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Bees can be trained to identify SARS-CoV-2 infected samples
Evangelos Kontos1,2,*, Aria Samimi1,*, RenateW. Hakze–van der Honing3, Jan Priem3, Aurore Avargues̀-Weber4,
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ABSTRACT
TheCOVID-19 pandemic has illustrated the need for the development
of fast and reliable testing methods for novel, zoonotic, viral diseases
in both humans and animals. Pathologies lead to detectable changes
in the volatile organic compound (VOC) profile of animals, which can
be monitored, thus allowing the development of a rapid VOC-based
test. In the current study, we successfully trained honeybees (Apis
mellifera) to identify SARS-CoV-2 infected minks (Neovison vison)
thanks to Pavlovian conditioning protocols. The bees can be quickly
conditioned to respond specifically to infected mink’s odours and
could therefore be part of awider SARS-CoV-2 diagnostic system.We
tested two different training protocols to evaluate their performance in
terms of learning rate, accuracy andmemory retention.We designed a
non-invasive rapid test in which multiple bees are tested in parallel on
the same samples. This provided reliable results regarding a subject’s
health status. Using the data from the training experiments, we
simulated a diagnostic evaluation trial to predict the potential efficacy
of our diagnostic test, which yielded a diagnostic sensitivity of 92%
and specificity of 86%. We suggest that a honeybee-based
diagnostics can offer a reliable and rapid test that provides a readily
available, low-input addition to the currently available testingmethods.
A honeybee-based diagnostic test might be particularly relevant for
remote and developing communities that lack the resources and
infrastructure required for mainstream testing methods.
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INTRODUCTION
Infections and other pathologies lead to physiological changes in
the bodies of animals (Trabue et al., 2010) and humans (Buljubasic
and Buchbauer, 2015; Sethi et al., 2013; Shirasu and Touhara, 2011;
Probert et al., 2009). Consequently, the emitted volatile organic
compounds (VOCs) differ between healthy and infected individuals
(Wilson, 2018; Fitzgerald et al., 2017; Olsson et al., 2014; Trabue
et al., 2010; Probert et al., 2009). VOCs constitute an odour
fingerprint depending on age, sex, diet, genetic background, and
metabolic conditions, thus making this odour fingerprint unique for

every individual (Buljubasic and Buchbauer, 2015). Analysing that
fingerprint can provide relevant information about the state of the
individual’s health. VOC analysis has been consequently used for
disease diagnostics, mostly in the form of breath and faeces analysis
in both humans and animals (Wilson, 2018; Fitzgerald et al., 2017;
Olsson et al., 2014; Trabue et al., 2010; Probert et al., 2009).

The current COVID-19 pandemic has clearly shown the need for
both the rapid development of diagnostic tests and the rapid delivery
of reliable results (Control, 2020). Fast and reliable diagnostic tests
are required to effectively implement control measures such as
quarantine of infected people or animals (Wells et al., 2021) There is
a global need for reliable and rapid testing, which has led to the
development of very reliable PCR tests and rapid SARS-CoV-2
tests such as the RNA RT-LAMP (Fowler et al., 2021) and antigen
tests (Krüttgen et al., 2021). However, in developing countries and
remote areas, such methods may not be easily available. Dogs have
been successfully trained to discriminate between SARS-CoV-2-
infected and non-infected individuals with a diagnostic sensitivity
ranging from 65% to 82.6% and specificity of 89% and 96.4%
respectively (Eskandari et al., 2021; Jendrny et al., 2020). Similar to
dogs, some insects have keen olfactory capabilities. For example,
fruit flies (Drosophila melanogaster) can detect cancer in humans
(Strauch et al., 2014), while honeybees (Apis mellifera) have
exhibited the ability to detect some human diseases, such as
tuberculosis (Suckling and Sagar, 2011). Honeybees can, therefore,
be a potential alternative to dogs for the detection of COVID-19
with the benefit of being readily available and having low costs of
maintenance.

