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Dopamine has long been implicated as a critical neural substrate mediating anorexia

nervosa (AN). Despite nearly 50 years of research, the putative direction of change

in dopamine function remains unclear and no consensus on the mechanistic role of

dopamine in AN has been achieved. We hypothesize two stages in AN– corresponding to

initial development and entrenchment– characterized by opposite changes in dopamine.

First, caloric restriction, particularly when combined with exercise, triggers an escalating

spiral of increasing dopamine that facilitates the behavioral plasticity necessary to

establish and reinforce weight-loss behaviors. Second, chronic self-starvation reverses

this escalation to reduce or impair dopamine which, in turn, confers behavioral

inflexibility and entrenchment of now established AN behaviors. This pattern of enhanced,

followed by impaired dopamine might be a common path to many behavioral disorders

characterized by reinforcement learning and subsequent behavioral inflexibility. If correct,

our hypothesis has significant clinical and research implications for AN and other

disorders, such as addiction and obesity.

Keywords: anorexia nervosa, compulsive behavioral disorders, dopamine, chronic stress, behavioral plasticity

Worldwide, millions of people diet and struggle to lose weight, with high rates of relapse and weight
rebound. This is not surprising considering that we evolved over millions of years to eat, a behavior
that is highly reinforcing. Yet, evolution and a lifetime of reinforcement are seemingly overridden
in a subset of dieters who develop anorexia nervosa (AN), an eating disorder characterized by
unrelenting self-starvation.

Initially, AN behaviors may be indistinguishable from a successful weight loss routine. AN
becomes evident when an inability or unwillingness to stop losing weight emerges, even when
it is life threatening. Those with AN develop an obsessive preoccupation with being thin, often
engaging in ritualistic, restrictive eating behaviors and vigorous, extended exercise. The nature of
these behavioral changes have been compared to compulsions in obesity and addictive disorders
[e.g., (1)], where entire patterns of behavior become reorganized around a central focus (i.e., weight-
loss, overeating, drug taking) often interfering with other activities and social relationships. As
in obesity and addiction, once a behavioral regimen has been established in AN, it can be highly
resistant to change, or entrenched (2).
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The neuroadaptations underlying AN remain poorly
understood. Starvation alone leads to physiological and
psychological changes that resemble AN symptoms (3–5)
and unintended weight loss has been found to trigger AN in
some cases (6). This has led to the suggestion that dieting and
exercising – typically motivated by psychosocial and cognitive
factors – could lead to weight loss-induced adaptations that
trigger AN (7, 8). However, this fails to account for the most
crucial aspect of AN, the refusal to eat. After all, a starving
person will generally eat when offered food. It is important
to understand 1) how weight loss leads to the reorganization
of behavior around self-starvation in some individuals and 2)
the mechanisms by which these behaviors become compulsive
and entrenched.

The midbrain dopamine system has been implicated in
the pathophysiology of AN for decades (7, 9, 10). However,
consensus on how dopamine mediates AN has yet to emerge.
We propose a two-stage model of AN in which opposite changes
in dopamine function underlie each stage of the disorder: initial
emergence and establishment of AN behaviors, and subsequent
entrenchment of an established AN behavioral regimen.

DOPAMINE IN ANOREXIA NERVOSA

The hypothesis that increased dopamine plays a central role
in the pathophysiology of AN was first introduced in 1976 by
Barry and Klawans (11). This was based on the observation
that drugs that increase dopamine, such as amphetamine, lead
to changes that resemble AN symptoms. Subsequent studies
measuring dopamine or its metabolites reported increased,
decreased or unchanged levels in AN (9, 12). Human imaging
studies using PET revealed increased D2/3 binding in the ventral
striatum of recovered AN patients (13), which could reflect
increased receptor expression, decreased dopamine transmission,
or both if D2/3 is upregulated in response to diminished
basal dopamine. In contrast, Broft et al. (14) found no
change in D2 availability in currently ill AN patients. In a
subsequent fMRI study using a prediction error task, Frank
et al. (15) observed enhanced activity in striatal and insula
regions, consistent with enhanced dopaminergic responsivity
in AN. Collectively, this work supports a role for abnormal
dopamine signaling in AN, but the direction of the abnormality
remains unclear.

