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Abstract: Global Navigation Satellite System (GNSS) carrier phase measurement for short baseline
meets the requirements of deformation monitoring of large structures. However, the carrier phase
multipath effect is the main error source with double difference (DD) processing. There are lots
of methods to deal with the multipath errors of Global Position System (GPS) carrier phase data.
The BeiDou navigation satellite System (BDS) multipath mitigation is still a research hotspot because
the unique constellation design of BDS makes it different to mitigate multipath effects compared to
GPS. Multipath error periodically repeats for its strong correlation to geometry of satellites, reflective
surface and antenna which is also repetitive. We analyzed the characteristics of orbital periods
of BDS satellites which are consistent with multipath repeat periods of corresponding satellites.
The results show that the orbital periods and multipath periods for BDS geostationary earth orbit
(GEO) and inclined geosynchronous orbit (IGSO) satellites are about one day but the periods of
MEO satellites are about seven days. The Kalman filter (KF) and Rauch-Tung-Striebel Smoother
(RTSS) was introduced to extract the multipath models from single difference (SD) residuals with
traditional sidereal filter (SF). Wavelet filter and Empirical mode decomposition (EMD) were also
used to mitigate multipath effects. The experimental results show that the three filters methods all
have obvious effect on improvement of baseline accuracy and the performance of KT-RTSS method is
slightly better than that of wavelet filter and EMD filter. The baseline vector accuracy on east, north
and up (E, N, U) components with KF-RTSS method were improved by 62.8%, 63.6%, 62.5% on day
of year 280 and 57.3%, 53.4%, 55.9% on day of year 281, respectively.
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1. Introduction

Recently, the application of Global Navigation Satellite System (GNSS) technology in deformation
monitoring has become an important way to monitor the structural health of buildings for its
advantages in automation, all-weather, real time and large scale, etc. [1]. Affected by orbit error,
ionospheric delay, tropospheric delay, phase center offset and multipath error, the accuracy of GNSS
carrier phase measurement generally only reaches centimeter level. To achieve the millimeter or
even submillimeter accuracy which is necessary for deformation monitoring, strict elimination of
errors is essential. In the case of short baseline (<3 km), most errors excluding multipath can be
eliminated to a large extent by the carrier phase double difference (DD) technique because of the high
space correlation.

During the last two decades, many GPS multipath mitigation methods have been developed
which can be classified to three classes [2]. The first one is selecting an open area with no reflection or
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shelter for GNSS measurement while it is limited by objective conditions in deformation monitoring.
The second one is improving the hardware devices of GNSS receivers to exclude multipath errors
when the GNSS signal is used. The last and most common method is data post-processing approaches,
including weight adjustment based on data signal to noise ratio (SNR) techniques [3]; ray-tracing
approach [4]; and sidereal filtering (SF) based on the coordinate domain [5,6]/observation domain [7,8]
method, which is the most popular.

At present, the BeiDou Navigation Satellite System (BDS) consisting of geostationary earth orbit
(GEO) satellites, inclined geosynchronous orbit (IGSO) satellites and medium Earth orbit (MEO)
satellites can provide high-accuracy location services, which are comparable to Global Position System
(GPS) in the Asian-Pacific region [9,10]. Many literatures have researched the performance of the
combination of BDS/GPS [11,12]. By 2020, the service range of BDS will cover all the world and its
data processing has become a hot spot and focus of GNSS positioning. It is necessary to conduct
accuracy assessments and to develop error cancellation techniques about BDS positioning such as
multipath mitigation.

Since the relative geometry of a GPS satellite with receiver and reflective surface repeats itself
in each sidereal day, multipath errors are highly correlated between consecutive sidereal days if
the geometry changes are the same [13,14]. Hence, the SF based on coordinate domain using daily
repetition of multipath can extract the multipath model from the coordinate sequence of the first
day to correct that of the next day at a fixed station. However, this method uses the average satellite
orbital period and ignores the differences between satellites, so it cannot be effectively applied in BDS
multipath mitigation with its three different types of orbital satellites. Axelrad et al. found that the
orbital repeat periods of GPS satellites are not strictly a sidereal day (about 23 h and 56 min) and there
is a time shift which is not a constant for different satellites [15]. Therefore, the SF based on observation
domain, which calculates the orbital period of each satellite, extracts and corrects the multipath model
on corresponding satellite observations between the observation sequences of two multipath periods,
was proposed and developed. Zhong et al. developed a SF based on single difference (SD) residuals
for mitigating GPS multipath effects on short baselines [7]. Ye et al. studied the multipath repeat cycle
of BDS satellites, and proposed a SF carrier phase multipath elimination approach of BDS system [14].
Dong et al. proposed a Multipath Hemispherical Map (MHM) to achieve real-time resolution and
correction of multipath errors [16]. Dai et al. compared the MHM algorithm with the sidereal filtering
algorithm, and proposed an improved multipath error parameterization model for BDS GEO multipath
elimination [17].