Pavlovian conditioning was first applied to dogs (Pavlov, 1927)
and later to honeybees (Takeda, 1961). Bees possess the reflex to
extend their proboscis when detecting a sugar solution, the
proboscis extension reflex (PER), and they can be conditioned to
exhibit a PER when exposed to specific odours. Takeda’s (1961)
classical conditioning pairs a conditioning stimulus (CS), such as an
odour, with an unconditioned stimulus (US), the food reward, which
in most cases is a sugar water solution (Matsumoto et al., 2012).
After such training the bees exhibit PER when exposed to the CS,
without the presence of sugar water.

Previous studies have shown that animals can detect differences
between VOCs emitted by healthy or SARS-CoV-2 infected
individual animals or humans (Eskandari et al., 2021; Jendrny
et al., 2020). The objective of this study was to assess the potential
of training bees for the detection of SARS-CoV2-infected animal
samples. We assessed two different training methods and show that
bees can be effectively trained to detect differences in odours
between samples collected from SARS-CoV2 infected and
uninfected minks (Neovison vison), highlighting the potential of a
honeybee-based diagnostic test for the detection of diseases.

RESULTS
Protocol 1
We analysed the bees’ learning curve during conditioning by fitting a
generalized linear mixed model (GLMM). A significant interactionReceived 22 October 2021; Accepted 20 January 2022
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[log-odds=−0.38, standard error (SE)=0.11, Z=−3.37, P<0.001]
between treatment and conditioning round was observed, which
suggests a significant increase in the bee’s ability to discriminate
between infected and negative samples with increasing conditioning

rounds (Table 1). By the end of the conditioning phase (round 7), 37
bees out of the total 56 bees (66.1%) expressed PER towards the
infected sample (old-infected) and 4 out of 56 (7.1%) towards the
healthy sample (old-healthy) (Fig. 1A).

Fig. 1. Learning and memory retention of the bees. (A,B) show the learning curve (n=56 bees) and memory retention (n=56 bees) of bees subjected to
protocol 1. (C,D) show the learning curve (n=92 bees) and memory retention (n=56 bees) of bees subjected to protocol 2. In panels A and C (learning
curves), the Y-axis shows the proportion of bees expressing PER towards infected (red) and healthy (blue) samples in each conditioning round while the
X-axis indicates the conditioning round. In panels C and D (memory retention), the Y-axes show the proportion of bees expressing PER and the X-axes show
the different types of samples that the bees were exposed to 1 h (green columns) and 24 h (grey columns) after the conditioning training ended. Segments and
corresponding P values indicate comparisons where significant. The sample type, new-healthy was used as reference for statistical comparison.

Table 1. Logistic regression mixed model results analysing the bees’ learning curves

Protocol 1 Protocol 2

Predictors Log-odds SE Z P Log-odds SE Z P

Intercept [Infected] −1.61 0.36 −4.5 <0.001 −1.58 0.22 −7.15 <0.001
Sample [Healthy] −1.06 0.49 −2.13 0.033 0 0.26 0 0.997
Conditioning round 0.31 0.06 4.86 <0.001 0.36 0.04 10.22 <0.001
Sample [Healthy]* Conditioning round −0.38 0.11 −3.37 0.001 −0.26 0.05 −5.48 <0.001

Random Effects
Residual SD 1.81 1.81
Bee id SD 1.47 1.09
Number of bees 56 92
Observations 784 1582
Conditional R2 0.551 0.388

SD: standard deviation.
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We tested the bees’ memory retention 1 h after the conditioning
phase. Every beewas exposed to three odours (samples): old-infected
(sample used for conditioning), new-infected and new-healthy.
During exposure, the old-healthy sample was always present as a
background odour. Using the new-healthy sample as reference for
comparisons, the GLMM analysis confirmed that most of the
bees were able to discriminate (log-odds=1.8, SE=0.56, Z=3.24,
P=0.001) the old-infected sample [32 out of 56 (57.1%) reacted
to old-infected] from the new-healthy sample [17 out of 56 (30.4%)
reacted to new-healthy]. However, bees were not able to discriminate
(log-odds=−0.13, SE=0.52, Z=−0.26, P=0.796) the new-infected
sample [16 out 56 (28.6%)] from the new-healthy sample (Fig. 1B).
Another retention test took place 24 h after the end of training,

using the same odours we had used for the 1 h retention test.
When analysing the reaction of the bees 24 h after conditioning, out
of 56 bees, 14 (25%) reacted to the new-healthy sample, 23 reacted
to the old-infected (41.1%) sample and 8 out of 52 (15.4%%)
reacted to the new-infected sample. Bees were only able to
significantly discriminate between the old-infected (log-
odds=1.06, SE=0.51, Z=2.07, P=0.038) and the new-healthy
samples (Fig. 1B).

