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We study tree structures termed optimal channel networks (OCNs)
that minimize the total gravitational energy loss in the system,
an exact property of steady-state landscape configurations that
prove dynamically accessible and strikingly similar to natural
forms. Here, we show that every OCN is a so-called natural river
tree, in the sense that there exists a height function such that
the flow directions are always directed along steepest descent.
We also study the natural river trees in an arbitrary graph in
terms of forbidden substructures, which we call k-path obstacles,
and OCNs on a d-dimensional lattice, improving earlier results
by determining the minimum energy up to a constant factor
for every d ≥ 2. Results extend our capabilities in environmental
statistical mechanics.

spanning trees | graph theory | slope-area law | landscape evolution

R iver networks can be viewed as rooted trees that, when
extracted from fluvial landscapes by topographic steepest

descent directions, show deep similarities of their parts and the
whole, often across several orders of magnitude, despite great
diversities in their geology, exposed lithology, vegetation, and cli-
mate (1). The large related body of observational data provides
quintessential examples of real physical phenomena that can be
effectively modeled by using graph theory (2, 3). River networks
are in fact the loopless patterns formed by fluvial erosion over
a drainage basin. Such patterns, referred to as “spanning trees,”
are such that a directed graph route exists for flows from every
site of the catchment to an outlet and are strictly related to the
topographical surface whose gradients determine the edges (the
drainage directions). A specific class of spanning trees, called
optimal channel networks (OCNs), was obtained by minimizing
a specific functional (4, 5), later shown to be an exact property
of the stationary solutions of the general equation describing
landscape evolution (6, 7). The static properties and the dynamic
origins of the scale-invariant structures of OCNs proved remark-
able (1). OCNs are suboptimal (that is, dynamically accessible
given initial conditions and quenched randomness frustrating the
optimum search) configurations of a spanning network mimick-
ing landscape evolution and network selection (SI Appendix).
Empirical and theoretical works have generally focused on the
two-dimensional (2D) case, although recently (inspired by vas-
cular systems), three-dimensional (3D) settings have also been
analyzed for an OCN embedded in a lattice (8). Several exact
results have been derived for OCNs (6–15).

A model for a river network is obtained by taking a reasonably
dense set of points on a terrain and then joining each point to
a nearby point downhill. Experimental observations suggest that
OCNs should satisfy the following properties: (i) each portion of
the drainage basin has a single output; and (ii) a geomorpholog-
ical stability condition holds. OCNs are defined on a finite graph
G , consisting of a set V (G) of vertices (or nodes), which corre-
spond to sites in a drainage river basin, and a set E(G) of edges

between nearby sites. Moreover, each node v is endowed with a
height, hv . Water from each site/node v is entirely directed along
the steepest descent—that is, toward the neighbor u of v which
maximizes hv − hu—and we write

∆hv = max
u∈N (v)∪{v}

{
hv − hu

}
,

where N (v) = {u : uv ∈E(G)} denotes the set of neighbors of
node v . It is easy to see that the set of edges along which
water flows is acyclic; in a single river basin, it will be an ori-
ented spanning tree, with all water flowing to a unique root.
Note that the notation N (v)∪{v} also includes the possibility
of finding nodes with no outlet. The second empirical prop-
erty provides a connection between the gradient of the descent
and the landscape-forming flux of water flowing along the path.
More precisely, in the (geological) steady state, if the landscape-
forming water flow rate mv at a site v increases, then the heights
of the sites are modified by water erosion in such a way as to
keep the product m1/2

v ∆hv constant. The exponent 1/2 is experi-
mentally determined by local slope-area plots where one assumes
that landscape-forming discharges are proportional to total con-
tributing area and refers to the fluvial domain, thereby neglecting
unchanneled parts of the landscape (1). Such an exponent also
emerges as the leading term of a general nonlocal erosion
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term under reparametrization invariance and a small-gradient
approximation (7). Thus, the first rule microscopically ensures
that no cycles are created, while the second rule introduces
a feedback between river structure and landscape erosion (1,
16–18).