In order to obtain the multipath error model, it is essential to select an effective filtering method
which controls the effect of multipath elimination. Lau proposed a robust three-level wavelet packet
for carrier phase multipath [18]. Zhong et al. proposed an adaptive wavelet transform based on a
cross-validation method to mitigate GPS multipath effects [19]. Dai et al. applied empirical mode
decomposition (EMD) in denoising coordinate sequence of short GPS baseline [20]. Kaloop et al. used
four prediction models which are applied and used with neural network solutions: back-propagation,
Cascade-forward back-propagation, adaptive filter and extended Kalman filter, to extract GPS
time-series model and denoise the data for monitoring of structures [21]. FIR filtering has also
been used in extracting multipath models in literature [22]. To obtain a more accurate multipath model,
a multipath model extraction method based on Kalman filter and Rauch-Tung-Striebel Smoother
(RTSS) was proposed and the multipath repetition characteristics of BDS satellites were explained by
qualitative analysis and quantitative calculation in the paper. To verify the performance of the new
method, we compared it with the traditional wavelet and EMD methods used in [19,20].

The paper is arranged as follows: in Section 2, the basic principle of multipath error is explained
and the steps of reconstructing single difference (SD) residuals is shown with a flowchart. Qualitative
analysis and quantitative calculation of orbital periods of BDS satellites are carried out in Section 3.
Section 4 introduces three filter methods for denoising SD residuals for extracting multipath models
and a simulation experiment was carried out. In Section 5, we verified the consistency between
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orbital periods and multipath periods of BDS satellites through a set of measured data, applied three
filtering methods in extracting multipath models and found they all achieve good results in multipath
mitigation. Finally, conclusions were drawn in Section 6.

2. Multipath Error Theory

2.1. Basic Principle

The multipath problem is a widespread problem in signal propagation, such as the network signal
multipath and the sensor data delivery multipath including the underwater sonar multipath and the
satellite signal multipath. Data delivery path in Information-Centric Sensor Networks was studied
in [23,24]. The AUV Positioning Method Based on Tightly Coupled SINS/LBL was proposed to deal
with the Underwater Acoustic Propagation Multipath in [25]. In [26], the Kalman filter was introduced
to realize multi-path network synchronization. Satellite signal multipath mitigation is a key step in
precise GNSS positioning and is our focus work. The path deviation of satellite signals caused by
multipath effects can be expressed as [7]:

Smulti =
∆ϕm

2π
λ =

λ

2π
arctan(

α sin( 4πD
λ sin θ)

1 + α cos( 4πD
λ sin θ)

) (1)

where D represents the horizontal distance between the receiver antenna and the reflector around the
station, θ and λ are respectively the incidence angle and wavelength of the reflected signal, α is the
reflection coefficient of reflector and ∆ϕm represents the phase delay caused by multipath effects. It can
be found that the multipath errors are mostly affected by horizontal distance D, incident angle θ and
reflection coefficient α. However, the reflective surface, antenna and their properties remain unchanged
in case of a static baseline, which means that the horizontal distance and reflection coefficient are
constant. Hence it is only the incidence angle of reflected signals that could change multipath errors.
Meanwhile, the incidence angle of reflected signals is determined by position of satellites in the sky
which would periodically repeat in specific orbit, so multipath errors are also periodic. It indicates that
we can mitigate multipath effects for current data by subtracting the multipath error models extracted
from the last period data.

2.2. Integer Ambiguity Estimation and Validation with Multipath Errors

The integer ambiguity estimation and validation are the two basic steps of high precision carrier
phase positioning. The least-squares ambiguity decorrelation adjustment (LAMBDA) has always
been the most popular algorithm for ambiguity estimation since Teuniseen proposed it in 1990s [27].
The core idea is to reduce the search space by decorrelating the covariance matrix of float ambiguity
to improve the search efficiency. Many modified algorithms were developed based on LAMBDA,
such as the mixed upper/lower triangular integer Cholesky decomposition algorithm [28], inverse
integer Cholesky decomposition algorithm [29] PAR LAMBDA algorithm [30]. Another representative
algorithm called MLAMBDA algorithm was proposed by Chang [31] and is used for ambiguity
resolution in this paper.