Protocol 2
Similar to protocol 1, we analysed the bees’ learning curve
during conditioning using a GLMM. A significant interaction (log-
odds=−0.26, SE=0.05, Z=−5.48, P<0.001) between treatment and
conditioning round was observed, which suggests a significant
increase in the bee’s discrimination ability between the positive and
negative samples with the conditioning rounds (Table 1). By the end
of conditioning (round 9) 67 out of 85 (78.8%) bees expressed PER
towards infected samples and 23 out of 85 (27.1%) towards healthy
samples (Fig. 1C).
We tested the bees’ memory retention 1 h after the end of the

conditioning. Overall, 71 bees out of 84 (84.5%) reacted to the old-
infected sample. Bees reacted 129 times out of 168 trials (77.8%) to
the new-infected samples while 22 bees out of 84 (26.2%) reacted to
the old-healthy samples. Bees reacted 57 times out of 168 trials
(33.9%) to new-healthy samples. The GLMM analysis (using new-
healthy as reference for comparison) confirmed that bees were able
to significantly discriminate (express PER) between the new-
healthy sample and both the old (log-odds=3.02, SE=0.42, Z=7.27,
P<0.001) and new-infected (log-odds=2.41, SE=0.31, Z=7.79,
P<0.001) samples. No differences were observed between the bees’
reaction towards the old- (log-odds=−0.47, SE=0.33, Z=−1.40,
P=0.161) and new-healthy samples (Fig. 1D).
Another retention test was executed 24 h after the end of

training, using the same odours we had used for the 1 h retention
test. Overall, 45 bees out of 73 (61.6%) reacted to the old-infected
sample and 98 times out of 146 trials (67.1%) to the new-infected
samples, while 33 bees out of 73 (45.2%) reacted to the old-
healthy samples and 62 times out of 146 trials (42.5%) to new-
healthy samples. The GLMM analysis showed that bees were able
to significantly discriminate between the new-healthy and both
the old-infected (log-odds=1.01, SE=0.34, Z=3.02, P=0.003) and
new-infected (log-odds=1.31, SE=0.28, Z=4.59, P<0.001) samples.
The bees’ reaction to the old and new-healthy samples did not
differ significantly (log-odds=0.14, SE=0.33, Z=0.44, P=0.658)
(Fig. 1D).
Comparison between the sequences (punishment first, reward

first), did not result in a sequence that yielded a significantly better
results during 1 h. Whereas during the 24 h retention only one
comparison was significantly different (data not shown). This

indicated that the sequencewith which the samples were provided to
the bees did not significantly affect their training outcome.

Bees as a diagnostic tool
Association between Ct values and the bees’ retention ability
We compared the proportion of bees showing PER depending on
the Ct values of the infected samples. After being trained on a
sample with a Ct=21, a total of 42 bees were exposed to samples
with three different Ct values (Ct: 21, 27 or 30): 35 (83.3%) bees
showed PER for the sample with a Ct=21, 40 (95.2%) showed the
samples with Ct=27 and 31 (73.8%). The samples used for training
were those with a Ct=21, hence we used this group as reference for
comparison. No significant differences were observed between
either the Ct=21 group and the Ct=27 group (X2=0.63, d.f.=1,
P=0.16, Padjusted=0.475) or Ct=21 and Ct=30 (X2=0.63, d.f.=1,
P=0.42, Padjusted=1) groups, indicating that bees trained with
samples having a high virus concentration (a low Ct value) are still
able to recognize samples with lower virus concentrations (high
Ct value).