Here, we present analytical results about the properties of
the structure that minimizes the total gravitational energy loss.
In particular, we will give a theoretical characterization of river
networks in terms of forbidden substructures, which provides a
simple way of determining which of the spanning trees of a graph
are natural river trees. We will also study OCNs embedded in a
d -dimensional lattice, proving, for each dimension d ≥ 2, upper
and lower bounds on the energy that differ by only a constant
factor. In fact, river trees are 2D, while their landscapes are
3D objects where a drop in elevation is assigned along edges as
a function of connectivity. d -dimensional optimal constructions
are of notable interest, like, e.g., spanning vascular networks
(d = 3) delivering metabolites to a given volume (13). In a vascu-
lar system of size L, metabolic rates scale like Ld , while mass M
scales as M ∝Ld+1, leading to metabolism scaling as M d/(d+1)

(13). Constructions in d > 3 may consider time as an extra dimen-
sion [see, e.g., the work on Abelian sandpile (19) models of the
Bethe lattice (20)]. Great interest thus exists for OCNs on gen-
eral graphs for which important applications may arise in the
future. We thus begin with a formal description of OCNs, and
then we present the analytical results concerning the character-
ization of river trees and the energy of an OCN embedded in
lattices of any dimension d .

For each constant γ ∈ (0, 1), we can associate to the (rooted)
spanning trees of a graph G an energy function of the following
form:

Eγ(T ) :=
∑

v∈V (G)

Av (T )γ , [1]

where Av (T ) is the number of vertices u ∈V (G) such that the
path in T from u to the root contains the vertex v (in other
words, the number of vertices in the subtree of T “rooted” at
v). A spanning tree of G which minimizes the energy in Eq. 1 is
called an OCN of G .

In the case of river networks, if we imagine an open system
where injection occurs at each site (vertex) at rate 1, and flowing
along the edges of T until it reaches the root, then Av (T ) repre-
sents the total flow of water out of v . The energy function defined
in Eq. 1 has its origins in the exact result that steady-state config-
urations of river networks minimize the total loss of gravitational
energy. This corresponds to:

Eγ(T ) =
∑

v∈V (G)

mvg∆hv , [2]

where mv is the mass of water leaving vertex v , so mv is propor-
tional to Av (T ). Furthermore, experimental evidence suggests
the following relationship between Av (T ) and the difference
of heights of two adjacent nodes: ∆hv ∝Av (T )−1/2 (1). We
therefore obtain:

Eγ(T )∝
∑

v∈V (G)

Av (T )1/2. [3]

Replacing the exponent 1/2 with the parameter γ ∈ (0, 1), and
ignoring the (unimportant) constant factor, gives Eq. 1. When
γ= 1 the class of directed networks that minimize the mean dis-
tance to the outlet is obtained, whose energy function is the same
(6, 16). This is true if the functional in Eq. 1 is replaced by a
more general one where T is substituted with the graph G itself,
including all edges. For such functional, every tree is a local min-
imum (7), and minimization is carried out under the constraint

that locally (for each node) and globally a conservation law holds
matching injection rates and inflows/outflows (6, 7, 16).

Given a rooted graph G (with one or more roots), we say that
T is a “rooted spanning forest” of G if T is an acyclic subgraph
of G , with one root of G in each component of T , and all edges
oriented toward the corresponding root. The following natural
definition will play an important role in our investigation of the
OCN(s) of a graph.

Definition. Let G be a rooted graph, and T be a rooted spanning
forest of G . We say that T is a “natural river spanning forest”
of G if there is a height function f :V (G)→R such that if v ∈
V (G) is a nonroot, and u ∈N (v), then v→ u is an edge of T if
and only if

f (u) = min
{
f (x ) : x ∈N (v)∪{v}

}
. [4]

We will assume throughout that the values of f are distinct,
and hence that the minimum in Eq. 4 occurs at a unique vertex
x . We remark that we will usually be interested in the case when
G has exactly one root, in which case we say that T is a “natural
river spanning tree” of G .

