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Abstract: A variety of Artificial Intelligence (AI)-based (Machine Learning) techniques have been
developed with regard to in silico prediction of Compound–Protein interactions (CPI)—one of
which is a technique we refer to as chemical genomics-based virtual screening (CGBVS). Prediction
calculations done via pairwise kernel-based support vector machine (SVM) is the main feature of
CGBVS which gives high prediction accuracy, with simple implementation and easy handling. We
studied whether the CGBVS technique can identify ligands for targets without ligand information
(orphan targets) using data from G protein-coupled receptor (GPCR) families. As the validation
method, we tested whether the ligand prediction was correct for a virtual orphan GPCR in which all
ligand information for one selected target was omitted from the training data. We have specifically
expressed the results of this study as applicability index and developed a method to determine
whether CGBVS can be used to predict GPCR ligands. Validation results showed that the prediction
accuracy of each GPCR differed greatly, but models using Multiple Sequence Alignment (MSA) as
the protein descriptor performed well in terms of overall prediction accuracy. We also discovered
that the effect of the type compound descriptors on the prediction accuracy was less significant than
that of the type of protein descriptors used. Furthermore, we found that the accuracy of the ligand
prediction depends on the amount of ligand information with regard to GPCRs related to the target.
Additionally, the prediction accuracy tends to be high if a large amount of ligand information for
related proteins is used in the training.

Keywords: orphan GPCR; virtual orphan GPCR; enrichment factor (EF); area under receiver operat-
ing characteristics (AUROC)

1. Introduction

Post-genome research has been providing a large amount of omics data on genes and
proteins, including genomes, transcriptomes, and proteomes. On the other hand, the devel-
opment of technologies such as high-throughput screening has led to the accumulation of
compound and bioactivity information on a vast number of compounds and drugs. This
information is published in public databases such as ChEMBL [1–3] and PubChem [4]
and are freely available to use. Such bioactivity information between compounds and
proteins is also referred to as drug–target interaction (DTI) and in a broad context, simply
Compound–Protein interaction (CPI). The research to utilize such data has been been
one of the major hot topics in the field of drug discovery. Many drugs affect the human
body in the form of drug effects or side effects through interactions with biomolecules
such as target proteins. This is why the identification of CPIs is an important issue in
drug discovery research. However, accurate and comprehensive identification of CPIs in
experiments is almost impossible due to the enormous costs involved. In recent years,
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various Artificial Intelligence (AI) technologies have been developed to predict CPIs (or
DTIs) on a large scale by effectively utilizing the vast amount of bioactivity data that has
been accumulated [5–14].

In the early stages of drug discovery, ligands that act on target proteins are often
insufficiently identified or not even identified at all. In addition, we cannot expect to get a
lot of information on the three-dimensional structure of target proteins in these cases. The
in silico approach does not work well in situations where known active ligands and protein
structural information is extremely limited. Nevertheless, in order to move forward with
the drug discovery project, we should also consider trying in silico approaches when we
want a ligand even if it is less active. In such cases, AI technology for CPI prediction is
promising as an in silico approach.

One of the many AI-based methods for predicting CPIs is called the CGBVS technique.
This technique is theoretically simpler than other methods, can be implemented without
difficulty, and gives sufficient accuracy of prediction. Hamanaka et al. [14] have imple-
mented CGBVS with a deep neural network (CGBVS-DNN) that enabled training of over a
million CPIs. Wassermann et al. [7], using a machine learning approach similar to CGBVS,
used a limited number of protease targets as an example to test the prediction accuracy
for orphan targets. They have concluded that ligand information of nearest neighbors is
essential for a good prediction of ligands of orphan targets.

We studied the following two aspects when using the CGBVS technique. The first
aspect is how accurate the ligand prediction is for orphan targets. In this study, we focused
on the G protein-coupled receptor (GPCR) family, which is an important and data-rich
target in drug discovery. Out of the available 243 possible targets, we randomly selected
52 GPCRs. We created 52 machine learning models of CGBVS, omitting all the ligand
information for one particular target GPCR per model. That is, we created a virtual orphan
GPCR per model and tested whether the model could predict the ligands for that virtual
orphan GPCR. We also investigated how the accuracy of ligand prediction for 52 selected
virtual orphan GPCRs is affected by the combination of compound and protein descriptors
used in the machine learning process.

