double thought since the standard was tailored to the problem by

the needs of the field. Our goal is therefore to handle several data

sets simultaneously but by extending the common routines and

keeping their advantages, not by changing to a more powerful

methodology.

Instead of fitting all conditions in a common model [12], we

suggest an alternative approach that still models each condition

individually as a dose rate model. Yet, information from all other

conditions is incorporated into the inference. Bayesian statistics

allows for a very natural way to include external information into

the inference process. In Bayesian statistics, the external informa-

tion is typically incorporated in the form of a ‘‘prior’’ probability

distribution because it describes all the information available to an

experimenter before he or she has seen the data that are actually

analyzed. Here we propose a method to derive prior distributions

that integrate information from other experimental conditions and

pose an implicit constraint to force a desired parameter to be equal

across conditions. An applied example of this procedure is

provided in the section ‘‘Example from perceptual psychology:

the psychometric function’’ and further elaborated in section

‘‘Another example and statistical tests’’.

Method

Separate sampling for joint inference
To explain the ideas behind joint inference, we imagine that n

data sets were collected experimentally, one data set per

experimental condition. Each data set, xi, i~1, . . . ,n, can be

described by the same model M with parameter vector h~(q,t),
but the specific parameter values of M might differ with condition

i. Note that q and t can be scalar as well as multidimensional. The

standard analysis treats each data set individually; each condition

is analyzed separately. We will refer to this collection of fitted

models as the isolated models. The graphical model for the isolated

models M is depicted in Figure 1A. Each node represents a factor

in the joint distribution of model variables. The filled node stands

for the observed variables, xi, i~1, . . . ,n and represent the data

sets collected for n different conditions. The random variables

ti,qi, i~1, . . . ,n are drawn as double circles. The blue plate in the

background groups variables that belong to the same condition i.

We assume here, that the structure of the submodels for each

condition is known and only the associated parameters need to be

identified from the data. For the case in which the model structure

itself is to be inferred from the data, see [13].

The goal of joint inference however is to fit all conditions

simultaneously, because the experimenter suspected that one

parameter, say q, is shared across conditions. The graphical model

for the joint analysis is shown in Figure 1B and we will refer to this

model as the joint model. Such a situation can arise, for example,

if the system described by the model has some parameters that are

dependent on the state of the system, here ti,i~1, . . . ,n, and some

that are state independent, q. The difference between graphical

model of the isolated and joint models is that q does not depend on

i. In the following blue colors are used for results from isolated

inference and red colors for results from joint inference. We will

show next how the computation of the isolated models in a first

step can serve to fit the joint model. The method is illustrated with

n~2 data sets.

The main assumption for the joint inference procedure is that

the parameters in h are a posteriori independent. The assump-

tion’s appropriateness is further investigated in the section entitled

‘‘Evaluation of the method’’. For parameter posterior distributions

of the isolated model Mi follows that

p(qi,ti Dxi)~p(qi Dxi)p(ti Dxi), i~1, . . . ,n: ð1Þ

Further, we exploit the fact that an independent distribution can

be represented through its marginals. Given the assumed a

posteriori independence of the model parameters, we can write the

joint parameter in the joint model via the marginal:

p(qDx1,x2) !
ð

p(t1,t2,qDx1,x2)dt1dt2 ð2Þ

!
ð

p(x1,x2Dt1,t2,q)p(t1,t2,q)dt1dt2 ð3Þ

Figure 1. Graphical models illustrating the isolated models and
the joint model approach. A graphical model illustrates the
dependencies between the variables of a model. The plates in the
background of both graphical models group variables according to
condition i. In panel A, the observed variable xi , the data from condition
i, depends on the random variables qi and ti , each being characteristic
for condition i. The only difference in the second panel is that the
random variable q is outside the background plate, which means the
variable does not depend on condition i—it is shared across conditions.
doi:10.1371/journal.pone.0091710.g001
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~

ð
p(x1Dt1,q)p(t1)p(x2Dt2,q)p(t2)p(q)dt1dt2 ð4Þ

!
ð

p(x1Dt1,q)
zfflfflfflfflfflffl}|fflfflfflfflfflffl{likelihood

p(t1)p(t2,qDx2)
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{priors

dt1dt2: ð5Þ

Here, we used Bayes Theorem, the a priori independence of

model parameters, and finally reorganized the terms to arrive at

an expression that we will use next to sample from the posterior.