Note that (i) every nonroot vertex of T has out-degree exactly
1, (ii) f (v) strictly decreases along every directed path in T ,
and (iii) the function f attains its minimum at one of the roots.
In Theorem 1, we will provide a simple characterization of the
natural river spanning trees of a graph in terms of forbidden sub-
structures. We will also show (Theorem 3) that every OCN in a
graph is also a natural river spanning tree of that graph. As a con-
sequence, to study (either analytically or numerically) the tree
structures that minimize the energy function Eγ(T ) defined in
Eq. 1, it suffices to consider natural river trees.

Which Networks Are River Trees? The definition of a natural river
spanning tree creates various constraints on its possible shape
and structure; in this section we shall consider these constraints.

Definition. Let G be a rooted graph, and let T a spanning tree
of G . A k -path obstacle for T consists of a sequence of directed
paths (η1, . . . , ηk ) in T , with the following property: For each
i∈Zk , the last vertex of ηi is connected to the first vertex of ηi+1

by an edge of G that is not in T .
In other words, if ηi is the path ai→ ci(1)→· · ·→ ci(`i)→ bi

in T , and

b1a2, b2a3, . . . , bka1 ∈E(G)\E(T ),

then we say that T contains a k -path obstacle (Fig. 1). We
emphasize that the paths ηi do not need to be vertex-disjoint
(and it will be convenient in the proofs below to allow them to
intersect); however, if k is minimal such that T contains a k -path
obstacle, then the paths in any k -path obstacle will be disjoint.
Observe that we will always consider the indices modulo k , so
that (for example) b0 = bk and b1 = bk+1, and that if k = 1 then
necessarily `1> 0.

It is not difficult to show that a natural river tree cannot con-
tain a k -path obstacle for any k ∈N; our first theorem states
that this simple necessary condition is also sufficient, and hence
characterizes the natural river trees.

Theorem 1. Let G be a finite graph with a single root. A spanning
tree T of G is a natural river spanning tree of G if, and only if, it
has no path obstacle.

Looking at Fig. 1, it may be deduced that a natural river tree
by definition cannot contain any three-path obstacle (i.e., can-
not contain the red dashed edges). The same reasoning can
be extended to any natural river tree and value of k . We will
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Fig. 1. k-path obstacles. (A) A three-path obstacle. For i∈{1, 2, 3}, ηi , is
the directed path ai→ ci(1)→· · ·→ ci(`i)→ bi in T , where `1, `2, `3 are arbi-
trary nonnegative integers. Dashed red lines represent the edges b1a2, b2a3

and b3a1 belonging to G but not to T . (B) An example of a two-path obsta-
cle (a1→ c1→ b1 and a2→ c2→ b2), where G (dashed red lines) is a regular
2D lattice and T (black arrows) is a spanning tree.

give here only a formal proof of the necessary and sufficient
conditions for T to be a natural river network.
Proof. We will show first that, for each k ≥ 1, a natural river tree
T cannot contain a k -path obstacle. Indeed, let f :V (G)→R be
the height function associated to T , and suppose that there exist
paths η1, . . . , ηk in T , where ηi is the path ai→ ci(1)→· · ·→
ci(`i)→ bi in T , and b1a2, b2a3, . . . , bka1 ∈E(G)rE(T ). Since
ai→ ci(1) (or ai→ bi if `i = 0) is in T , and aibi−1 ∈E(G), it fol-
lows from the definition that f (bi)≤ f (ci(1))< f (bi−1) for each
i∈Zk , where b0 :=bk . But then,

f (b1)> f (b2)>· · ·> f (bk )> f (b1), [5]

and this contradiction proves the claim.
We now turn to our main task: showing that if T has no path

obstacle, then it is a natural river tree. Given such a rooted span-
ning tree T in G , we introduce a directed graph D with vertex
set V (G) and

E(D) =
{
x→ y : either x→ y is an edge of T , or

∃z such that xz ∈E(G)\E(T ) and (z→ y)∈E(T )
}
.