Another key step is ambiguity validation which can ensure the reliability of fixed ambiguity.
The common methods include three types: ratio test based on statistics [32], index method of success
rate/failure rate [33] and the combination of the two previous methods [34]. In this paper, the R-ratio
test was applied to validate the ambiguity. The DD equations without/with multipath errors can be
expressed as:

y = Aa + Bb + e (2)

y′ = y + m = Aa + Bb + e (3)
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where y/y’ represent the GNSS observations without/with multipath errors, a and b represent the
ambiguity vector and baseline vector with coefficient matrixes A and B, m and e are the multipath
errors and DD residuals, respectively. Classifying multipath errors into DD residuals, we get:

y = Aa + Bb + e′ (4)

where e’ = e − m, then −m is the DD multipath errors remaining in DD residuals e’.
We can compute the float solutions, integer ambiguity and fixed solution using the next criteria:

mina,b

∣∣∣∣∣∣∣∣y− Aa− Bb
∣∣∣∣|2Q−1

y
with b ∈ Rn and a ∈ Rn (5)

mina

∣∣∣∣∣∣∣∣â− a
∣∣∣∣|2Q−1

â
with a ∈ Zn (6)

^
b = b̂−Qb̂âQ−1

â (â−^
a ) (7)

where ||M||2N = MT NM and Q−1
y and Q−1

a are the variance-covariance matrixes of DD observations
and DD float ambiguity, respectively. The main contribution of the LAMBDA algorithm is introducing
a Z-transformation [27] by z = ZTa and Qẑ = ZTQâZ, then criterion (6) is changed to:

minz

∣∣∣∣∣∣∣∣ẑ− z
∣∣∣∣|2Q−1

ẑ
with z ∈ Zn (8)

Here ambiguity correlation is reduced and search efficiency is improved.
After integer ambiguity estimation the ratio test can be carried out with the following criterion [32]:

ratio =
Ωsec

Ωmin
(9)

where Ωi = ||â− ăi||2Q−1
a

and is the quadratic form of ambiguity residuals, Ωmin and Ωsec represent the
minimum and secondary values of Ωi, respectively. The threshold is set to 3 and if ratio≥ 3, the integer
ambiguity ă corresponding to Ωmin is considered to be fixed correctly [34].

Actually, the maximum effect on carrier phase by multipath errors is only up to 1/4 wavelengths

when arctan( α sin( 4πD
λ sin θ)

1+α cos( 4πD
λ sin θ)

) approaches π
2 according to Equation (1). Two cases should be considered

in ambiguity estimation: first, multipath errors are so small that they cannot change the estimation of
integer ambiguity—but could affect the result of the baseline vector by changing phase observations
(the non-integer part of the phase); second, multipath errors bring out a carrier phase measurement
error of a few centimeters and both the ambiguity estimation and baseline vector are changed.
Therefore, both two cases will be improved if multipath errors were removed from residuals.

2.3. Reconstruction of SD Residuals and Correction of Multipath Error

Since most model errors excluding multipath error can be eliminated by DD processing, multipath
error becomes the main component of the remaining errors in DD observations. There are two
disadvantages when DD residuals are applied to obtain multipath models. Firstly, the reference
satellite in the DD process is the satellite with the highest elevation angle, which means that once the
reference satellite changes, the DD residuals sequence will become complex and cannot correspond to
the specific satellites. Secondly, it is difficult to determine the orbital period of two satellites as their
orbital periods are different from each other. Reference [35] gives another way that we can reconstruct
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SD residuals from DD residuals by the transition matrix which contains the “zero mean” assumption
∑ wisi

AB = 0, then the reconstructed SD residuals can be expressed as:


s1

AB
s2

AB
s3

AB
. . .
sn

AB

 =


∑ wisi

AB
d12

AB
d13

AB
. . .

d1n
AB

 ∗


w1 w2 w3 . . . wn

1 −1 0 . . . 0
1 −1 . . . 0

. . .
1 0 0 . . . −1


−1

(10)

where si
AB and dij

AB represent reconstructed SD residuals and DD residuals, respectively; wi is the
weighting factor. Because we use the weighting model of elevation angles, wi = sin2(θ) here. Then the
process of calculating SD residuals and correcting multipath errors is as shown in Figure 1:

(1) The mean solution of the baseline vector of first period data was calculated as the true baseline
vector b;

(2) The baseline solution is substituted back to the DD equations of first period data to compute
ambiguity inversely. Then the float ambiguity solution is fixed to integer ambiguity a;