Predicted performance when using bees as a diagnostic tool
The distribution of diagnostic results when testing healthy and
infected samples in a simulated scenario in which a group of 10
trained bees would be used to test a sample, is shown in Fig. 2A. The
receiver operating characteristics (ROC) analysis on the simulated
data resulted in an estimated area under the curve (AUC) (Fig. 2B)
equal to 0.96 (95% confidence interval, CI): 0.95–0.98), which
indicates that using groups of trained bees could be a diagnostic tool
with significant discrimination accuracy (AUC>0.5, P<0.001).
Using a response of six or more (out of 10) bees showing PER per
test to classify a sample as positive would maximize the diagnostic
performance of this tool. The resulting potential sensitivity (true
positive rate), which is the probability that the test will correctly
classify a truly infected sample as positive, would be 0.92 (95% CI:
0.89-0.95) and the potential specificity (true negative rate), which is
the probability that the test will correctly classify a healthy sample as
negative, 0.86 (95% CI: 0.82-0.90) (Fig. 2).

DISCUSSION
The objective of this study was to investigate whether bees can be
trained to detect SARS-CoV-2 infected samples. Our data show that
the differences in odour between SARS-CoV-2 infected samples
and uninfected samples can be recognised by honeybees. The bees
discriminated between samples taken from healthy and SARS-
CoV2 infected individuals. Although the bees’ discrimination
ability decreases between 1 h and 24 h post conditioning, we
observed that they were nevertheless still able to significantly
discriminate between new infected and healthy samples 1 day after
conditioning. Moreover, their ability to recognise a positive sample
was not compromised by the samples’ viral load (expressed in Ct
values), since bees recognised samples with higher Ct values (lower
viral load) equally well as they did with samples with low Ct values
used for conditioning. By performing simulations of the potential
clinical application of the bees as a diagnostic tool, we predict that
bees could be effective for diagnostics with a predicted sensitivity
around 92% and specificity around 86%.

With our protocol 1, we followed a similar procedure as
Sutherland et al. (2010). In our study, more bees learned to
recognize the rewarded odour (current study: 66.1%, Sutherland
et al.: 30-40%). Sutherland et al. (2010) reported that one hour after
training, 20% of the trained bees were no longer able to
discriminate, which is similar to the reduction in percentage we
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observed. Sutherland et al. (2010) did not perform any test with
novel infected and healthy samples, and we did not find literature
where a similar approach to ours was taken. In protocol 2, we
followed a similar procedure as Wright et al. (2010). The bees in the
present experiment learned slightly less well than in their
experiment (current study: 78.8%, Wright et al.:>85%). Assuming
that this difference is significant, we could speculate that this is a
result of samples being more difficult to discriminate either by being
more perceptually similar or less concentrated. Wright et al. (2010)
did not test the 1 h memory of the bees, but only their memory after
10 min. Their results were similar to ours at 1 h (current study:
83.5%, Wright et al.: 80%).
Protocol 1 was shorter than protocol 2, making it a faster way to

condition bees, while it also required no aversive unconditioned
stimulus (US) and fewer samples during training. However,
protocol 1 did not result in the bees being able to discriminate
between the novel-infected and novel-healthy samples. That
indicates that they were not able to generalize between infected
samples or to associate VOCs that commonly occur in infected
samples with a reward. The bees correctly discriminated between
the old-infected and novel-healthy samples, which provided
confirmation of the ability of the bees to recognise specific
VOCs, but not to generalize over different infected samples. In
contrast to protocol 1, protocol 2 resulted in a better discrimination
ability between novel infected and healthy samples at both 1 h and
24 h retention, indicating that this protocol is more efficient for
training bees for SARS-CoV-2 diagnostic testing. The differences
between the two protocols’ outputs may be the consequence of the

bees’ tendency to increase their attention during a learning task
when faced with a potentially negative outcome (Avargues̀-Weber
et al., 2010; Chittka et al., 2003). In addition, both protocols differed
in the number of conditioning rounds which could yield in a better
memory. Finally, different samples were used in the conditioning
phase of protocol 2, thus promoting generalization of response
based on the common properties of all infected samples rather than
on individual differences.