Claim. The directed graph D is acyclic.
Proof. Suppose that D contains a directed cycle with exactly k
edges that are not edges of T , and note that k ≥ 1, since T is a
tree. Let us denote the vertices of the cycle as follows:

c1(1)→· · · → c1(`1)→ b1→ c2(1)→· · ·→ c2(`2)→
b2→· · ·→ bk−1→ ck (1)→· · ·→ ck (`k )→ bk→ c1(1),

where b1, . . . , bk are the vertices whose out-neighbor in the cycle
is not an edge of T , and `1, . . . , `k ≥ 0. Thus, there exist vertices
a1, . . . , ak such that, for each i∈Zk , we have bi−1ai ∈E(G)r
E(T ) (where b0 := bk ), and ai→ ci(1) (or ai→ bi if `i = 0) is
an edge of T . This gives a k -path obstacle, contradicting our
assumption. �

It follows from the claim that the directed graph D can be
extended to a linear ordering < on V (G) (i.e., a linear ordering
with x > y for every edge x→ y of D). Choose a height function
f such that f (x )< f (y) if and only if x < y ; we claim that T is a
natural river spanning tree with this height function.

Indeed, let v ∈V (G) be a nonroot, and note that there is a
unique u ∈N (v) such that v→ u is an edge of T , since all edges
of T are directed toward the root. Note that v→ u is an edge
of D , by definition, so f (u)< f (v). Now let u 6=w ∈N (v), and
observe that w→ u is an edge of D (since wv ∈E(G)rE(T )
and v→ u is an edge of T ), so f (u)< f (w). Hence,

f (u) = min
{
f (x ) : x ∈N (v)∪{v}

}
,

as required. It follows that a spanning tree of G with no path
obstacle is a natural river spanning tree of G , completing the
proof of Theorem 1. �

Recall that an OCN (with parameter γ) in a graph G is a
spanning tree of G that minimizes the energy Eγ(T ). Our next
theorem states that such a tree does not contain a path obstacle.

Theorem 2. Let G be a finite graph with a single root, let T be a
spanning tree of G , and let k ∈N and γ ∈ (0, 1). If T is an OCN
in G with parameter γ, then T does not contain a k -path obstacle.

The proof of this theorem is presented in Materials and
Methods. Theorems 1 and 2 immediately imply the following
fundamental fact.

Theorem 3. Every OCN is a natural river spanning tree.
In other words, if G is a finite graph with a single root, and

T is an OCN in G with parameter γ ∈ (0, 1), then T contains
no path obstacle, by Theorem 2, and hence, by Theorem 1, is a
natural river spanning tree of G .

Energy of OCNs in d-Dimensional Grids. Here, we will study in more
detail the energy of an OCN in a d -dimensional lattice. In par-
ticular, we will focus on the case of the d -dimensional grid [n]d ,
with root (1, . . . , 1), and edges between vertices at `∞-distance
1, although it will be clear from the proofs below that our results
can be easily extended to other lattices. For each n, d ∈N and
γ ∈ (0, 1), define

T (n, d , γ) := min
{
E
γ
(T ) :T is a spanning tree of [n]d

}
,

the energy of an OCN in the d -dimensional grid. The following
theorem determines T (n, d , γ) up to a constant factor (depend-
ing on d and γ) for all values of the parameters. It extends results
of Colaiori et al. (12), who proved the lower bounds for d = 2 and
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Fig. 2. The upper bound construction in the proof of Theorem 4. The tree
is formed (in two dimensions) by four copies of the construction for [n/2]2,
placed so that squares 1, 2, and 3 have their root adjacent to the center of
[n]2, and the last one has its root at (1,1) (the black dot in the left bottom
corner).