This expression suggests a reinterpretation in the form of

likelihood and prior terms: The ‘‘likelihood’’ only contains the

first data set x1. The second data set x2 appears in one of the prior

terms. If the joint model is a correct description of the data, then

the shared parameter q equals the parameters of the isolated

models and q~q1~q2. The previous equation can therefore be

rewritten by replacing q by q1 and q2 to arrive at,

p(qjx1,x2)!

ð
p(x1jt1,q1)p(t1) p(t2,q2jx2)

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{posterior from isolated model

dt1dt2:

ð6Þ

The term that works as a prior for q resembles the posterior of

the isolated model applied to the second data set (equation (1)). As

a result the posterior of q in the joint model that is based on all

data sets simultaneously can be estimated in a two step procedure.

The first step is to determine the posterior of the isolated model on

the second data set p(t2,q2Dx2) and determine its marginal

p(q2Dx2) from (1). In the second step we estimate the parameters

of the isolated model from the first data set p(t1,q1Dx1) using the

marginal p(q2Dx2) as a prior for q1. Thus, it is possible to reduce

the formulation of the joint model to a sequence of isolated

models.

The terms in equation (4) may be ordered differently. This way,

we can apply the isolated models in a different sequence.

p(qjx1,x2) !

ð
p(t1,q1jx1)
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{posterior from isolated model

p(t2)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
priors

p(x2jt2,q2)|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
likelihood

dt1dt2 ð7Þ

Theoretically, the order should not matter and the marginal

posterior distributions computed with different orders are equiv-

alent. This can be used as a sanity check. If the full model is an

adequate description of the data and q is shared across conditions,

the marginal posteriors of the parameters obtained in different

orders overlap. Caution must be taken in applications where the

posterior distributions are approximated. If the approximation is

not stable or too coarse, the order in which the data sets are

analyzed will impact the final result. For example, we approx-

imated the posterior distributions in the remainder of this study

using Monte Carlo samples. If the number of Monte Carlo

samples is too low, joint posteriors obtained with different orders

may be different. In that case, it is necessary to generate more

Monte Carlo samples, or otherwise improve the approximation to
the posterior distribution.

The approach is extendable to n data sets, which we will

summarize briefly (see also figure 2): In a first step the parameter

posterior distributions for each of the n conditions are determined

in isolation. The marginal posterior distributions of the shared

parameter from n{1 conditions are multiplied and this product is

the prior for a second round of inference on the nth condition. In

contrast to the first step, the second step introduces information

from all other conditions into the inference procedure. Thus, after

this second step, the marginal posterior distributions of the shared

parameter are the same across all conditions. This way, the second

step of inference implicitly performs inference on all conditions

simultaneously. In the next section, we will illustrate the strategy

from the previous section for a concrete example from perceptual

psychology.

Ethics statement
The following example as well as the example in the section

entitled ‘‘Another example and statistical tests’’ are reanalyses of

data recorded by Wichmann [14]. These data have been collected

after obtaining the informed consent of the tested observer. Given

that in the original study, the experimenter collected data on

himself, a written statement of consent was not deemed necessary.

At the time when the data were collected in the psychology

department of the University of Oxford, there was a general

waiver that provided general approval for psychophysical exper-

iments. The procedures were in accordance with the declaration of

Helsinki.

Results and Examples

Example from perceptual psychology: the psychometric
function

The psychometric function relates the performance of an

observer to the intensity of a stimulus. Here, intensity can be the

sound pressure of an auditory tone or the contrast of a visual

stimulus. Performance is typically expressed in terms of the

probability that the observer correctly detects a predefined target

stimulus.