Conditioning of bees to SARS-CoV-2 derived VOCs could thus
be further improved by focusing on the protocol that best worked in
this study and add other elements that can make conditioning even
more effective. Such an addition could be an extra training few
hours after the original one or a different number of trials and
alternative US. In our experiments we used appetitive–aversive
conditioning due to the complexity and similarity of the odours the
bees were trained for. In some cases, especially when bees are
trained to fewer complex odours, the addition of a negative
reinforcement can lead to lower discrimination and higher false
positives (Aguiar et al., 2018)

Our results show that using single bees for diagnosis would have
limited sensitivity and specificity, since the retention tests for
protocol 2 showed that at 24 h post conditioning 67% of the bees
correctly identified the infected sample (sensitivity) and 58% the
healthy sample (specificity). A possible approach to improve
diagnostic performance would be the use of multiple bees probing
the same sample in parallel. In this case, diagnosis would be based
on a defined number of bees (known as diagnostic threshold)
reacting (expressing PER) to the sample being tested. We assessed

Fig. 2. Simulated diagnostic potential of trained bees. (A) Distribution of simulated diagnostic results where a group of 10 bees is used as diagnostic tool
per sample. The X-axis indicates the number of bees (out of 10) per test showing PER. (B) ROC of the predicted diagnostic performance.
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such an approach by performing simulations where groups of 10
bees would be used to test a sample and identified that at least six
bees would have to show PER for the sample to be considered
positive. By taking this approach, the potential sensitivity of the test
was predicted to be around 92% and the specificity around 86%.
The current standard for laboratory diagnosis of active SARS-CoV-2
infection is the detection of viral RNA from respiratory specimens
by real-time, reverse transcription polymerase chain reaction (qRT-
PCR). Our predicted results on accuracy are comparable to the
diagnostic performance of point of care (POC) tests such as RT-
LAMP tests (without RNA extraction) and rapid antigen tests. These
tests showed sensitivities higher than 70% for samples with Ct<33
or taken within the first week of symptom onset and specificities
higher than 90% (Fowler et al., 2021; Krüttgen et al., 2021; Dinnes
et al., 2021). In general, these POC tests require more than 10 min to
produce a test result, whereas bees only require a few seconds to
express PER (<5 s). Dogs can also be trained to detect SARS-CoV-2
and provide results very quickly. However, dogs require much more
time and resources to be trained compared with bees, and their
sensitivity is lower than the honeybee test (dogs’ sensitivity ranges
from 65-82.6%; Eskandari et al., 2021; Jendrny et al., 2020).
Moreover, dogs may be infected with SARS-CoV-2 whereas bees
are not sensitive to the virus. In addition, bees can be employed in
remote areas where microbiological laboratory facilities are not
available. As such, it can be concluded that the honeybee test is a
suitable alternative, especially in situations where resources and
laboratory equipment are scarce. This establishes the bee diagnostic
test as an attractive monitoring method for developing countries and
remote livestock communities, thanks to its low requirements and
good diagnostic efficacy. The needed laboratory equipment for
conditioning the bees on site will be very limited compared to other
diagnostic tests for virus infections. However, reliable positive and
negative control samples will be needed, and will have to be
developed and tested in specialized laboratories.
Our results suggest that honeybees could be used for SARS-CoV-2

diagnosis and could potentially be applied for diagnosis of other
infectious diseases. Further research is needed in order to define the
duration of their memory. It is clear that their memory is weaker
24 h after the experiments compared to 1 h after the training, which
might be the result of complexity and similarity of the odours. We
need to identify the crucial moment in time, in which their memory
retention is compromised and further assess the performance with a
wider range of Ct values. Here we only tested samples with a
maximum Ct of 30 and given the limited number of samples tested,
we cannot assume that the performance would be similar with
higher Ct values. In addition, a formal diagnostic validation study is
necessary to properly validate the diagnostic approach applied
under field conditions and confirm the diagnostic potential
predicted in this study. The diagnostic test proposed in this study
has certain weaknesses that need to be improved. The need to use
multiple bees in parallel along with the laborious process of
conditioning bees manually can make the preparation of the test
inefficient. In addition, the bees can only be used for testing a few
samples before an extension of their memory would be observed
due to the absence of reward during the tests. The bees will thus
have to go through a few numbers of reactivating conditioning
rounds before being again operational for testing.

Conclusion
Our results indicate that the VOC profile differs between healthy
and SARS-CoV2 infected minks and that honeybees can recognise
these differences and discriminate between them. This performance

suggests the presence of specific biomarkers, which could be
explored by performing a gas chromatography/ mass spectrometry
(GC/MS) analysis. Our experiments demonstrate that bees can
effectively detect the presence of an infection in samples of an
extensive range of Ct values. Once improved, a diagnostic test
utilizing the learning abilities of honeybees might thus provide an
important addition to the current monitoring system of zoonotic
diseases in remote livestock farming systems.