γ 6= 1/2 (in fact, on an orthogonal grid), and improves a result of
Briggs and Krishnamoorthy (8), who obtained the lower bound
3n2/2−O(n) in the case d = 2 and γ= 1/2.

Theorem 4. For every integer d ≥ 2, we have

T (n, d , γ) =

Θ(nd), if 0<γ< 1− 1/d ,
Θ(nd log n), if γ= 1− 1/d ,
Θ(n1+dγ), if 1− 1/d <γ< 1,

[6]

as n→∞.
Proof. Let us first prove the upper bounds, which follow from a
straightforward recursive construction. We may assume for sim-
plicity that n = 2k , and consider 2d copies of the construction
Tn/2 for [n/2]d , oriented so that 2d − 1 of them have their root
near the center of [n]d , and the last one has its root at (1, . . ., 1),
Fig. 2. Join the vertex (n/2, . . .,n/2) in this last subcube to each
of the roots of the other subcubes, which are each of the form
(n/2, . . .,n/2) + x for some x∈{0, 1}d , so as to form a spanning
tree Tn in [n]d .

We claim that the subtree Tn of [n]d constructed in this way
contains the diagonal edge (x + 1, . . ., x + 1)→ (x , . . ., x ) for
each 1≤ x <n . Indeed, this holds (trivially) when n = 1, and by
induction it follows for all n = 2k , since we add the diagonal edge
(n/2 + 1, . . .,n/2 + 1)→ (n/2, . . .,n/2) in the induction step,
and all other diagonal edges are in Tn by the induction hypoth-
esis. It follows that all of the mass from 2d − 1 copies of [n/2]d

flows down the diagonal of the final copy, and hence we have the
following recursive formula:

Eγ(Tn) = 2d · Eγ(Tn/2) +

+

n/2∑
x=1

((
A(x ,...,x)(Tn/2) +nd − (n/2)d

)γ
+

−A(x ,...,x)(Tn/2)γ
)
. [7]

Since (y + z )γ ≤ yγ + zγ , and noting that (n/2)
(
nd − (n/2)d

)γ
≤n1+dγ , it follows that

Eγ(Tn)≤ 2d · Eγ(Tn/2) +n1+dγ ,

and, hence, noting that Eγ(T1) = 1, and recalling that n = 2k , we
obtain

T (n, d , γ)≤Eγ(Tn)≤n1+dγ + · · ·+ 2`d
(

n
2`

)1+dγ

+ · · ·+nd .

[8]
This inequality immediately implies the claimed upper bounds.
Indeed, if 1 + dγ < d then the right-hand side of Eq. 8 is an
increasing geometric series, so

T (n, d , γ)6
nd

1− 21+dγ−d
=O(nd).

If 1 + dγ > d then it is a decreasing geometric series, so

T (n, d , γ)6
n1+dγ

1− 2d−1−dγ
=O(n1+dγ).

Finally, if 1 + dγ= d then all terms are equal, so

T (n, d , γ)6nd(log2 n + 1
)

=O(nd log n),

as required.
We next turn to the lower bounds. Observe first that the lower

bound

Eγ(T ) =
∑

v∈V ([n]d )

Av (T )γ >
∑

v∈V ([n]d )

1 =nd ,

holds trivially for every spanning tree T of [n]d , and every
γ ∈ (0, 1), since we have Av (T )≥ 1 for every vertex v . Hence,
T (n, d , γ)≥nd holds always.

For the other lower bounds, we will find it useful to work
in a more general setting, assuming for simplicity that n = 3k .
Let [n]d◦ denote a copy of the d -dimensional grid in which every
vertex on the boundary is a root and define

Fig. 3. The proof of the lower bounds in Theorem 4. Black dots represent
the root on the boundary of [3n]d for each component of the spanning
forest. The red square highlights the central subcube; the water from this
subcube must travel to a root on the boundary, and to do so it must first
cross its own boundary and then pass through at least n additional vertices.