The second aspect is to examine the conditions and applicability of high prediction
accuracy. Here, we first introduced an applicability index which helped us determine
whether it is possible to apply CGBVS to true orphan GPCRs.

2. Materials and Methods
2.1. CGBVS

For the purpose of investigating the relationship between the applicability of the
CGBVS method to ligand prediction of orphan GPCRs and the protein kernel, we used SVM
instead of Deep Neural Network. The CGBVS technique we used is mostly implemented
according to the method studied by Yabuuchi et al. [8], but the machine learning method for
Support Vector Machine (SVM) [15] is slightly different from the original CGBVS technique.
The reason is that the kernel function part of SVM is clearly divided into a compound-
derived part and a protein-derived part for each calculation. The method of calculating this
SVM is the same as the method used in the work of Wassermann et al. [7]. Letting c be the
compound vector and p be the protein vector, we can then express the Compound–Protein
interaction vector (CPI vector) x as their tensor product x = c⊗ p. The SVM kernel for the
CPI vector can then be expressed by [16]:

K(x, x′) = KC(c, c′) · KP(p, p′), (1)

where KC and KP are the compound and protein kernels, respectively. Since the compound
and protein kernels can be calculated independently, there is no need to explicitly calculate
the matrix representation of the tensor product as a representation of the actual CPI vector.

A schematic diagram of the calculation procedure of our CGBVS technique is shown
in Figure 1. The first step is to prepare the structural formula data set of the compounds and
the amino acid sequence data set of the proteins for machine learning. From a compound
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structural formula, descriptors such as physicochemical parameters and fingerprints are
calculated and converted into a compound vector. From an amino acid sequence, the
descriptors associated with the strings are calculated and converted into a protein vector.
The two vectors created are combined according to bioactivity data to create the CPI vector.
If the activity value of the data is higher than the set threshold, it is a positive CPI vector;
otherwise, it is a negative CPI vector. The CGBVS model is created by machine learning via
SVM of positive and negative CPI vectors based on aforementioned kernels. This CGBVS
model allows us to predict the activity of unknown Compound–Protein combinations.
The usual SVM score is the value of the distance from the discriminative surface (decision
function), but this value is sigmoidally transformed to perform probability estimation [17].

Compound structure
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Figure 1. Schematic diagram of how CGBVS is calculated. The feature vector for a compound is
obtained by calculating descriptors from the compound’s structural formula. Feature vectors for
proteins are calculated from amino acid sequences. The CPI vector is created by taking the tensor
product of the compound vector and the protein vector, and is labeled as binding or non-binding
vectors based on the activity data in ChEMBL database. The CGBVS model is generated by machine
learning of CPI vectors via SVM.

2.2. Virtual Orphan GPCR Model

The CGBVS model developed in this study is based on the GPCR-related activity data
from the ChEMBL 25 database [1–3]. The total number of GPCRs was 243, and the number
of associated compounds was 280,648. The criterion for the presence or absence of activity
used in this study was whether there was 50% activity at ≤1 µM or at ≥3 µM, respectively.
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In addition, no distinction was made between agonists and antagonists. In addition, data
such as the inhibition rate of a single concentration were not used. In this condition, the
number of CPIs for positive samples was 165,877 and the number of CPIs for negative
samples was 233,272.

To create a virtual orphan GPCR model, we select one GPCR and delete the CPI data
for that GPCR from the training data set (see Figure 2) Fifty-two GPCRs having 100 or more
active ligand data were randomly selected as virtual orphan GPCRs in this study (Table 1).

Table 1. List of 52 GPCRs that were selected as virtual orphan targets in this study. In the table, the
active column shows the number of ligands that are active (≤1 µM), and the inactive column shows
the number of ligands that are inactive (≥3 µM).