MATERIALS AND METHODS
Honeybee preparation
At the start of each experimental day during April and May 2021, we
collected a new batch of honeybees (Apis mellifera) from the same beehive,
located 2 km away from the Wageningen Bioveterinary Research (WBVR)
laboratory in Lelystad, the Netherlands. We assumed that the bees were a
mixture of different working classes. Foragers were preferred but the
weather conditions did not allow for flights every day so discrimination
between worker classes was not always possible. The bees were collected
with a brush from inside the hive or by collecting departing bees at the
hive entrance, using the same brush. For transport to the laboratory, bees
were placed in transparent cylindrical plastic containers (100 ml),
which carried 5-15 bees each. A total of 149 bees were used during the
experiments.

The containers with honeybee workers were placed in a freezer (−20°C)
for 3-5 min until the bees become inactive, which makes harnessing safer.
Once out of the freezer, the bees were placed on a paper towel and inserted
inside our custom-made ‘bee-holders’ with the help of tweezers (Fig. 3).
The bee-holders are made of plastic and have the following dimensions:
20×10×10 mm. They consist of two parts, a back and base, which allows the
experimenter to hold it easily, and the front part, the chamber, where the bee
is kept. The chamber has two openings, one in the bottom to allow for the
bee to be inserted easily and a door-like structure above. The door closes
once the bee is inside the chamber locking its head into position, while
allowing the rest of the body to move freely. The chamber also has two
openings for the bee’s wings, avoiding unnecessary injuries. We harnessed
the bees 30 min after collection and the experiments started 3 h after
harnessing. We collected and harnessed multiple bees in parallel. Those that
exhibited a PER after a brief touch of the antenna with the sugar-water
solution (Fig. 3), were used for conditioning.

Sample selection
Throat swabs were taken of necropsied animals from a mink farm during the
SARS-CoV2 epidemic in the period of April-November 2020, in the
Netherlands. 2 ml of Dulbecco’s Modified Eagle Medium (DMEM),
supplemented with 10% Fetal Calf Serum (FCS) and 1% Antibiotic

Fig. 3. Picture of the conditioning procedure during protocol 1. A single
honeybee harnessed inside our custom-made bee holder. The bee has just
been exposed to a positive sample and been provided with a wooden stick
soaked in sugar water, which has led her to express the PER.
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Antimycotic (Gibco, Thermofisher, Netherlands) was added to each swab
sample. The presence of viral SARS-CoV-2 RNA as well as the cycle
threshold (Ct) value of the samples were determined by real time RT-PCR
on the SARS-CoV-2 E gene (Corman et al., 2020). All minks were fed the
same feed ration and were raised under the same conditions in the same
location in a production farm in the South of the Netherlands (Oreshkova
et al., 2020). The swab solutions (60 μl of liquid) from SARS-CoV-2
infected and healthy minks were absorbed by filter papers (Whatman, Cat
No 1001090) (1×3 cm size), which were placed inside identical syringes
(20 ml) and the plastic containers.

Olfactory conditioning procedures
We tested two different bee training protocols inspired by earlier research
reported by Sutherland et al. (2010) (Sutherland et al., 2010) (Protocol 1)
and Wright et al. (2010) (Wright et al., 2010) (Protocol 2).

All experiments were executed in a biosafety level 2+ laboratory at
WBVR, in Lelystad, the Netherlands. The bee conditioning and retention
test took place inside a biosafety cabinet. The bees were introduced inside
the biosafety cabinet after being harnesses and remained inside until the end
of the experiment. The airflow inside the hood was 0.36 m/s, the
temperature 21°C and the humidity 56%; these conditions were regulated
throughout the experiment. A trial lasted 40 s during which the bee was
placed in front of the odour delivery apparatus. The syringes released an air
puff after the first 20 s, that lasted for 5 s, during which we recorded the
bee’s reaction. The bee would stay there for 15 s and would then be replaced
by the next bee in line. The ITI (Intertrial Interval) was 10 min in both
protocols.