Balister et al. PNAS | June 26, 2018 | vol. 115 | no. 26 | 6551



F (n, d , γ) := min
{
E
γ
(F ) : F is a rooted

spanning forest of [n]d◦
}

,

where each component of F is assumed to have a single root
(which lies on the boundary of [n]d ), and the energy Eγ(F )
is defined to be the sum of the energies of the components.
Note that F (n, d , γ)≤T (n, d , γ), since a spanning tree in [n]d

contains a rooted spanning forest of [n]d◦ . We claim that

F (3n, d , γ) ≥ 3d ·F (n, d , γ) +
γ

3d(1−γ) ·n
1+dγ . [9]

To prove Eq. 9, we partition [3n]d into 3d subcubes of size [n]d .
In each subcube we must send the mass to the boundary of this
subcube, and this gives a contribution of at least 3d ·F (n, d , γ)
to the energy. Additionally, the middle subcube has to send its
mass from its boundary to the boundary of the large cube [3n]d ,
and therefore each drop of water must pass through at least n
additional vertices on its way to a root. Note that, since Av (T )≤
(3n)d and γ < 1, we have

Av (T )γ −
(
Av (T )− x

)γ ≥ γ ·Av (T )γ−1 · x ≥ γ · (3n)dγ−d · x ,

for any x > 0. Therefore, moving the mass of the center subcube
to the boundary increases the energy by at least

nd ·n · γ · (3n)dγ−d =
γ

3d(1−γ) ·n
1+dγ ,

and, hence, we obtain Eq. 9 (Fig. 3).
Setting C = γ · 3−(d+1), and noting that F (1, d , γ) = 1, we

obtain

T (n, d , γ) ≥ F (n, d , γ) ≥ C ·n1+dγ + · · ·

· · · + C · 3`d
(

n
3`

)1+dγ

+ · · ·+nd ,

where in the penultimate term `= k − 2. If 1 + dγ < d then this
gives only a minor improvement over the trivial lower bound nd ,
but for 1 + dγ > d the improvement is more substantial. Indeed,
it implies that

f
A B

Fig. 4. OCN and landscapes. (A) An OCN derived within a 64 × 64 regular
2D lattice by means of a simulated annealing approach (SI Appendix) assum-
ing γ= 1/2. The algorithm ensures that the state is a local, dynamically
accessible minimum, not necessarily the absolute minimum of the function
Eγ (T). (B) The corresponding landscape (i.e., the elevation hv ) computed
assuming ∆hv ∝Av (T)−1/2. We have verified numerically that the obtained
OCN is a natural river spanning tree.

T (n, d , γ)>
γ+ o(1)

3d+1
· n1+dγ

1− 3d−1−dγ
= Ω

(
n1+dγ),

as n→∞. Finally, if 1 + dγ= d , then we obtain

T (n, d , γ)>
γ

3d+1
·nd(log3 n − 2

)
= Ω

(
nd log n

)
,

as required. �
An interesting (and likely difficult) challenge would be to

decrease the implicit constant factors between the upper and
lower bounds in Theorem 4 to factors of 1 + o(1), and hence to
determine T (n, d , γ) asymptotically.

Discussion
When one considers only the structure of the network (without
imposing a height function on the vertices), the requirement that
a river network at stationarity minimizes total energy dissipa-
tion takes a simple and elegant form: We need to minimize the
function

Eγ(T )∝
∑

v∈V (G)

Av (T )γ . [10]

We have studied the energy and the structure of the OCN (the
tree that minimizes Eq. 10), first on a general graph and then
(in more detail) for the particular case of a discrete lattice (Fig.
4 and SI Appendix). Every OCN is a natural river tree, meaning
that there exists a height function which determines the tree, and
we characterized the natural river trees of a graph in terms of
forbidden substructures. In the case of a d -dimensional lattice,
we determined the energy of the OCN up to a constant factor
for every d ≥ 2 and γ ∈ (0, 1), extending and improving previous
work (8, 12).