Gene Name Accession Active Inactive Protein Name

ADRA1A P35348 1800 244 Alpha-1A adrenergic receptor
ADRA1B P35368 1425 302 Alpha-1B adrenergic receptor
ADRA1D P25100 1369 248 Alpha-1D adrenergic receptor
ADRB1 P08588 1021 539 Beta-1 adrenergic receptor
ADRB2 P07550 1542 1832 Beta-2 adrenergic receptor
ADRB3 P13945 1472 215 Beta-3 adrenergic receptor
AGTR1 P30556 1167 599 Type-1 angiotensin II receptor
AGTR2 P50052 900 113 Type-2 angiotensin II receptor
CCKBR P32239 1014 516 Gastrin/cholecystokinin type B receptor
CCR2 P41597 1379 287 C-C chemokine receptor type 2
CCR5 P51681 1749 333 C-C chemokine receptor type 5

CHRM1 P11229 1768 1088 Muscarinic acetylcholine receptor M1
CHRM2 P08172 1493 663 Muscarinic acetylcholine receptor M2
CHRM3 P20309 1666 605 Muscarinic acetylcholine receptor M3
CHRM4 P08173 751 522 Muscarinic acetylcholine receptor M4
CHRM5 P08912 510 651 Muscarinic acetylcholine receptor M5
CRHR1 P34998 1648 239 Corticotropin-releasing factor receptor 1
CXCR3 P49682 1099 184 C-X-C chemokine receptor type 3
EDNRA P25101 1195 257 Endothelin-1 receptor
FFAR1 O14842 774 300 Free fatty acid receptor 1
GHSR Q92847 1541 191 Growth hormone secretagogue receptor type 1
GLP1R P43220 3452 94,774 Glucagon-like peptide 1 receptor

GNRHR P30968 1217 96 Gonadotropin-releasing hormone receptor
GPR119 Q8TDV5 1234 110 Glucose-dependent insulinotropic receptor
GPR55 Q9Y2T6 153 553 G-protein coupled receptor 55

HCRTR1 O43613 2200 783 Orexin receptor type 1
HCRTR2 O43614 2611 725 Orexin receptor type 2

HRH1 P35367 999 406 Histamine H1 receptor
HRH3 Q9Y5N1 3395 212 Histamine H3 receptor
HRH4 Q9H3N8 903 318 Histamine H4 receptor

HTR1A P08908 3532 480 5-hydroxytryptamine receptor 1A
HTR1B P28222 932 190 5-hydroxytryptamine receptor 1B
HTR1D P28221 1078 133 5-hydroxytryptamine receptor 1D
HTR2A P28223 3540 676 5-hydroxytryptamine receptor 2A
HTR2B P41595 1337 381 5-hydroxytryptamine receptor 2B
HTR2C P28335 2588 756 5-hydroxytryptamine receptor 2C
HTR6 P50406 2925 306 5-hydroxytryptamine receptor 6
HTR7 P34969 1532 248 5-hydroxytryptamine receptor 7
MC4R P32245 2311 857 Melanocortin receptor 4

MCHR1 Q99705 3116 524 Melanin-concentrating hormone receptor 1
NPY5R Q15761 1038 100 Neuropeptide Y receptor type 5
OPRD1 P41143 3180 2086 Delta-type opioid receptor
OPRK1 P41145 3743 1197 Kappa-type opioid receptor
OPRL1 P41146 1305 128 Nociceptin receptor
OPRM1 P35372 3797 2033 Mu-type opioid receptor
P2RY12 Q9H244 912 237 P2Y purinoceptor 12

PTGDR2 Q9Y5Y4 2541 143 Prostaglandin D2 receptor 2
S1PR1 P21453 2165 379 Sphingosine 1-phosphate receptor 1
TACR1 P25103 2334 223 Substance-P receptor
TACR2 P21452 794 227 Substance-K receptor
TACR3 P29371 788 143 Neuromedin-K receptor
TSHR P16473 1140 15,271 Thyrotropin receptor



Molecules 2021, 26, 5131 5 of 14
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Figure 2. Schematic diagram of the creation of a virtual orphan GPCR model. The solid and dotted
lines between the compounds and proteins indicate known activities confirmed from the ChEMBL
database. The same solid and dotted lines indicate the Compound–Protein combinations that are
used as input to machine learning and the Compound–Protein combinations that are not used as
input to machine learning, respectively. Proteins connected by dotted lines indicate a virtual orphan
target. The prediction accuracy is verified by screening known GPCR associated compounds.