(3) Next, both b and a were substituted into the DD equations to obtain DD residuals consisting of
multipath errors and Gaussian white noise;

(4) DD residuals were reconstructed to SD residuals by Equation (10);
(5) The multipath model of each BDS satellite was extracted from SD residuals through different

filter methods with random noise being filtered;
(6) The multipath model sequences were adapted according to the time shift computed from first

period data;
(7) The adaptive multipath model sequences were substituted into the SD equations of the second

period data to mitigate multipath effects according to high correlation between multipath errors
of two period data;

(8) Finally, the baseline coordinate sequence of the second period data was evaluated from corrected
DD equations.
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3. Orbital Periods of BDS Satellites

3.1. Qualitative Analysis

All the GPS satellites are the same orbital satellite-MEO satellite and their orbital periods are
almost one sidereal day although there may be a deviation of several minutes (notice that the orbital
period here is not calculated in the celestial coordinate system, but in the site-centric coordinate system)
However, for the three types of satellites of BDS system, the orbital repeatability is more complex.
Figure 2 shows the satellite tracks of BDS GEO satellite (C01), IGSO satellite (C06) and MEO satellite
(C11) on day of year (DOY) 284, 285 and 291 in 2016. We can find that the ground tracks of the C06 is
like an “8” shape and its tracks on the three days almost coincide. This indicates that the satellite orbital
periods of IGSO satellites are about 1 day. Meanwhile, the tracks of C11 just coincide on DOY 284 and
291, but that on DOY 285 is independent of the other two days. Consequently, the orbital period of
BDS MEO satellites is about 7 days. In Figure 2, we can also find that C01 almost remained stationary
during the three days, but actually it still moved in a very small area because it was vulnerable to
tidal changes, atmospheric pressure and nutation and other external intrusion. As shown in Figure 3,
BDS GEO satellites will move in the shape of a small “8” within 4 degrees in latitude and 1 degree in
longitude. It is clear that the orbital periods of GEO satellites are about 1 sidereal day.
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Figure 2. Satellite tracks of BDS GEO satellite (C01), IGSO satellite (C06) and MEO satellite (C11).
Satellite traces for C06 and C11 on DOY 284, 285 and 291 are shown with the marks “+”, ”×” and
“o” respectively.
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3.2. Quantitative Calculation

After qualitative analysis of the BDS satellites orbital periods, quantitative calculation for each
satellite is also needed. On one side, the orbital periods of satellites are not strictly integer days
and there is a time shift. On the other hand, the orbital periods of BDS satellites are different from
each other. According to the orbit radius and the angular velocity correction given by the broadcast
ephemeris, the angular velocity of the satellite can be obtained at each epoch:

n =
√

GM/a
3
2 + ∆n (11)

where GM = 1.996498 × 107 is the square root of the product of the gravitational constant of the earth
and the mass of the earth, ∆n is the correction parameter of satellite angular velocity, a is the square
root of the long half axis of the satellite orbit ellipse. For BDS GEO and IGSO satellites, the time shifts
can be computed by:

∆T = 86, 400− 2π/n (12)

We also obtain the time shifts of MEO satellites by:

∆T = 7× 86, 400− 26π/n (13)

Based on the above formulas and BDS ephemeris in January and February 2017, we calculated the
time shifts of all satellites at each ephemeris epoch as shown in Figure 4 and Table 1. From Figure 4, it is
easy to find that the time shifts of the three different types of satellites are different. The corresponding
time shifts of different satellites with the same type varies at different time. Even the time shift of one
satellite varies at different time. As Figure 4a shows, the time shift curves of GEO satellites fluctuate
greatly even in one day and the range is about 30 s. The result also indicates that GEO satellite has a
high-frequency jitter during operation due to interference from external forces. Moreover, it is easy
to find that the time shifts of GEO1–GEO5 satellites come into a similar variation trend in the two
months so their mean value are nearly the same values with 235 s or 236 s. In Figure 4b we can find
that, the time shifts of the IGSO satellites is relatively stable in one day and there is no great volatility
like GEO satellites. However, the curves of time shifts of different IGSO satellites keep independent of
each other, consequently, a few seconds of deviation occurs among the time shifts of IGSO satellites.
The minimum value is 233 s corresponding to IGSO9 and the maximum value is 245 s corresponding
to IGSO10. Only IGSO8 happens to a great jump about 50 s on 22 January. The main reason for this
phenomenon may be orbital maneuver. For the MEO satellites in Figure 4c, the change tendency of
each curve fluctuates is around 1700 s although there still exist differences. However, it can be found
from Table 1 that the range of time shift of MEO satellites are 12–16 s, which is smaller than that of
GEO and IGSO satellites.
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Figure 4. The orbital repeat periods of the BDS satellites from day 1 to 59 of the year 2017. The values
in the top and middle panels are derived from 86,400 subtracting the repeat times of the GEO and
IGSO satellites, respectively. The values obtained by 7 × 86,400 subtracting the repeat time of MEO are
marked in the bottom panel.