Unconditioned stimuli (US)
We used two different protocols, in both of which, a wooden stick was
soaked with sugar water (US) (Fig. 3), first touching the bee’s antennae, to
induce PER, and later the proboscis. If the proboscis was already extended,
the antennae were not touched. The sugar water reward occurred for 5 s with
a 2 s overlap with the air puff from the syringe, which preceded it. The US
used during protocol 1 was 1.5 M sugar-water solution (Sutherland et al.,
2010). In protocol 2 we used two US types. The positive unconditioned
stimulus (US+) was a 1 M sugar-water solution. During protocol 2, we also
exposed the bees to a quinine-sugar-water solution, an aversive stimulus, the
negative US (US-; 300 mM sugar, 10 mM quinine; Wright et al., 2010).
When the bees were exposed to samples from healthy mink individuals, the
sugar-soaked stick first touched the antennae to induce PER, and then the
quinine-sugar-soaked stick would touch the proboscis. If the proboscis was
already extended the antennae were not touched.

Protocol 1
In this training procedure we used one sample from an infected (positive),
and one from a healthy (negative) animal to condition 56 honeybees. The
bees were trained with the same positive sample, each experimental day, for
which a standardized cycle threshold (Ct) value of 21 was acquired from a
PCR test. The filter paper soaked with the negative samplewas placed inside
a small plastic container connected to two tubes. One tube was connected to
a pump, providing a constant air flow (40 ml/min) while the other tube was
placed in front of the bees, thus delivering the healthy sample odour
constantly during the training trials. The syringe containing the infected
sample was connected with a similar tube. The air flow necessary to deliver
the infected sample odour to the bees was provided by manually operating
the syringe. The tubes from the plastic container (healthy sample) and the
syringe (infected sample) were taped together, so that the bee could be
exposed to both simultaneously during the CS delivery time. There was a
distance of 2 cm between the bees and the tube outlets and the syringe
released an air puff of 15 ml in 5 s.

We performed: seven conditioning trials in which the bees were exposed
to the positive infected sample against the background of the healthy
negative sample and were provided with a sugar-water solution as US; and
seven trials in which the bees were only exposed to the healthy sample and
no US. The trials followed a pseudorandomized order (H-I-H-I-I-H-I-H-H-
I-I-H-H-I) (H: healthy, I: infected) (Matsumoto et al., 2012). During

conditioning we recorded the number of bees that expressed PER during
each of the seven training rounds, before exposure to US, to assess the rate
with which they learned (learning curve).

Protocol 2
In this training procedure we used three samples from infected animals
(positive) and three samples from healthy ones (negative) to condition 92
honeybees. The bees were trained with positive samples for which a
standardized Ct value (21) had been recorded in the PCR and tested with
positive samples with three different Ct values (21, 27, 30). The filter papers
containing the samples were placed inside identical syringes and were
placed in front of the bees. There was a distance of 2 cm between the bees
and the syringe outlets, which released an air puff of 20 ml in 5 s.

We performed nine conditioning trials in which the bees were exposed to
the positive samples and nine trials in which the bees were exposed to the
negative samples (three trials for each sample). The bees were given the US+
when exposed to positive (infected) samples and the US- when exposed to
negative (healthy) ones. The trials followed a pseudorandomized order (H-I-
H-I-I-H-I-H-H-I-I-H-H-I-H-I-I-H) (Matsumoto et al., 2012). The different
samples were also randomised as follows (A-B-C-C-B-A-B-A-C). In
addition, the experiments were mirrored, so that half of the bees would be
exposed to exactly the inverse of the (H-I-H-I-I-H-I-H-H-I-I-H-H-I-H-I-I-
H) and (A-B-C-C-B-A-B-A-C) order. As a result, half of the bees started
with a sugar reward (infected mink samples) and finished with healthy
mink samples (quinine punishment) and the other half followed the
reverse order. By comparing between these sequences (punishment first,
reward first), we analysed which one yielded the best results. During
conditioning we recorded their learning curve and later analysed their
memory retention.

Testing memory retention
In both protocols we performed memory retention tests after 1 and 24 h. The
number of bees differed between the training phase, the 1 h retention test and
the 24 h retention test, as a result of bee mortality.