The CPI data for only one target are deleted per CGBVS model which leaves CPIs for
242 target out of the available 243. As control models to compare the prediction performance
of the virtual orphan GPCR models, we also built models that included only half of the
original number of ligand data for each target GPCR as a training set and retain the other half
as a test set. We refer to these as half-sampled GPCR models (Tables S1 and S2).

The two types of compound descriptors used in this study are descriptors that can
be calculated using alvaDesc [18] and ECFP [19]. Using alvaDesc, a software developed
by the company Alvascience, 941 non-fingerprint 2D descriptors were calculated, while
2048-bit Extended Connectivity Fingerprints having a radius of 2 (ECFP4) were calculated
using RDKit [20]. For proteins, on the other hand, there are three types of descriptors used:
PROFEAT 2016 [21], ProtVec [22], and Multiple Sequence Alignment (MSA). PROFEAT
descriptors were generated using the web service [23], and we calculated 1437 descriptors
using the default settings. ProtVec descriptors were generated using a free tool called
BioVec [24] to calculate 1500 descriptors. For MSA descriptors, the number of descriptors
generated are equal to the number of target proteins employed in machine learning. There
are some techniques that used pairwise sequence alignment as the SVM kernel [25,26]. In
our case, we have developed a technique to create descriptors from multiple sequence
alignment. To calculate for MSA descriptors, the GPCR amino acid sequences are first
prepared in FASTA format. The identity matrix was then generated after performing
Multiple Sequence Alignment using Clustal Omega. Then, the identity matrix S is eigen-
decomposed as in the equation

S = UΛUT = (
√

ΛUT)T(
√

ΛUT) = XTX, X =
√

ΛUT, (2)

where Λ is a diagonal matrix and U is a unitary matrix made from eigenvectors. Finally,
each column of the matrix X in Equation (2) can be taken as the column feature vector of
the corresponding protein. In rare cases, several eigenvalues with small negative numbers
may be found. In such cases, the eigenvalues and eigenvectors of the negative numbers are
removed, and the matrix X is calculated. The MSA feature vectors computed above can be
reconstructed through approximation of the matrix elements of the identity matrix S by
choosing a linear kernel as the SVM kernel. Since the negative eigenvalues and eigenvectors
have been removed, this kernel matrix is a semi-positive definite symmetric matrix.

The compound and protein descriptors described above are high dimensional vectors,
thus we used principal component analysis to perform dimensionality reduction. We took
the cumulative contribution of the principal components up to 99%.

The kernel function computed in SVM machine learning depends on the feature vector
created from each descriptor. Table 2 shows the correspondence between descriptors and
kernel functions. In this study, we created virtual orphan GPCR models for all combinations
of two compound and three protein descriptors (six combinations) for each of the 52 GPCRs.
To avoid overfitting of the SVM model, we have set the appropriate hyperparameters to
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maximize accuracy via 5-fold cross validation. Machine learning calculations with SVM
have been performed using a proprietary tool named CzeekS [27].

Table 2. Table of correspondence between compound or protein descriptors and SVM kernel functions.