We analyze psychometric function data from a single observer

in an experiment by Wichmann [14]: The observer performed a

two alternatives forced choice task in which he had to monitor two

time intervals. Each interval lasted 79 ms. In one of these two

intervals, a low contrast sinusoidal target grating with a spatial

frequency of 8.37 degree visual angle was presented. The

observers task was to identify which one of these two intervals

contained the target grating. At each contrast level of the target

grating, either 40 or 50 responses were collected. Performance was

measured as the fraction of trials in which the observer correctly

identified the interval that contained the target grating. We

analyze data that were collected in two different experimental

conditions: First, a ‘‘masking’’ grating of low contrast (Michelson

contrast of 1.6%) was presented in both intervals. The mask was in

phase with the target grating such that the task was essentially to

identify the interval in which the grating had higher contrast. We

will refer to this condition as the ‘‘low contrast mask’’ condition

and present corresponding data in a light color scheme. In the

second condition, the mask had a high contrast (Michelson

contrast of 51.2%). We will refer to this condition as the ‘‘high

contrast mask’’ condition and use a darker color scheme to show

data and results. All experimental data used in this study are

available from http://www.ingofruend.net/jointbayes.html.

Joint Bayesian Inference
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To model these data, the responses were assumed to be

binomially distributed with a probability of success given by [3,15]

Y(x)~cz
1{c{l

1zexp({z0(x{a)=b)
, z0~log(9), c : ~

1

2
: ð8Þ

This model has three free parameters a,b,l. The parameter l
describes the upper asymptote of the model and is treated as a

nuisance parameter. Although l is usually not of scientific interest,

omitting l from the model introduces potential estimation bias in

the other parameters [3]. The remaining two parameters a and b
are psychologically interesting: a is the stimulus intensity at which

the psychometric function is halfway between the lower asymptote,

c, and the upper asymptote 1{c{l. Thus, a is often reported as

the threshold and 1=a can be considered a measure of sensitivity.

The other parameter of interest is b, which is proportional to the

slope of the psychometric function at a contrast of a: If b is large,

the psychometric function is very shallow, if b is small, the

psychometric function is very steep. By incorporating the constant

z0 into the equation, b gives the range of stimulus intensities on

which the psychometric function rises from a performance level

10% above the lower asymptote to 10% below the upper

asymptote. Thus, this parameter is the width of the range of

contrasts over which the observer’s performance is sensitive to

changes in the stimulus contrast. We estimated the parameter

posterior distributions by a sampling-importance-resampling

procedure [16,17]. Sampling-importance-resampling uses an

arbitrary distribution to generate a number of proposal samples.

Each proposal sample is then assigned a so-called importance

weight, which quantifies how important that sample is to represent

the target distribution. Finally samples are drawn from the

proposals with probabilities proportional to their importance

weights. We proposed 25 000 samples to arrive at 2 000 final

samples here. The prior distributions in the isolated inference or

the non-shared parameters in the joint inference procedure were

conjugate priors to the posteriors typically observed in experi-

ments.

Wichmann [14] reports no strong changes in slope for different

masking contrasts. This means that the slope could be modeled as

a shared parameter, and we illustrate the method based on this

data in the remainder of this section. In a later section called

‘‘Another example and statistical tests’’, we will investigate a

second scenario in which the assumption of parameter equaility is

not valid, which means that the data do not originate from the

same distribution. Here, we will contrast fits and posterior

distributions obtained with the standard isolated inference

procedure and the newly proposed joint inference procedure.

Both procedures were applied to exactly the same data sets.

Figure 3 illustrates the results of the analysis. We first discuss the

results when each data set was fitted independently. Figure 3A and

B display the data (dots) as well as the Bayesian posterior mean

estimate of the corresponding psychometric function. The

functions provide visually good fits although the high contrast

mask (Figure 3B) data scatter slightly more around the fitted

function than in the low contrast mask (Figure 3A) condition. The

deviance residuals plotted below the curve capture this observation

well.