In the absence of longitudinal, prospective studies, it
is difficult to determine whether putative abnormalities in
dopamine precede the disorder representing a risk factor or
arise as a consequence of starvation. In a widely cited paper,
Kaye et al. (16) reported that recovered women with restricting-
type AN have reduced homovanillic acid, a major metabolite of
dopamine. While one interpretation of this result is that there is
trait-like dysfunction in dopamine metabolism, it is also possible
that this reflects persistent changes induced by AN. Recovered
patients often continue to exhibit AN characteristics even though
they no longer fulfill diagnostic criteria (13, 17–20). Therefore,
changes in dopamine originally induced by AN could persist
after recovery and underlie residual symptomatology. Genetic

studies have also not clarified whether pre-existing variation in
dopamine constitutes a risk factor for AN. While there have been
reports of associations between dopamine related genes and AN,
none of these have been consistently replicated and none have
been confirmed in large, genome-wide association studies (21–
23). Thus, whether altered dopamine represents a risk factor
preceding AN or a pathophysiological adaptation arising as a
consequence of AN remains unclear.

The results of animal studies have been more consistent with
Barry and Klawan’s hypothesis that overactive dopamine drives
AN. Caloric restriction in rodents has been associated with
increased dopamine sensitivity and function (24–26). In activity-
based anorexia (ABA), a rodent model of AN that combines
food restriction with wheel running (27), antipsychotics that
decrease dopamine signaling by blocking D2R have been shown
to limit weight loss (28, 29). Unfortunately, the antipsychotic
drugs used have effects on activity, motor ability, motivation,
and metabolism, confounding interpretation of the results.
Furthermore, antipsychotics have not been efficacious in treating
AN in humans (30), although there is some evidence that atypical
antipsychotics, such as olanzapine, may be effective as a treatment
augmentation strategy (31–34). However, a review of randomized
controlled trials found insufficient evidence to support atypical
antipsychotics as a standard treatment for AN (35).

A role for enhanced dopamine signaling in AN is partially
supported by other ABA studies using more targeted approaches.
For example, mice that increase dark cycle running across days of
food restriction demonstrate an upregulation of D2R expression
in the striatum (36), consistent with increased D2/3 binding
observed in recovered patients (13). Selective pharmacological
blockade of D2R reduces vulnerability to ABA (28), while
genetic overexpression of D2R in the nucleus accumbens core
increases ABA vulnerability (37). Similarly, we reported that
hyperdopaminergia resulting from knockdown of the dopamine
transporter in mice also enhances ABA vulnerability (38).
Furthermore, the only study to directly measure dopamine
during ABA with microdialysis (29) found increased dopamine
release in the nucleus accumbens during food intake in rats.
However, no changes in dopamine were detected prior to food
availability, which is when wheel running progressively increases
in some ABA animals (i.e., food anticipatory activity), and
dopamine was actually decreased during the light cycle (29).
Foldi et al. (39) used chemogenetics to directly target dopamine
cells in the mesolimbic pathway during ABA and found that
activation of Gq coupled DREADDs in the ventral tegmental
area with systemic administration of clozapine-N-oxide (CNO)
rescued the ABA phenotype, suggesting that impaired dopamine
signaling is a driver of ABA. However, DREADD activation did
not exclusively affect dopamine cells and protection against ABA
could be attributed to activation of GABAergic projections to the
nucleus accumbens. In addition, it is now known that systemic
CNO is converted to the antipsychotic clozapine (40), which
affects appetite and weight gain via mechanisms that may be
independent of the targeted pathway. Notably, the Foldi et al.
(11) finding suggests that drugs that increase dopamine, such
as amphetamine, could treat AN, which is the opposite of the
original Barry and Klawans hypothesis.
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In sum, accumulated evidence in both humans and
animal models indicates that dopamine is altered in AN,
but characterizing this abnormality and its contribution to AN
symptomology remains an unresolved challenge.

HYPOTHESIS

Dopamine has been studied extensively in addiction research,
where there is also a question of whether the core problem
is increased or decreased dopamine. In that debate, a critical
distinction can be made between the acute effects of drugs,
which are known to cause increased dopamine release, and the
more complex, progressive changes in dopamine that occur over
time as the brain adapts to chronic drug use. The nature of
these progressive changes is controversial, with evidence for
both impaired, diminished dopamine function and sensitized
dopamine responses to drugs and drug-related stimuli (41).