Descriptor Class SVM Kernel Equation

alvaDesc compound Gaussian K(xi, xj) = exp
(
−γ

(
xi − xj

)2
)

ECFP compound Tanimoto K(xi, xj) =
xi ·xj

‖xi‖2+‖xj‖2−xi ·xj

PROFEAT2016 protein Gaussian K(xi, xj) = exp
(
−γ

(
xi − xj

)2
)

ProtVec protein Gaussian K(xi, xj) = exp
(
−γ

(
xi − xj

)2
)

MSA protein linear K(xi, xj) = xi · xj

2.3. Model Validation

As a method of confirming the prediction performance of virtual orphan GPCR models,
a set of compounds for validation was screened against the virtual orphan GPCR. The set
of compounds used for validation was composed of 280,648 GPCR-related compounds
from the ChEMBL 25 database. These compounds are identical to those used to create the
CGBVS models, but since each model is created after deleting the data of the GPCR to be
tested, they are not considered to be problematic as validation compounds for prediction
performance. Validation of HS GPCR models was performed in the same way as the virtual
orphan GPCR models; however, the ligand data of the target GPCR included in the training
set were omitted from the test set. The area under receiver operating characteristic curve
(AUROC) and Enrichment Factor (EF) were adopted as measures of predictive performance.
In these calculations, compounds whose interaction data with the target do not exist in
the CHEMBL database were treated as having no activity. AUROCs are calculated using
scikit-learn by sorting in order of increasing CGBVS score. On the other hand, EF1% is
calculated as

EF1% =
(Afound/Nsubset)

(Atotal/Ntotal)
. (3)

Ntotal is the total number of compounds screened and Nsubset is the number of com-
pounds selected from the top scores. In addition, Atotal is the total number of active
compounds for the target GPCR, and Afound is the number of active compounds for the
target GPCR found among the top scoring compounds selected.

2.4. Applicability Index

We considered the applicability index A(pi) of CGBVS to the target GPCR pi to be
proportional to the sum of the number of active ligands Nj of the neighboring GPCRs pj of
the target virtual orphan GPCR. Thus, we defined it as

A(pi) = ∑
j

w
(

KP

(
pi, pj

))
Nj. (4)

Here, w is a weight function whose argument is the value of the protein kernel function
KP, and its functional form is the sigmoid function

w(x) =
1

1 + exp(−α(x− r))
. (5)

The two parameters of the sigmoid function, α and r, are determined to maximize the
Spearman’s correlation coefficient between AUROC and log A. The AUROC is calculated
using the procedure described here earlier. Bayesian optimization was used to perform the
optimization of the correlation coefficient.
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3. Results and Discussion
3.1. Analysis of Prediction Accuracy

The EF1% calculated in this study are for the top 1% (2806 compounds) from the
highest scores of the screened compounds. In this case, EF1% takes a value from 0 to
100 and, when EF1% is equal to 1, it corresponds to random screening. The model is not
worthy for screening unless the EF1% value is at least above 1. The enrichment factors
for the 52 GPCRs used as virtual orphan targets are shown in Figure 3. Additionally,
a table comparing the values of EF1% for the virtual orphan and half-sampled GPCR
models is provided as Supplementary Data (Table S1). All possible combinations of
compound and protein descriptors were tested for each GPCR target and results showed
large variations in EF1% among GPCRs. The same was observed in EF1% among descriptor
combinations for the same GPCR. This may indicate that each GPCR target possibly
requires different combination of descriptors that are suitable for accurate prediction.
Figure 3 shows that the combination of alvaDesc and MSA (red bars) has good EF1% values
for most GPCRs, indicating that it could possibly be the best descriptor combination. The
next best descriptor combination is exhibited by alvaDesc-PROFEAT (blue bars) followed
by ECFP-MSA (purple bars).

TACR3 TSHR

P2RY12 PTGDR2 S1PR1 TACR1 TACR2

NPY5R OPRD1 OPRK1 OPRL1 OPRM1

HTR2C HTR6 HTR7 MC4R MCHR1

HTR1A HTR1B HTR1D HTR2A HTR2B

HCRTR1 HCRTR2 HRH1 HRH3 HRH4

GHSR GLP1R GNRHR GPR119 GPR55

CHRM5 CRHR1 CXCR3 EDNRA FFAR1

CCR5 CHRM1 CHRM2 CHRM3 CHRM4

ADRB3 AGTR1 AGTR2 CCKBR CCR2

ADRA1A ADRA1B ADRA1D ADRB1 ADRB2

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

EF(1%)