Figure 3C shows marginal histograms of samples from the

posterior. We tried to summarize the samples by fitting them with

a parametric model. The solid lines in the second row are

maximum likelihood fits of Gamma distributions to the samples

from the marginal posterior distribution. We observe that the

histogram for the ‘‘low contrast mask’’ condition (Figure 3C light

blue) is very similar to the histogram for the ‘‘high contrast mask’’

condition (Figure 3C dark blue). Furthermore, the histograms are

very well approximated by fitted Gamma distributions. We took

these fitted Gamma distributions as parametric summaries of the

posterior samples.

With this prerequisite, a joint fit of the psychometric functions in

the two masking conditions might succeed. Indeed after applying

the procedure presented in the section ‘‘Separate sampling for

joint inference’’, the fits remain very good. The joint mean a

posteriori fits in Figure 3D and E fit the data nearly as well as for

separate inference. Note here, that even the residual plots in the

bottom part of Figure 3D and E are very similar to those for

isolated fits (Figure 3A and B). Also, the a posteriori histograms in

Figure 3F are highly overlapping. It should however be noted that

neither the histograms nor the fitted parametric summaries are

exactly the same. However, once the experimenter has decided to

accept the joint inference to provide valid results, the posterior

Figure 2. Illustration of the procedure for n data sets. The second step is show here for the general condition i. The marginal posterior
distribution of the shared parameter P(hDx1, . . . ,xn) does not depend on i. Yet, for the non-shared parameters ti , the marginal posterior distribution
depends on i.
doi:10.1371/journal.pone.0091710.g002

Joint Bayesian Inference

PLOS ONE | www.plosone.org 4 April 2014 | Volume 9 | Issue 4 | e91710



samples stem from the same distribution, the joint posterior

distribution. Thus, by accepting the joint inference, the experi-

menter assumes that differences between histograms only reflect

the sampling errors during posterior sampling.

Evaluation of the method
The previous section illustrated the method through an example

from perceptual psychology. In this section we will use the same

model as in the example to evaluate the method with respect to

two questions that concern the general applicability. First, by

definition our method requires that the posterior parameter

distributions after the first sampling round can be represented by

its marginal distributions without loss of information. This is only

true if the parameters are a posterior independent. Here, we

investigate how crucial this independence assumption is. Second,

we study the success of the method. Success means to achieve an

overlap between the marginal posteriors without impairing

deviance. We address both questions by simulating data from

functions with known parameters and applying the method on

pairs of these synthetic data sets.

The synthetic data sets used in this section were all generated

from the same underlying psychometric function (a~2,b~1).
That means, by design the joint inference procedure is legitimate

to use. The data sets differ with respect to their sampling scheme—

the intensities at which the psychometric function is evaluated—

and the number of responses per stimulus intensity (trials). Both

were chosen randomly for each data set. The number of trials per

intensity block ranged between 20 and 200. Six intensity levels

were chosen randomly to sample the psychometric function. It was

assured that they covered certain intervals in the asymptotes and

rising part of the psychometric function. Thereby, the data sets

differ in the amounts of correlation between the parameters. We

observed that properly sampled psychometric functions [3] exhibit

only minor correlations between parameters. Thus, the assump-

tion will typically be justified in practice. We quantified how well

the procedure works dependent on the correlation between a and

b. This seems sufficient, since l is only a nuisance parameter. For

the quantification we chose two statistics, one that captures

goodness-of-fit and one that captures the overlap between the

posterior distributions of the joint parameter. The procedure

works well, if the goodness-of-fit is nearly the same between

isolated and joint fits, and if the overlap between the posterior

distributions increases.