Table 1. The mean, variance and range of time shift of all BDS satellites during January and February, 2017.

PRN C01 C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C14

Time shift/S 236 236 236 235 235 236 239 243 233 245 1699 1702 1703
MSE 6.0 5.3 6.0 4.9 5.3 5.3 4.8 20 3.7 3.2 2.4 2.4 3.4

Range 31 25 33 24 28 22 18 51 16 13 13 12 16

4. Filter Methods for Extracting Multipath Error Models

As mentioned in Section 2.3, the DD and SD residuals consist of multipath errors and white noise.
The indispensable step of multipath mitigation is extracting multipath models from SD residuals.
Denoising SD residuals to approach multipath errors is the main part of this process where reasonable
filter should be selected. Many researchers have studied on filter methods for multipath mitigation
such as wavelet filter, EMD filter and FIR filter. In this paper, Kalman filter and RTS smoother (KF-RTSS)
was firstly used in BDS multipath mitigation. The basic principle of the wavelet filter and EMD filter
were explained briefly and the process of KF-RTSS was described in detail as follows.
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4.1. Wavelet Filter

A wavelet filter decomposes a signal into different frequency layers by Fourier transform [36].
In most cases, the low frequency layers are the useful part corresponding to the multipath errors
of the SD residuals, and the high frequency layers contains white noise that is going to be filtered.
Some details of the high frequency layers are still preserved by different threshold methods. Then the
preserved details and low frequency part are reconstructed to approach original data. The process
of wavelet filter consists of selecting wavelet basis function, determining decomposition level and
defining threshold, respectively. The wavelet basis function we used is sym6, the decomposition
progression is 4 and the threshold of filter is default provided by MATLAB.

4.2. EMD Filter

Empirical mode decomposition (EMD) is proposed by Huang in 1998 [20,37]. As a new signal
decomposition method, it is a part of the Hilbert Huang transform (HHT) method which can analyze
the spectrum of non-linear and non-stationary signals adaptively. EMD is mainly applied to obtain the
instantaneous frequency characteristics of signal sequences. Hence it is adaptive to decompose data
into a set of Intrinsic Mode Function (IMF) components with different frequencies, which represent the
basis of the data. Similar to the wavelet filter, the high-frequency IMF component is considered as the
noise part. Although the wavelet filter has multi-resolution and high time-frequency domain resolution,
its application is limited by many problems, such as wavelet basic selection and decomposition
progression determination. Reference [38] shows that the product of the energy density and the mean
period of the IMF component of the Gaussian white noise signal is a constant. Hence we can determine
the noise progression by Equation (14):

Rk = |(ETk − ETk−1)/(
1

k− 1

k−1

∑
i=1

ETi)| (14)

where ETk is the product of the energy density and the mean period of the IMF k, Rk is the ratio factor
that control noise progression. Generally, when Rk ≥ 2, the sum of the first IMF to IMF k − 1 is the
noise part of the original signal and the sum of other IMF components is the filtered signal. Therefore,
EMD offers a different approach to data decomposition, and we can apply it to the study of extracting
BDS multipath models.

4.3. Kalman Filter and RTS Smoother

Kalman filter is the traditional algorithm for the Kalman filter (KF) and Rauch-Tung-Strieber
smoother (RTSS) can provide the minimum mean square estimates (MMSE) of states for state-space
models with additive Gaussian system and observation noises given a series of the past, current,
and future observations [39]. Hence, it has been widely used in data denoising processing. Wang
applied KF-RTSS method in the position estimation of a GPS software receiver [40]. Sarkka et al.
predicted ESTSP Competition Time Series by Unscented Kalman Filter and RTS Smoother [41].
Chiang et al. overcame the limitations of KF and improved the performance of an INS/GPS integrated
system by KF-RTSS method [42]. In this paper, the KF-RTSS method is introduced to extract the BDS
multipath models from SD residuals and correct multipath errors. The simplest state space model is a
linear model, which can be expressed as follows:

State equation xk = Fk−1xk−1 + wk−1 (15)