Here, we incorporate this idea that dopamine changes
progressively over time into our hypothesis of AN. We propose
a pattern of first enhanced and then diminished dopamine
function, corresponding to a gain and then a loss of behavioral
flexibility. This results in two stages in the development of AN,
each mediated by different underlying neural mechanisms.

Stage 1: Initial Development of Anorexia
Nervosa
We propose that in stage 1 of the disorder, weight loss
resulting from caloric restriction triggers an increase in midbrain
dopamine signaling, particularly when combined with high levels
of physical activity. This increase could be mediated by stress-
induced activation of the HPA axis (42), increased insulin
sensitivity (43), decreased leptin (44), altered ghrelin (45), and/or
other mechanisms (Table 1). As originally suggested by Barry
and Klawans (11), the resulting increase in dopamine acts like
a psychostimulant fueling both caloric restriction and exercise,
which further augments dopamine signaling in an escalating
spiral, creating a ‘dopamine storm’ (Figure 1A). This escalation
in dopamine facilitates reinforcement learning and behavioral
plasticity necessary for establishing AN behaviors, as originally
suggested by Södersten et al. (100). As a result, eating and activity
routines are reorganized around achieving persistent weight loss.
Individuals in stage 1 might be difficult to distinguish from
non-anorexic dieters. As problematic behavior emerges, some
individuals may receive EDNOS diagnoses during this earlier
stage of development.

Increased physical activity was recognized as a characteristic
of AN in its earliest description (101) and is observed in up to
80% of patients (102, 103). Adolescent girls who develop AN
tend to exhibit higher premorbid activity levels (104) and athletes
are at higher risk for developing AN (105). Vigorous exercise
may contribute to the development of AN by driving dopamine
escalation, thereby accelerating development of the disorder (38).

Midbrain dopamine projects to and receives afferents from
several brain regions implicated in AN, including the prefrontal
cortex, insula, hippocampus, amygdala, and hypothalamus
(106). Weight loss-induced changes in these regions could

contribute to the proposed escalation in dopamine through their
afferent projections to the midbrain. Conversely, as targets of
dopamine, escalating dopamine activity could affect plasticity
and processing in these same regions. Dopamine is thus situated
to be an engine driving a cascade of neuroadaptations across the
brain [e.g., (107)].

Stage 2: Entrenchment of Anorexia
Nervosa
Stimuli effective at releasing dopamine, such as drugs of abuse
and palatable food, can paradoxically reduce dopamine function
with chronic, repeated exposure (108, 109). We propose a similar
pattern in AN where the escalating dopamine spiral ’collapses’
following long-term caloric restriction and dopamine becomes
impaired (Table 1). In contrast to the behavioral flexibility
associated with hyperdopaminergia in stage 1, hypodopaminergic
function decreases behavioral plasticity, driving inflexibility and
compulsivity. This gives rise to stage 2, when established AN
behaviors are “locked in” and rendered resistant to change (2).

In this hypodopaminergic state, dopamine receptors likely
upregulate expression and sensitivity (110–114), creating a
physiological state of low basal dopamine concomitant with
sensitized responses to phasic dopamine activity. Reduced
basal/tonic dopamine coupled with enhanced receptor sensitivity
has been described with chronic food restriction by Carr and
colleagues [reviewed in Carr (50)] and proposed by Frank et
al. (115) to play an important role in AN. Sensitization of D2R
in particular has received attention in AN. Interestingly, the
stimulation of D2R differentially affects cognitive flexibility based
on levels of basal dopamine (116, 117), such that D2R activation
improves cognitive flexibility when dopamine is low but impairs
flexibility when dopamine is high. Consequently, differential D2R
effects arising from different basal dopamine conditions may
contribute importantly to changes in behavioral flexibility as
individuals progress from stage 1 to stage 2 of AN.

The hypothesized dopamine reversal is likely driven by
chronic HPA activation. Acute stress increases but chronic stress
decreases dopamine function (42), possibly causing dopamine
cell loss (70). As the HPA axis is a master orchestrator,
these contrasting effects of acute and chronic stress can
mediate reversals in other systems as well. For example,
BDNF is increased with acute and decreased with chronic
stress (118). Thus, chronic HPA activation resulting from
persistent caloric restriction and low body weight may reverse
neuroadaptations driving stage 1 and initiate a cascade of long-
term adaptations, generating an entirely different profile of
changes in stage 2.