Goodness-of-fit of a single condition was quantified by deviance:

D~{2
X6

i~1

ki log
pi

yi

� �
z(ni{ki) log

1{pi

1{yi

� �

with the number of intensity levels, i, the number of trials, n, the

number of correct responses, k, the model prediction, p, and the

observed performance, y~
k

n
. To compare the fit of the isolated

models with the fit of the full model, the deviance of the n model

components are summed: D~
Xn

i~1
Di. Figure 4 shows good-

ness-of-fit as a function of the correlation between the two

parameters estimated for two data sets. The first panel presents

deviance sum D of both data sets fitted in isolation. D is plotted

against the correlation value R1 of a and b in the first data set and

the correlation R2 in the second data set. The better the fit, the

smaller deviance and the darker the color. The second panel

presents D for the same data sets, but after the joint fitting

procedure. The color pattern of Figure 4 shows that, first, there is

no trend with correlation and, second, the deviance pattern is very

similar for isolated and joint inference.

To quantify the overlap between two distributions, we compute

a statistic based on the first and third quartile of the distributions.

We prefer this statistic over other options such as KL-divergence,

Figure 3. The procedure applied. Panel A, B, and C use the isolated inference procedure, Panel D, E, and F the joint inference procedure.
Psychometric functions, shown as solid lines, were fitted to a dataset using a low contrast mask (Panel A) and a high contrast mask (Panel B).
Deviance residuals are shown in black below data and fit. Panel C shows the marginal posterior distributions of parameter b from both data sets in
the corresponding colors to the fits above. Panel D and E are equivalent to Panel A and B except that the joint procedure was applied, which uses the
marginals from Panel C as prior distributions. The marginal posterior distributions of b are shown in Panel F.
doi:10.1371/journal.pone.0091710.g003
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because it is a simple, robust measure with respect to the mass of

the sample distribution where the exact shape of the distributions

and the tails are not that important. Figure 5 illustrates the

statistic. Let the quartiles be Q1 and Q3 for one distribution and

Q1
0 and Q3 for the second distribution. The overlap is computed

by:

q : ~
min(Q3,Q3 ){max(Q1,Q1 )

max(Q3,Q3 ){min(Q1,Q1 )
: ð9Þ

This means, that if the distributions are very similar and the

quartiles fall on the same values, then the overlap is 1 (Figure 5A).

If the interquartile ranges overlap partly, the result is positive. The

overlap is 0, if one interquartile range starts where the other ends

(Figure 5A) and grows negative with the limit of {1 if the

distributions diverge (see Figure 5C for an extreme example).

Figure 6 presents the overlap q between the posterior

distribution of the width parameter b as a function of the

correlation structure of the data sets. Again the results are shown

for both, isolated and joint fits. The lighter the color, the greater

the overlap. As for deviance the figure shows no trend of the

overlap dependent on the correlation between a and b. We would

like to point out, that the initial overlap between the marginal

posterior distributions is rather low, even if the generating

functions of the data sets were the same in this example. This is

due to the rather large variance of binomially distributed data,

especially for small data sets. With joint fitting the overlap

increases strongly and results in mainly positive indices.

The simulations show that neither deviance nor overlap are

sensitive to the assumption of parameter independence. This

allows us to summarize the results across correlation and present

them as histograms in Figure 7. The first panel shows histograms

of deviance as obtained with isolated and joint fitting in blue and

red, respectively. The second panel shows histograms of overlap

also for isolated and joint fitting using the same color code. The

deviance histograms are rather similar while the overlap histogram

shifts clearly towards larger values for the joint fit. In combination

the results presented so far imply, that the method is robust in the

case of data from the same underlying function.

Another example and statistical tests
For the example presented above, it was reasonable that the

parameter, on which the method was applied, did not differ

between data sets collected in different experimental conditions.

For the simulated data it was even guaranteed by design. We have

shown that in this case the joint fitting procedure resulted in model

fits that were as good as the benchmarks obtained in isolated fits

with the additional gain of approximate equality of one of the

parameter posterior distributions. Clearly, in any true experimen-

tal setup, data from different conditions will not be from the same

distribution. In this case, it may still be desirable and parsimonious

to treat some parameters of the model as if they had the same

distribution. Thus, in these cases, there is a trade-off between

achieving approximate equality of one (or more) marginal

distributions of the posterior on the one hand and maintaining a

good fit on the other hand. This section presents data and

statistical analysis of a scenario in which parameter equality is not

guaranteed and we show how this situation can be handled.