Measurement equation zk = Hkxk + vk (16)

where xk is the system state of k step, zk is the measurement of k step, Fk−1 is the transition matrix
transforming the system state from the k − 1 step to the K step and Hk is the transition matrix giving
the relation between the observation vector zk and the state vector xk. wk−1 and vk−1 are the process
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noise and measurement noise of state equation and measurement equation, respectively. Meanwhile,
these are theoretically white noise that meets ε(wk−1) = 0, ε(vk) = 0 and ε

(
wkvT

k
)
= 0, ε

(
w0wT

k
)
= 0,

ε
(

x0vT
k
)
= 0, which means measurement noise is irrelevant to system status, process noise is irrelevant

to observation, and measurement noise is also irrelevant to process noise. Let ε
(

wk−1wT
k−1

)
= Qk−1

and ε
(
vkvT

k
)
= Rk, then the iterative process of KF and RTSS is as follows:

(1) Prediction and update of state and measurement (KF)

One-step prediction:
x̂k = Fk−1xk−1 (17)

ẑk = Hk x̂k (18)

Variance matrix of one-step prediction:

P̂k = Fk−1Pk−1|F
T + Qk−1 (19)

The state estimation is corrected by the measurement error term:

xk = x̂k + Kk(zk − ẑk) (20)

Update the variance matrix of state:

Pk = P̂k − Kk HP̂k (21)

where Kk represents the filter gain matrix of step k, which can be expressed as:

Kk = P̂k HT(HP̂k HT + Rk)
−1

(22)

(2) After step k, the state estimator of the K step dynamic system is smoothed by the following
formulas (RTSS):

x̂k+1 = Fkxk (23)

P̂k+1 = FkPkFk
T + Qk (24)

Ck = PkFk
T P̂−1

k+1 (25)

xS
k = xk + Ck

(
xS

k+1 − x̂k+1

)
(26)

PS
k = Pk + Ck

(
PS

k+1 − P̂k+1

)
Ck

T (27)

where, x̂k+1 and P̂k+1 are the smoother estimates for the state mean and state covariance on time step
k. xS

k and PS
k are the filter estimates for the state mean and state covariance on time step k. x̂k+1 and

P̂k+1 are the predicted state mean and state covariance on time step k + 1, which are the same as in the
Kalman filter. Ck is the smoother gain on time step k, which tells how much the smoothed estimates
should be corrected on that particular time step.

The process of KF and RTSS is shown as Figure 5. The input SD residuals are the measurement zk.
The filtered and smoothed output of multipath models are the state xS

k . The system state is filtered
from step 1 to k and then each step is smoothed conversely according to filtered value and smoothed
value of next step. The initial value of the smoothing process xS

k is equal to the last state estimation of
the filtering process xk.
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Figure 5. Process of KF-RTSS method.

4.4. Simulation Experiment

Because the multipath error sequence contains signals with different frequencies, we can simulate
multipath signal by the combination of three sine wave signals

St = sin(2πt/200) + sin(2πt/400) + sin(2πt/600) (28)

A Gauss white noise with a standard deviation of 1 is added, then the data model turns to:

Mt = St + et (29)

where, Mt is the mixed signal which can be considered as BDS SD residual sequence, et is the Gauss
white noise which should be filtered. The sampling interval is 1 s, and the sampling number is 5000.
In order to verify the denoising effect of KF-RTSS method, wavelet filter and EMD filter are also used
as the comparison. As shown on the left of Figure 6, from top to bottom are the original signal, Gauss
white noise and noisy signal. On the right, extracted signals by wavelet filter, EMD filter and KF-RTSS
method are shown respectively. Table 2 gives the correlation coefficient between filtered signals and
the original signal. The root mean square errors of both signals are assessed. It is clearly that the
correlation coefficient of KF-RTSS signal and original signal is the highest (0.9927) while RMSE of EMD
signal is closest to original signal. In the three filters, Wavelet signal show the worst performance.
Generally, correlation coefficients between filtered signals and original signal are all more than 0.97,
which indicates that three filters all have good performance on denoising the contaminated signals.
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Table 2. Correlation coefficients and root mean square error of wavelet signal, EMD signal and
KF-RTSS signal.