MECHANISMS

Data supporting our proposed escalating spiral in dopamine in
stage 1 is strong. Caloric restriction, exercise, stress, enhanced
insulin sensitivity, decreased leptin, increased ghrelin and
increased orexin can all enhance dopamine function, as outlined
inTable 1. Furthermore, there is evidence demonstrating synergy
between these modulators; for example, both exercise and caloric
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TABLE 1 | Potential modulators of dopamine in each stage of AN.

Modulators of DA AN stage 1: enhanced DA AN stage 2: diminished DA Notes

Caloric restriction ↑ DA burst activity, ↑ glutamate transmission

onto midbrain DA cells (24)

↑ insulin enhancment of DA release (46)

↓ TH, ↓ EPSCs in VTA DA cells, ↓ evoked DA

release (47)

↓ extracellular DA in NAc (48)

↓ glutamate transmission in VTA DA cells (49)

↓ evoked DA (46)

↓ basal DA, ↑ receptor sensitivity to phasic

burst activity (26, 50)

Most preclinical work involves chronic and

substantial food restriction and is thus

most relevant for stage 2. Branch et al.

(24) looked at mild food restriction, which

is more comparable to early weight loss in

stage 1 of AN. Collectively, the findings

indicate that effects are dependent on the

degree of weight loss, consistent with

progressive changes in DA underlying

stage 1 and 2.

Exercise ↑ striatal D2 (51, 52)

↑ TH mRNA, ↓ D2 autoreceptor,

↑ postsynaptic D2 (53)

↑ striatal D2 in abstinent methamphetamine

users (54)

↑ cocaine (DA) reinforcement (55)

↑ DA response to insulin (43)

↑ DA response to stress (56)

Comment: ↑ of striatal D2 would increase

activity (57, 58) and facilitate synaptic

plasticity (59–61)

Comment: Duration of exercise is variable

across studies and the distinction between

“acute” and “chronic” exercise is ill defined.

However, because exercise affects several

modulators of dopamine, such as the HPA

axis, metabolism, weight loss and insulin

sensitivity, exercise during persistent, sustained

caloric restriction likely contributes to

mechanistic changes underlying stage 2.

Stress-acute ↑ DA via reuptake (62) >

↑ extracellular DA (56, 63)

↑ glutamate transmission at midbrain DA cells

(64, 65)

↑ DA cell firing (66)

↑ glutamate induced burst firing (67)

Not Applicable

Stress-chronic Not Applicable ↓ tonic DA but ↑ DA cell responsiveness to

glutamate transmission (42, 68)

↓ DA response to cocaine (69)

↓ DA cells (70)

↑ D2 in NAc (71) Note: as above, reflecting

compensatory upregulation)

The effects of acute and chronic stress are

widely known to be different. Less is

known about the effects of chronic stress

on dopamine, but the weight of evidence

points to ↓ DA, likely with compensatory ↑

in receptor sensitization facilitating

response to phasic/burst activity. Such

changes are commonly thought to

promote previously learned behavior.

Insulin hypoinsulimea ↓ brain reward threshold

(reflecting ↑ reward function) (72)

astrocytic IR ↑ DA via purinergic signaling, likely

↑ probability of DA release (73)

insulin ↑ cell autonomous (intrinsic properties)

firing rate of DA cells, ↑ TH and D2

autoreceptors (74)

insulin ↑ evoked DA (correlates with insulin

sensitivity) (46)

food restriction -> ↓ insulin -> ↑ insulin

sensitivity -> ↑ DA release (75)

↑ D2 (from above factors) may ↑ insulin

sensitivity (76)

Leptin acute leptin ↓ DA firing and ↓ glu transmission

to VTA (77, 78) (inference: ↓ leptin associated

with weight loss -> ↑ DA firing and

glutamatergic drive)

↓ rewarding effect of running (44) (inference: ↓

leptin could facilitate reward associated with

physical activity, contributing to caloric

restriction -> activity escalation; Figure 1A)

chronic leptin deficiency ↓ TH, ↓ evoked DA, ↓

presynaptic DA stores (79)

Ghrelin ↑ phasic DA (45)

↑ extracellular DA (80)

acute fasting ↑ ghrelin sensitization (81)

Chronic elevated ghrelin ↓ ghrelin sensitivity

(ghrelin resistance) (82)

Opposite acute vs. chronic ghrelin-associated

stress responses (83)