Wichmann [14] reports no strong changes in the width of the

psychometric function for different masking contrasts which is

consistent with our results in the previous sections. However, if

observers had to discriminate a target grating from a homoge-

neous background—the ‘‘no mask’’ condition—he reports a

decrease in width.

Again we analyze data that were collected in two different

experimental conditions: We reuse the data previously called the

‘‘low contrast mask’’ condition (light color) and add the ‘‘no mask’’

condition (dark color).

Indeed, the psychometric function in the no mask condition

(Figure 8A) is slightly steeper than in the two masking conditions

(for example ‘‘low contrast mask condition’’ in Figure 8B). Also the

histograms (Figure 8C) are quite different for the no mask

condition as compared to the low contrast mask conditions. In

Figure 4. Deviance as a function of parameter correlations for the isolated models(left) and joint model(right). The color of each data
point corresponds to the combined deviance obtained through psychometric function fits to two artificially generated data sets with the same
generating parameters. The cardinal axis denote the correlation between the generating parameters a and b in the first and second data set.
doi:10.1371/journal.pone.0091710.g004
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general, b tends to be lower in the ‘‘no mask’’ condition. This

reflects the previous result by Wichmann [14] on the same data

that psychometric function slopes were markedly different if a

mask was present or not.

It is clear that these two marginal distributions are considerably

different. There is only little overlap between these two

distributions. Nonetheless, we can use the method presented in

the section ‘‘Separate sampling for joint inference’’ to force the

two posteriors to be (approximately) equal. The psychometric

functions corresponding to the resulting mean a posteriori

estimates are shown in Figure 8D and E and the respective a

posteriori distributions in Figure 8F. The procedure results in

posteriors that are closer together. However, the fit quality is worse

than for the two separate fits: In the no mask condition (Figure 8D),

the fitted function is consistently above the recorded data points at

low signal contrast, while in the low contrast mask condition the

fitted function is consistently below the recorded data points

(Figure 8E).

To decide whether the joint model or the isolated models

provide a better description of the data, we use model selection by

treating the model itself as another parameter and determining the

marginal posterior distribution of this parameter. With a flat prior,

this is equivalent to a decision based on the Bayes factor (see for

example [18] for a review and tutorial). To do so, we derived

samples for the isolated model as well as the joint model. In the

next step, we considered the posterior distribution the joint space

of models and parameters (‘‘model’’ has two possible values

‘‘isolated’’ and ‘‘joint’’). In Methods S1, we show how the marginal

model distribution in this space can be obtained trough Gibbs

sampling and that it is even possible to approximate the stationary

distribution analytically.

Again artificial data sets were generated to quantify the

sensitivity of the model selection approach. In the previous

simulations we observed, that large correlations only occurred if

the psychometric function were not well constrained by the data

points. For example, if no data was collected in the raising part or

in one of the asymptotes. Realistic sampling schemes, as one would

demand for meaningful experimental data, did not yield large

parameter correlations. We took advantage of that observation

and selected only data sets with a correlations of less than +0:5. In

contrast to the previous simulations, here the simulated data sets

could differ with respect to the widths of their generating

psychometric functions. The models posterior probabilities

obtained with data sets having no difference between the width

of the generating functions, then we expect the model posterior

probability of the joint model to be at least equal to the model

posterior probability of the isolated models. The joint model could

even be favored because it is simpler. Simplicity in this context is

expressed in the area covered by the prior distributions of all

parameters together. If the functions that generated the data sets

had truly different slopes, we would like our method to prefer the

isolated model. Obviously, it might be impossible to discriminate

‘‘equal slopes’’ from ‘‘very similar but not equal slopes’’ on finite

data sets. Thus, if the width difference between the generating

psychometric functions of two data sets is sufficiently small, we

would like our method to consistently prefer the joint model.

Figure 9 shows boxplots and the mean of the isolated models’

posterior probability depending on the true width difference

between the generating parameter, Db. The scattered values are

the raw results colored by the number of trials in the data sets.