Filter Original Wavelet EMD KF-RTSS

correlation 1 0.9768 0.9884 0.9927
RMSE 1.236 1.294 1.269 1.278

5. Performance Analysis of BDS Multipath Mitigation Based on the KF-RTSS Method

In order to verify the consistency between orbital period and multipath periods of BDS satellites
and the feasibility of the KF-RTSS proposed, we calculated the SD residuals and extract the multipath
model with respect to each satellite, and evaluate the baseline results after three filtering methods.
This set of data were collected from 27 September to 10 October 2017 year with the frequency of 1 Hz
and 5◦ elevation mask angle at the roof of School of environment and Geometrics, China University of
Mining and Technology. The two GNSS receivers are Trimble R10 (Trimble Navigation, Sunnyvale,
California, United States) units and one of them was set in an unobstructed environment as base station
while another one was placed about 5 m away from the southeast direction of a white wall as the rover
station. The length of the baseline is about 62.210 m. To ensure that the base station is not affected by
multipath effects and the rover station has a clear multipath effect, we turned off the anti-multipath
function of the rover station while switching on the function of the base station. The processing of
extracting SD residuals and mitigating multipath errors are implemented by the GNSS data processing
software developed by ourselves.

5.1. SD Residual of Different Types of BDS Satellites

According to the steps in Section 2.3, we calculated the SD residuals of different type of BDS
satellites. Figure 7 shows SD residuals of GEO5 and IGSO6 on DOY 272, 273 and 274 and correlation
curves of 272–273, 272–274 and 273–274. Figure 8 shows SD residuals of MEO12 and MEO14 on
DOY 272, 273 and 279 and correlation curve of 272–273, 272–279 and 273–279. As we can see in the
above figures, SD residuals and correlation curves of GEO5 and IGSO6 almost repeated themselves
every sidereal day in the three consecutive days as satellite tracks did. This means that the periods of
multipath error for BDS GEO and IGSO satellites are relevant to the corresponding orbital periods.
Meanwhile, SD residuals and correlation curves of MEO12 and MEO14 are different in two consecutive
days but similar between DOY 272 and 279. Similarly, periods of multipath errors for BDS MEO
satellites are strong related to the corresponding orbital periods.
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Figure 7. SD residuals of GEO5 (a1) and IGSO6 (b1) on DOY 272, 273 and 274 and correlation curve of
GEO5 (a2) and GEO6 (b2) on 272–273, 272–274 and 273–274.
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Figure 8. SD residuals of MEO12 (a1) and MEO14 (b1) on DOY 272, 273 and 279 and correlation curves
of MEO12 (a2) and MEO14 (b2) on 272–273, 272–279 and 273–279.

Tables 3 and 4 give the orbital time shifts and residual time shifts corresponding to maximum
correlation coefficients of all BDS satellites. The mean orbital time shifts of GEO and IGSO satellites
are 242.6 s, 242.2 s and 484.8 s on three consecutive days, which are approximate to the mean residual
time shifts where SD residuals correlation coefficients reach maximum value—239.8 s, 242.4 s and
482.3 s. What’s more, the means of correlation coefficients are up to 0.8 in spite of remaining noise in
SD residuals.
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Table 3. Orbital time shifts and SD residual time shifts corresponding to maximum correlation coefficients of BDS GEO and IGSO satellites.

PRN
272–273 273–274 272–274

Orbital Time
Shift

Residual
Time Shift

Maximum Correlation
Coefficient

Orbital Time
Shift

Residual
Time Shift

Maximum Correlation
Coefficient

Orbital Time
Shift

Residual
Time Shift

Maximum Correlation
Coefficient

GEO1 237 232 0.628 237 251 0.724 474 477 0.708
GEO2 242 231 0.839 242 221 0.827 484 495 0.810
GEO3 248 244 0.894 247 243 0.916 495 494 0.884
GEO4 244 245 0.762 243 247 0.805 487 490 0.736
GEO5 239 232 0.856 239 235 0.890 478 467 0.876
IGSO6 259 253 0.818 259 263 0.881 518 506 0.786
IGSO7 220 228 0.757 219 219 0.857 439 445 0.667
IGSO8 248 247 0.884 248 252 0.903 496 491 0.888
IGSO9 255 257 0.854 254 259 0.857 509 495 0.807

IGSO10 234 229 0.822 234 234 0.867 468 463 0.832
Mean 242.6 239.8 0.811 242.2 242.4 0.853 484.8 482.3 0.799

Table 4. Orbital time shift and Residual time shift corresponding to maximum correlation coefficients of BDS MEO satellites.