(Continued)
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TABLE 1 | Continued

Modulators of DA AN stage 1: enhanced DA AN stage 2: diminished DA Notes

Orexin (OR) ↑ extracellular DA (84) (inference: caloric

restriction -> ↑ OR -> ↑ DA)

blocking OR1 ↓ tonic DA, applying OR ↑

glutamate transmission to VTA, ↑ tonic DA, ↑

DA cell response to glutamate (85)

↑ LTP of excitatory synapses onto DA cells (86)

↑ DA firing, ↑ synaptic efficacy and ↑ DA

neuron output (87)

↑ physical activity, potentially fueling spiral in

Figure 1A (88, 89)

OR and HPA activation (CRF) interact in the

VTA (90) (inference: Effects of OR may be

altered as HPA activation becomes chronic).

OR ↑ under glucoprivic conditions (91–95)

Estrogen/estradiol ↑ phasic DA in dorsolateral striatum (96)

↑ DA response to amphetamine and ethanol

(97, 98)

(Inference: Estrogen may augment

dopamine responsiveness)

hormone replacement ↑ reward activity in

menopausal women (99)

Comment: Enhancing effects of estrogen on

DA may diminish/abate with prolonged

amenorrhea and associated estrogen

deficiency, possibly contributing to DA

deficiency

Many of the observed effects are on

dorsolateral striatum, believed to be a key

substrate for habitual behavior

FIGURE 1 | Schematic of hypothesized role of dopamine in two-stage model of anorexia nervosa. (Left) Stage 1: Development of AN. Diet and exercise trigger an

escalating spiral of increased dopamine function (orange arrows and bounding box). This facilitates behavioral plasticity and reinforcement required for establishing a

consistent self-starvation weight loss behavioral regimen. (Right) Stage 2: Entrenchment of AN behaviors. Persistent caloric deficit leads to a reversal in dopamine

(orange) from augmented to reduced or impaired function; hypothesized as part of a cascade of adaptations resulting from chronic HPA activation.

restriction enhance insulin sensitivity. Progressive adaptations
over time are more difficult to characterize, as is observed
in the literature on obesity (108, 119), addiction (41) and
stress (42, 68). In each field, there are differences between
acute and chronic conditions, often suggesting a reversal
from enhanced to diminished dopamine function, as proposed
here for AN. Studying progressive changes requires looking
across longer periods of time, which can be challenging in
research studies, including determining what amount of time

constitutes ‘chronic.’ This issue of time course is compounded
by the fact that many adaptations not only interact, but
potentially undergo long-term changes at different rates and
induce compensatory adaptations, which may themselves arise
at different times. In our hypothesis, we suggest that in stage
2, chronic caloric deficits induce a cascade of neuroadaptations
(Figure 1B), but do not speculate on the detailed order of
these adaptations, their interactions or compensatory changes,
as this is beyond the scope of the current perspective. Instead,
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in Table 1 we include data supporting the notion that there
is a reversal of adaptations in chronic conditions that may
underlie stage 2. With the exception of altered D2 binding
observed by Frank and colleagues (13), specific mechanisms
affecting dopamine (i.e., synthesis, reuptake, storage, synaptic
plasticity of inputs, burst activity) have not been characterized in
AN patients.

IMPLICATIONS

If each stage is mediated by different underlying
neuroadaptations, then pharmacological treatments might
differ by stage. In stage 1, drugs that prevent dopamine escalation
(e.g., tetrabenazine) may slow development of the disorder,
facilitating preventative cognitive-behavioral interventions.
In stage 2, drugs that enhance dopamine might promote the
behavioral flexibility needed to change entrenched behaviors.
Conversely, treatments that modulate dopamine in the wrong
direction would be predicted to be ineffective and could even
be detrimental and facilitate the disorder. Patients are most
likely to receive an AN diagnosis in our stage 2 when dopamine
is low, potentially explaining the lack of efficacy of dopamine
antagonists in AN treatment (30, 120, 121). In contrast, Frank
and colleagues proposed using dopamine agonists to treat
AN (115), arguing receptor activation would downregulate
receptor hypersensitivity arising from diminished dopamine. As
a partial D2R agonist, aripiprazole would remediate low basal
DA through its agonist properties while the reduced (partial)
activation would mitigate super sensitized responses to phasic
DA, putatively normalizing the dynamic range of dopamine
signaling. Consistent with these ideas, aripiprazole has been
shown to promote weight gain in AN (122, 123). Interestingly,
aripiprazole may have utility in stage 1 as well where its partial
agonist properties may counteract escalating increases in
dopamine. Notably, the finding that D2R acting drugs impair
cognitive flexibility when dopamine is high (116, 117) calls into
question whether decreasing plasticity during stage 1 would
be advantageous (slowing development of AN behaviors) or
detrimental (reducing impact of CBT intervention), possibilities
that need to be investigated.