Applied on our simulations we find that the isolated models’

posterior probabilities accumulate below values of 0:2 if Db~0.

With increasing Db the main support of the box plot and

individual results in the scatter shift towards 1. The probability of

the isolated models increases with Db as is expected. We had a

closer look on the simulations where the data sets were generated

with very different slopes but where the model posterior favored a

joint analysis. Many of those data sets contained samples that did

not describe the psychometric function well. Either these data sets

were lacking samples in the raising part or samples in one of the

asymptotes. In a real scientific experiment psychometric functions

with this property would not be tolerated and more data would

need to be collected. The consequence of such data is that the

prior from the other condition faces no conflicting data and a joint

fit is feasible. The strong scatter of the model posteriors therefore

stems from the limited number of data samples—here six—

combined with an unfortunate positioning of intensity values. The

Figure 5. Overlap statistic explained. Panel A shows two
distributions with the maximal value of overlap 1. The distributions
themselves are not exactly equal, but their first and third quartiles, Q1

and Q3 , are. The intermediate steps to compute the overlap as denoted
in Equation 9 are shown below the distributions. Panel B shows an
example of distributions, quartiles and intermediate results that result
in a overlap of 0. In this case the interquartile range of one distributions
ends where the second starts. Panel C contains distant distributions
with their quartiles and results. Here the width of the interquartile range
is negligible compared to the distance between the distributions. The
resulting overlap statistic is 21.
doi:10.1371/journal.pone.0091710.g005
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shift of the distributions from 0 to 1 with increasing width is slower

than it would be with realistically sampled psychometric functions.

Of course, it is important to show that the model comparison

works as expected. However, as a scientist one is interested in the

separability between the simulations that allow the joint procedure

and the simulations that do not. Therefore, we also computed the

‘‘area under the curve’’ (AUC)— a measure for linear separability

between two distributions analyzed in a receiver operating

characteristic. The values given for each Db in Figure 9 are the

characteristic computed for that Db and Db~0. A value of 0:5
indicates that the distributions are completely overlapping and

separability is impossible. A value of 1 indicates perfectly separable

distributions. The AUC increases quickly with Db. Note that the

observed AUC values underestimate the power of the procedure

which would be obtained with better defined psychometric

functions.

Coming back to the our two examples, here Bayesian model

selection as described above gives the following results. In the first

example with the low and high contrast mask, the slopes appeared

equal. Here, the posterior probability should favor the joint model.

Indeed, the posterior probability for the joint model is 0.977 in the

first example. In the second example presented at the beginning of

Figure 6. Overlap as a function of parameter correlations for the isolated models(left) and joint model(right). The color of each data
point corresponds to the overlap of the posterior marginal distributions of parameter b. Despite the fact that the generating parameters of the data
sets were the same, the inferred parameter distributions can show rather low overlap in the isolated model approach. The cardinal axis denote the
correlation between the generating parameters in the first and second data set.
doi:10.1371/journal.pone.0091710.g006

Figure 7. Histograms of the deviance and overlap data shown in Figure 4 and Figure 6. The dark histograms corresponds to the joint and
the light histograms to the isolated fits.
doi:10.1371/journal.pone.0091710.g007
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Figure 8. The procedure applied to different data sets. This figure is constructed equivalently to Figure 3, but different data sets are used. In
Panel A and D an experimental condition without a contrast mask is shown. Panel B and E contain the same data sets as Figure 3 A and D. In this
example, the marginal posterior distributions from the isolated inference procedure result in markedly different parameter posterior distributions
(Panel C) which are forced to overlap through joint inference (Panel F).
doi:10.1371/journal.pone.0091710.g008

Figure 9. Model selection between isolated and joint model. For each data point in this plot, two artificial data sets with a difference of Db in
their generating functions were used. The probability of isolated models being the basis of the data sets, and not a joint model, is shown for
differences from Db~0 . . . 4. The color of the data points denote the total number of trials in the data set pair. The probabilities of each Db are also
summarized in boxplots. The comparison of hits in the condition when Db~0 with false alarms in the present condition result in an AUC
characteristic shown in the number given for each difference.
doi:10.1371/journal.pone.0091710.g009
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this section, one condition did not contain a mask at all. We

claimed that the slopes were different in this case. Here, the model

selection strongly supports the isolated models with a posterior

probability of 0.997 for the isolated models. Therefore, and

consistent with the visual inspection of psychometric functions, the

joint procedure should be only applied on the masked conditions,

but not in the second example with and without a mask condition.