Descriptor

alvaDesc + PROFEAT

ECFP + PROFEAT

alvaDesc + MSA

ECFP + MSA

alvaDesc + ProtVec

ECFP + ProtVec

Enrichment Factor (1%) for virtual orphan targets

Figure 3. EF1% of the screening calculation results using the virtual orphan GPCR models. Red, blue, and green bars
indicate the combination of alvaDesc with MSA, PROFEAT, and ProtVec, respectively. Purple, orange, and light blue bars
indicate the combination of ECFP with MSA, PROFEAT, and ProtVec, respectively.

In order to simplify the EF1% results for each GPCR and highlight the effect of descrip-
tor combinations, the frequency distribution of EF1% for each descriptor combination is
summarized in Table 3. For all combinations of descriptors, more than half of the GPCRs
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had EF1% greater than 1 (more than 26), and some of them had EF1% greater than 30, which
can be considered accurate and better than our expectations. Some of them were compara-
ble to the EF1% of the half-sampled GPCR models, and, surprisingly, there were six EF1%
values that exceeded those of the half-sampled models. Looking at the variations in EF1%
value and the number of GPCRs for each descriptor, it can be seen that the difference in the
protein descriptor has a greater impact on the EF1% than the difference in the compound
descriptor. We have found that, when MSA is used as the protein descriptor, there are
many GPCRs having better EF1% than when other descriptors are used. In particular, for
the combination of alvaDesc and MSA, there were nine GPCRs with EF1% greater than 30,
making it the most suitable combination for the construction of the GPCR model.

Table 3. Enrichment factor values and the number of GPCRs for each combination of descriptors.
The compound and protein columns indicate the compound descriptor and protein descriptors
used, respectively.

Descriptors EF1%

Compound Protein 0–1 1–10 10–30 30–50

alvaDesc PROFEAT 13 23 14 2
ECFP PROFEAT 14 28 9 1
alvaDesc MSA 10 14 19 9
ECFP MSA 8 19 22 3
alvaDesc ProtVec 17 20 14 1
ECFP ProtVec 15 26 11 0

EF1% is commonly used as a performance indicator for screening measurements. Since
the number of active compounds for each protein is different, (Atotal in the Equation (3)),
care must be taken in the simple comparison of prediction performance between different
GPCRs. Therefore, in this study, we calculated AUROC (area under the ROC curve) as
another predictive performance indicator. The calculation results of AUROC for 52 GPCRs
are shown in Figure 4. As in the case of EF1%, a table comparing the AUROC with the
half sampled GPCR models is shown in Table S2. For all combinations of GPCRs and
descriptors, the values of AUROC for the half-sampled GPCR models are higher than that
for the virtual orphan GPCR model. Figure 5 shows four representative ROC curves from
52 GPCRs. Each one has been chosen for its particular characteristic. CHRM3 is a case
where all combinations of descriptors have high predictive performance, while ADRB2 and
HCRTR2 are cases where the six curves are scattered. HRH3 is a case where the predictive
performance for all combinations of descriptors is low.

For the three GPCRs in Figure 5 that result in high prediction performance, it can be
seen that the prediction performance is good in two descriptor combinations: alvaDesc-
MSA (red) and ECFP-MSA (purple). The trend is roughly the same for other GPCRs. The
number of GPCRs with AUROC greater than 0.8 was the largest in alvaDesc-MSA with
29, followed by ECFP-MSA with 27. The number for other descriptor combinations was
18–24. These results suggest that the best prediction results are obtained when MSA is
used as the protein descriptor. It is interesting to note that the number of GPCRs with
AUROC of 0.8 or higher in the half sampled GPCR models is 49 for all six combinations
of descriptors (see Table S2). This means that the difference in prediction accuracy due to
the difference in descriptors is small in the conventional method of accuracy comparison
such as cross-validation but is clearly bigger when using virtual orphan GPCR models.
Furthermore, in the case of virtual orphan GPCR models, prediction is greatly influenced
by the combination of compound and protein descriptor used.
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

AUROC

Descriptor

alvaDesc+PROFEAT

ECFP+PROFEAT

alvaDesc+MSA

ECFP+MSA

alvaDesc+ProtVec

ECFP+ProtVec

AUROC for virtual orphan targets

Figure 4. AUROC of the screening calculation results using virtual orphan GPCR models. Red, blue, and green bars indicate
the combination of alvaDesc with MSA, PROFEAT, and ProtVec, respectively. Purple, orange, and light blue bars indicate
the combination of ECFP with MSA, PROFEAT, and ProtVec, respectively.