Given that few prospective studies have been conducted, most
of what is known about AN is based on studying individuals in
our putative stage 2, while stage 1 remains relatively uncharted
territory. If our hypothesis is correct, stage 1 reflects a period
of high behavioral plasticity providing a window of opportunity
where interventions may be more successful, even preventative.
The challenge is identifying those in stage 1 where evidence of AN
may not yet fulfill diagnostic requirements; that is, differentiating
individuals who are simply successful dieters from those who
will develop AN. Prospective studies of dieters that identify
factors predictive of AN could lead to diagnostic tools, ideally
biomarkers, for early detection of AN in our proposed stage 1
[e.g., (122)]. These predictive factors may also apply to those who
develop AN following unintentional weight loss. Furthermore,
such prospective studies in dieters could provide insight into

factors predicting (non-AN) success vs. failure in establishing
sustained weight loss behaviors.

Our hypothesis would suggest any gene variants that regulate
how the dopamine system responds to weight loss, exercise
or chronic stress may in turn modify AN risk. This might
include dopamine-related genes or genes of other systems–
such as leptin, ghrelin, HPA axis, insulin– that modulate
dopamine. Risk modification may be stage specific such that
some variants may render an individual more likely to develop
AN (stage 1) or more likely to progress to severe, persisting AN
(stage 2).

TESTING THE HYPOTHESIS

Our hypothesis can be tested in humans by measuring dopamine
(e.g., PET) prior to and at timepoints following initiation
of dieting in a prospective study. We predict that weight
loss resulting from dieting, particularly in combination with
exercise, will increase dopamine function in most participants,
but those who develop AN will show a more pronounced
dopamine increase. We predict that those with AN who
develop behavioral rigidity and treatment resistance will
subsequently exhibit impaired dopamine, while those who are
successfully treated will not. Moreover, we predict that behavioral
change in successful, non-AN dieters might be associated
with a more modest, time-limited increase in dopamine,
while unsuccessful dieters will exhibit a minimal change in
dopamine during diet adherence. Impaired dopamine found
in obese individuals (108) may render them less capable
of upregulating dopamine and establishing new weight loss
behaviors. Though conceptually straightforward, such human
studies can be challenging. Alternatively, in preclinical studies
dopamine can be measured in awake-behaving rodents in
the activity-based anorexia model (38). If our hypothesis is
correct, we expect vulnerable mice to show dopamine escalation
followed by impairment, while resilient mice may show a
modest, time-limited increase in dopamine, as proposed in
successful dieters.

CONCLUSIONS

Our hypothesis is specific to AN but reflects a broader pattern
common to disorders marked by compulsive behavior1,
including addiction, obesity, and possibly other eating disorders
(130). When an individual repeatedly engages in behavior
that releases dopamine, this dopamine activation enhances
behavioral plasticity, that in turn facilitates the reorganization

1Here we refer to disorders that arise from behaviors that induce dopamine release,
such as drug taking, overeating, and gambling. We do not include obsessive
compulsive disorder (OCD). Compulsive behaviors in OCD may be reinforced by
providing relief from anxiety surrounding intrusive, obsessive thoughts. However,
the root of the disorder likely lies in failure of executive inhibitory control to stop
the obsessive thoughts that generate the compulsive behavior rather than in the
reinforcement of the behavior per se (124). While there is evidence suggesting
linkage between OCD and AN (125), pharmacological treatments for OCD have
not been effective in AN (126, 127) and some have argued against this OCD-AN
linkage (128, 129).
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of behavior around those dopamine releasing activities. Over
time, these behaviors induce neuroadaptations that impair
dopamine, reducing behavioral plasticity and entrenching
the reorganized behaviors. If correct, our hypothesis would
have broad implications for understanding and treating
many behavioral disorders that incur profound social and
economic costs.
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