Discussion

We presented a Bayesian approach to perform joint inference.

By joint inference we mean to perform inference on the basis of

several data sets simultaneously. The main difference to other

procedures is that the data sets are fitted individually by taking all

available data sets into account either directly through the

likelihood function or through the prior. Thereby, the computa-

tional and logical effort of the fitting remains manageable because

the true complexity is hidden.

Here, we demonstrated the joint inference procedure with a

specific application from perceptual psychology. Several data sets

were requested to be explained by the same model class with the

supposition that one parameter is equivalent in all data sets. The

procedure can not only be applied in similar cases, but could also

be used in the case of other modular models.

For more complex models joint inference could also be

applicable, if the complex model can be divided into simpler,

overlapping modules which can be tested separately. The

parameters that are common to all modules are the shared

parameters. It is not necessary that all the modules are described

by the same sub-models as was the case in the presented example,

but each sub-model has to be estimated in through Bayesian

methods for joint inference to be applicable. To take another

example from psychophysics, we could have two data sets in which

one measured the probability of correct responses similar to our

examples above, while the other one measured the time that it

took the observer to respond to the stimulus as quickly as possible.

The models for response accuracy and reaction time will be quite

different overall. The model in equation (8) is very common for

response accuracy, while there are many models in the literature

for reaction time, e.g. [19–21]. In both cases, the dependent

variable depends on a parameter that quantifies the visibility of the

stimulus: We expect responses to be more accurate for a highly

visible stimulus, and we also expect responses to be faster for a

highly visible stimulus. For example, drift-diffusion models for

reaction time (e.g. [20]) describe descision making as a diffusion

process with drift. In these models, the drift (often called m) would

be a visibility parameter. This parameter is analogous to b{1 in

equation (8) and could be assigned the joint prior distribution

presented here.

Furthermore, joint inference can be used to test if two or more

data sets can be combined into a single data set, for example the

results from several observers in psychology. Here, all model

parameters would be treated as shared parameters and the model

selection routine returns a criterion for the feasibility of the data set

combination.

In general, the problem that we addressed here, is not a new

problem. Other methods are available to deal with data collected

across multiple conditions, most notably analysis of covariance

(ANCOVA) and hierarchical linear regression models. Both

methods are based on the assumption that the dependent variable

is normally distributed with equal variance/regression slope across

conditions. For many real world data sets, normality is valid only

in the limit of infinitely large data sets, equality of variance is met

only locally, and equality of regression slopes is not met. It is

possible to correct the results of ANCOVA for violations of these

assumptions and generalized linear mixed models provide a way to

extend hierarchical linear models to incorporate non-linear link

functions (see [22] for a review). Yet, the ANCOVA is limited to

linear dependencies, while generalized linear mixed models are

technically much more involved and do not lend themselves to

detailed and intuitive assessments of the model’s goodness of fit.

This is where joint bayesian analysis is helpful. By keeping the

structure of each model separate, we can use arbitrarily complex

models for individual conditions and integrate information across

conditions only through the joint prior. Another and more

important difference is the possibility that the different submodels

do not need to be structurally equal. This has been elaborated in

more detail above.

The general benefits we foresee from joint inference being

applied, is that the computational overhead is low and that

standard procedures for Bayesian inference can be adopted.

Furthermore, the procedure allows a direct model comparison

between the joint and isolated models to test the assumption of

parameter equality. Here, we used a non-frequentist model

selection criterion based on Bayes factors which are readily

interpretable.

Supporting Information

Methods S1 Determining model posteriors.

(PDF)
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