Protocol 1
One hour after the end of the training, we performed a retention test to check
the bees’ memory by exposing them to positive and negative samples
without any US and recorded whether they extended their proboscis. For the
retention test we neither changed the layout used during training, nor did we
remove the background negative sample odour (old-healthy sample: old-
healthy). However, we introduced novel odours of a different infected
mink’s swab (new-infected sample: new-infected) and a different healthy
mink’s swab (new-healthy sample: new-healthy) and an empty syringe to
test the effect of the additional air pressure. The empty syringe test was also
testing the bees’ reaction to old-healthy (which was present on the
background). During the retention test at 24 h after the end of the training, no
bees reacted to the empty syringe indicating that air pressure does not
influence their reaction. At the same time, it confirmed that the bees had
successfully been trained to ignore old-healthy. As a result, we did not use
the empty syringe during the following days in order to avoid over-testing
the bees risking a dissociation between CS and US.

Protocol 2
One hour after the end of the training, we tested the bees’ retention
capabilities. Every bee was tested multiple times with six odours in total.
Two new negative and two new positive samples were used and were
grouped together, during data analysis, as new-healthy and new-infected, for
a more comprehensive presentation of the results. We also used the positive
sample that the bees reacted to the most during conditioning (old-infected)
and the negative that they reacted to the least (old-healthy). For the retention
test we did not change the training layout and we presented the samples in a
random order.

Data analysis
We analysed the learning rate of the bees for each protocol independently by
performing GLMM with a binomial distribution. In these models, the bees’
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response (PER: 0 or 1) was set as the dependent variable, while the sample
(positive or negative), the conditioning round and the interaction between
samples and conditioning round were fitted as fixed explanatory variables.
The bees’ individual identification was introduced as random intercept to
account for multiple measures beingmadewith each bee. Significance of the
explanatory variables was assessed using the Wald test, with threshold for
significance set to P<0.05. Using these models, we were interested in
assessing the improvement in the discrimination ability of bees between
infected and healthy samples as a function of the number of conditioning
rounds.

To assess the bee’s discrimination accuracy between healthy and infected
samples at 1 h and 24 h after conditioning, we fitted again a GLMM with a
binomial distribution. Models were fitted for each training protocol and for
each retention time (1 h or 24 h) independently. In these models, the bees’
response (PER: 0 or 1) was the dependent variable, while the type of sample
(new-healthy, old-healthy, new-infected, old-infected) was the fixed
explanatory variable and the bees’ identification was introduced as
random intercept. For statistical comparison between sample types, we
used the new-healthy sample as reference. This sample was used as
reference because we considered that if the bees were to be used for
diagnostic purpose they will be exposed to unknown (new) samples which
they need to classify (discriminate between) as healthy or infected.
Significance of the explanatory variables was assessed using the Wald test.

To explore the diagnostic potential of the bees and predict the diagnostic
performance of the practical application of using bees for diagnosis of SARS-
COV-2we first tested the association between the sample’s Ct value (indicator
of virus concentration in the sample) and detection rates after 1 h of retention.
Infected samples used had Cts of 21, 27 and 30. The proportions of bees
reacting to each of these samples were compared using a Chi square test. For
this analysis, independence was assumed and a Bonferroni correction for
multiple comparisons was applied for the interpretation of significance.

Second, we simulated a population of infected and non-infected samples
which were individually tested by a group of bees. This simulation was
done by random sampling with replacement groups of 10 bees, which
would be part of a diagnostic group, from the retention tests done at 1 and
24 h. Sampling was done for positive samples or negative samples
independently. A total of 300 groups of 10 bees exposed to positive
samples and 300 groups exposed to negative samples were simulated.
Sampling was done from the dataset with the retention results, which
contained diagnostic results at individual bee level. From each sampled
group the number of bees preforming a correct discrimination of the sample
(either positive or negative) was recorded. This number was then used to
perform an ROC analysis to identify a potential diagnostic threshold and
assess the diagnostic efficacy (sensitivity and specificity) of the system
(groups of bees).

All data analyses were performed using the statistical software R version
4.0.2 (R Core Team, 2020). The GLMM were fit using the library lme4
(Bates et al., 2014). ROC analyses were done using the libraries pROC and
ROCR (Robin et al., 2011; Sing et al., 2005).
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