PRN
272–273 272–279 273–279

Orbital Time
Shift

Residual
Time Shift

Maximum Correlation
Coefficient

Orbital Time
Shift

Residual
Time Shift

Maximum Correlation
Coefficient

Orbital Time
Shift

Residual
Time Shift

Maximum Correlation
Coefficient

MEO12 - −4649 0.413 1704 1705 0.834 - 6389 0.467
MEO14 - −9923 0.267 1702 1699 0.888 - 9102 0.142
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5.2. Extracting Multipath Error Models from SD Difference Residuals

The SD residuals of the last period data cannot be subtracted from SD observations of current
period data because the SD residuals consist of multipath error models and white errors which
are interference terms and should be filtered. Multipath models of IGSO6 for DOY 272–274
extracted from SD residuals by the three filters mentioned are shown in Figure 9. Table 5 gives
the correlation coefficients of multipath models between DOY 273 and 274 for BDS PRN 1–10
satellites with three filtering methods. Compared with Table 4, we can find that the mean correlation
coefficients with wavelet filter, KT-RTSS and EMD filtering are 0.9036, 0.9214 and 0.9158, respectively.
These performances are all better than that of SD residuals with the value of 0.853. This indicates that
three kinds of filter are all effective, therein the performance of KT-RTSS method is the best.
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Figure 9. Multipath models of IGSO6 on DOY 272 (a), 273 (b), 274 (c) extracted from SD residuals by
different filters.
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Table 5. Correlation coefficients of multipath models between DOY 273 and 274 for all BDS satellites
after three filters.

PRN
Wavelet KT-RTSS EMD

Maximum Correlation Coefficient Maximum Correlation Coefficient Maximum Correlation Coefficient

GEO1 0.8526 0.8888 0.8732
GEO2 0.9207 0.9290 0.9298
GEO3 0.9631 0.9723 0.9686
GEO4 0.8564 0.8780 0.8741
GEO5 0.9631 0.9587 0.9611
IGSO6 0.9003 0.9286 0.9261
IGSO7 0.8943 0.9079 0.9011
IGSO8 0.9418 0.9482 0.9472
IGSO9 0.8796 0.9081 0.9021
IGSO10 0.8642 0.8945 0.8749
Mean 0.9036 0.9214 0.9158

5.3. Improvement of Baseline Vector with Different Multipath Mitigation Methods

The last step of multipath mitigation is subtracting the multipath models of last period data from
current period data and calculate the baseline vector. Shown in Figure 10 are the BDS baseline vectors
before and after multipath mitigation with different methods. Table 6 gives the RMSE of deviations in
E, N, U components and percentage of improvement respectively. The percentage of improvement
with KF-RTSS method is about 62.8%, 63.6%, 62.5% and 57.3%, 53.4%, 55.9% in E, N, U components on
DOY 280 and 281, which is slightly better than that of Wavelet filter and EMD filter.
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Figure 10. The deviation in East (a), North (b), Up (c) components of baseline vector corresponding to
original result, Wavelet filter, EMD filter and KF-RTSS on DOY 280 and 281.

Table 6. The deviation in E, N, U components of baseline vector corresponding to original result,
Wavelet filter, EMD filter and KF-RTSS and improvement in E, N, U components of baseline vector
corresponding to Wavelet filter, EMD filter and KF-RTSS than original result on DOY 280 and 281.

DOY 280 281

Filter Original Wavelet EMD KF-RTSS Original Wavelet EMD KF-RTSS

RMSE/mm
E 1.817 0.6908 0.6856 0.6754 1.733 0.7538 0.7531 0.7406
N 2.165 0.8085 0.8028 0.7876 2.023 0.9548 0.956 0.9429
U 6.112 2.386 2.387 2.294 6.331 2.86 2.876 2.795

Percentage of
improvement

E - 61.9% 62.3% 62.8% - 56.5% 56.6% 57.3%
N - 62.6% 62.9% 63.6% - 52.8% 52.7% 53.4%
U - 60.9% 60.9% 62.5% - 54.8% 54.5% 55.9%

6. Conclusions

In order to meet the requirements of deformation monitoring with BDS precise positioning
techniques for large structures, it is of significance to mitigate multipath effects in carrier phase
observations. In this paper, detailed analysis was provided about the characteristics of orbital periods
and multipath repeat periods of BDS satellites. It was found that they are consistent. The period of orbit
and multipath errors for BDS GEO and IGSO satellites is about one day and that of BDS MEO satellites
is about seven days. Sidereal filters based on SD difference were applied to correct multipath errors.
The KF-RTSS method was introduced to extract multipath models from single difference (SD) residuals.
After subtracting multipath models, the improvement of baseline accuracy on E, N, U directions are
about 62.8%, 63.6%, 62.5% on DOY 280 and 57.3%, 53.4%, 55.9% on DOY 281, respectively. Wavelet
filter and EMD filter were also used in multipath mitigation. The experimental results indicate that
the three filters all have obvious effect on improvement of baseline accuracy and the performance of
KT-RTSS method is slightly better than that of the wavelet filter and EMD filter.
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