3.2. Applicability of CGBVS for Orphan Targets

In actual drug discovery research, when trying to search for active compounds of true
orphan GPCRs using CGBVS, it is necessary to have an indicator of whether CGBVS will
work or not. According to the results of the performance evaluation of CGBVS models by
EF1% and AUROC, the prediction performance is high for widely studied GPCRs, such as
adrenergic and muscarinic receptors, for which there is abundant data on known ligands.
This is thought to be because the prediction performance does not deteriorate even if all
the ligand data of the target orphan GPCR is deleted, since abundant ligand data of related
GPCRs of the target GPCR can be included in the training data. This can be understood
from the fact that the applicability domain of a machine learning model is often set to the
region around a dense area of training data [28–30]. Therefore, we defined the applicability
index A(pi) of CGBVS to be proportional to the sum of the number of active ligands Nj of
the related GPCRs pj to the target GPCR, as in Equation (4).
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(a)

(c)

(b)

(d)
Figure 5. ROC curves of four representative GPCRs generated after screening of designated compound dataset using virtual
orphan GPCR models. Characteristic results are shown for four selected GPCRs. Red, blue, and green lines indicate the
combination of alvaDesc with MSA, PROFEAT and ProtVec, respectively. Purple, orange, and light blue lines indicate the
combination of ECFP with MSA, PROFEAT, and ProtVec, respectively. (a) CHRM3; (b) ADRB2; (c) HRH3; (d) HCRTR2.

The results of calculating the applicability index as described above for six different
combinations of compound and protein descriptors are shown in Figure 6 as scatter plots.
Values of Spearman’s correlation between log A and AUROC are summarized in Table 4.
Similar to EF1%, the variation in the values of correlation coefficients are also larger among
protein descriptors compared to that among compound descriptors. In addition, the
protein descriptor with the highest correlation coefficient is MSA, and both alvaDesc
and ECFP are highly correlated with log A and AUROC. As for the other two protein
descriptors, PROFEAT showed a weak correlation and ProtVec showed no correlation at
all. Therefore, when attempting to find the ligand for a true orphan GPCR using CGBVS,
the use of MSA as the protein descriptor can provide some estimate of whether the ligand
search will be successful or not. Virtual orphan GPCRs with AUROC greater than 0.8 are
positive, and those with AUROC less than 0.8 are negative, and are predicted based on
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whether they exceed the threshold of log A. The threshold of log A was determined to
maximize the accuracy of the prediction. Table 5 summarizes the results of validating the
prediction accuracy of virtual orphan GPCRs with AUROC greater than 0.8. The accuracy
and positive predictive value (PPV) of MSA was close to 0.9, indicating high prediction
accuracy compared to other protein descriptors. In the case of PROFEAT, the accuracy was
not bad at over 0.7, but the PPV was a little low at 0.65 when the compound descriptor
was alvaDesc.

One of the features of MSA protein descriptor is that the values of the parameters r
and α of the applicability index weight function are smaller than those of the other two
types of protein descriptors. This means that the weight function is looser in shape than
the other protein descriptors, and the active ligands of GPCRs with small protein kernel
values (small similarity) also contribute to the applicability index. This can be understood
from the fact that the threshold of log A is the largest for MSA. In using MSA, although
machine learned target proteins are less similar to the virtual orphan target, we were able
to construct a machine learning model in which the ligand information exert influences
on each other. This leads to high applicability of CGBVS to identifying ligands for orphan
targets. The opposite can be said for PROFEAT which requires high similarity between
machine learned and orphan targets in order to have high applicability. On the other hand,
the weight function in the case of PROFEAT is a parameter with a shape that changes more
rapidly at the position where the protein kernel value is larger than MSA. This means that
only the ligand information of GPCRs that are very close to the virtual orphan GPCRs
affects the prediction accuracy. In a study by Wassermann et al., the accuracy of ligand
prediction for orphan targets was found to be greatly influenced by the ligand information
of related targets. Our results are consistent with theirs, and Equation (4) gives a more
generalized interpretation.

Table 4. Spearman’s correlation between AUROC and log A and the parameters α and r of the weight
function for six combinations of compound and protein descriptors.

Descriptors
Spearman’s Corr. α r

Compound Protein

alvaDesc PROFEAT 0.4466 79.73 0.6264
ECFP PROFEAT 0.3949 94.18 0.6385
alvaDesc MSA 0.7792 12.77 0.4365
ECFP MSA 0.8047 11.04 0.4564
alvaDesc ProtVec −0.0362 39.87 0.5801
ECFP ProtVec 0.1759 89.28 0.8000

Table 5. Accuracy of predicting GPCRs with an AUROC of 0.8 or higher using the applicability
index for six different combinations of compound and protein descriptors. The log A column is the
threshold of the applicability index, PPV is the positive predictive value, Accuracy is the prediction
accuracy, and p-value is the result of Fisher’s exact test.

Descriptors
log A PPV Accuracy p-Value

Compound Protein

alvaDesc PROFEAT 6.490 0.6521 0.7115 4.580× 10−3

ECFP PROFEAT 7.486 0.7272 0.7500 4.812× 10−3

alvaDesc MSA 8.702 0.8710 0.8846 1.899× 10−8

ECFP MSA 8.999 0.8889 0.8846 2.549× 10−8

alvaDesc ProtVec 7.671 0.8333 0.6153 8.357× 10−2

ECFP ProtVec −10.79 0.8000 0.6731 1.542× 10−2
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(a) (b)

(c) (d)

(e) (f)
Figure 6. Relationship between applicability index and AUROC for six combinations of compound and protein descriptors.
A horizontal red line indicates the AUROC value at 0.8. A vertical red line indicates the threshold value for the applicability
index. (a,b) PROFEAT; (c,d) MSA; (e,f) ProtVec.
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4. Conclusions

We tested the prediction accuracy of the CGBVS technique for 52 virtual orphan
GPCRs. Machine learning with the CGBVS method was performed for all possible combi-
nations of two types of compound descriptors and three types of protein descriptors. In the
prediction of the ligands of virtual orphan GPCRs, it was shown that the protein descriptor
had a greater impact on the prediction accuracy than the compound descriptor. Of the three
types of protein descriptors validated in this study, MSA had the best accuracy, with the
highest number of GPCRs exceeding the reference values (EF1% > 10, AUCROC > 0.8) for
both EF1% and AUROC indices. On the other hand, for compound descriptors, alvaDesc
had slightly more GPCRs with better prediction accuracy than ECFP, but with only small
differences between actual values.

We also examined the conditions under which ligand search for virtual orphan GPCRs
was possible using CGBVS. The simple applicability index we defined in Equation (4)
was shown to correlate well with AUROC when an MSA descriptor was used. There is
a weak correlation for PROFEAT and almost no correlation at all for ProtVec. By using
an MSA descriptor, we can, therefore, determine whether CGBVS can be applied to an
unknown orphan target by the value of log A. In this case, if log A is 8.7 or higher when
using alvaDesc as compound descriptor, and if log A is 9.0 or higher when using ECFP, a
high success rate can be expected.

Supplementary Materials: The following are available online. Table S1: Enrichment factors for 52
GPCRs which were calculated from the results of screening using virtual orphan (VO) and half-
sampled (HS) GPCR models, Table S2: AUROC for 52 GPCRs which were calculated from the results
of screening using virtual orphan (VO) and half-sampled (HS) GPCR models.
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