We have also verified that, while it is natural to expect that
any OCN on a discrete lattice should take the highly symmet-
ric form of a Peano structure (1, 21), this is in fact not the case:
For example, on the square lattice, several suboptimal minimum
energy structures are obtained by breaking the Peano struc-
ture symmetry (1) (SI Appendix). Much effort has been devoted
to reconciling the features of the ground state (known exactly
since ref. 10) with those of feasible configurations. The result-
ing exponents associated with the global minimum did not match
either the observational data or the numerical simulations (1).
Because every local minimum of the OCN functional is a sta-
tionary solution of the general landscape evolution equation,
any self-organization of the fluvial landscape corresponds to the
dynamical settling of optimal structures into suboptimal niches of
their fitness landscape. Thus, feasible optimality (i.e., the search
for optima that are accessible to the dynamics given the initial
conditions and path obstacles) is the rule in the fluvial landscape,
and this might apply to a broad spectrum of interfaces in nature
(16). Different network shapes give different values of Eγ(T )
on a discrete lattice. Such a case imposes sharp conditions on
the minimizing structures; in particular, a specific subset of all of
the possible trees was selected as the natural rivers restricting the
quest of minimum in this set.

As stated previously, great interest is placed in OCN on gen-
eral graphs. In a first application of the theorems presented here,
we have addressed the constructability of elevation fields and
topographies compatible with the planar imprinting of OCNs
(Fig. 4 and SI Appendix). Such results imply the possibility of
building replicas of statistically identical matrices for ecologi-
cal interactions. This is due to the flexibility of random search
algorithms in a “greedy” mode (SI Appendix), that cannot access
the absolute minimum but rather suboptimal configurations that
are known to reproduce accurately, differently from the ground
state, those of natural fluvial landforms forms (16). Interestingly,
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an application of limit scaling properties as a test of optimality
has been proposed for foodwebs (22) and a direct use of OCN
landscapes has been made to explain elevational gradients of
biodiversity (17).

Materials and Methods
Proof of Theorem 2. Let T be an OCN in G with parameter γ, and suppose
(for a contradiction) that T contains a path obstacle. Let k be minimal such
that there is a k-path obstacle in T , so there exist paths η1, . . . , ηk in T ,
where ηi is ai→ ci(1)→· · ·→ ci(`i)→ bi , and

b1a2, b2a3, . . . , bka1 ∈ E(G)\E(T).

Now, for each i∈Zk, define a new tree Ti by removing the edge ai→ ci(1)
(or ai→ bi if `i = 0) from T , and adding the edge ai→ bi−1 (where b0 := bk).
If k = 1, then T1 is a spanning tree of G with lower energy than T (since
`1 > 0), contradicting our assumption that T is an OCN. Let us therefore
assume from now on that k≥ 2.

To show that Ti is a tree, we need to use the minimality of k. Indeed, if
there is a cycle in Ti then it must contain the edge ai→ bi−1, and therefore
there exists a path

bi−1→ d(1)→· · ·→ d(`)→ ai ,

in T . But now we can construct a (k− 1)-path obstacle in T by replacing the
paths ηi−1 and ηi by the path

ai−1→ ci−1(1)→ · · ·→ ci−1(`i)→ bi−1→ d(1)→· · ·

· · ·→ d(`)→ ai→ ci(1)→· · ·→ ci(`i)→ bi ,

contradicting the minimality of k. Hence, Ti is a tree, and therefore, since T
is an OCN, we have Eγ (T)≤Eγ (Ti) for each i∈Zk.

We next bound Eγ (Ti) from above by introducing a new tree, T′i , by
removing the edge ai→ bi−1 from Ti , and adding the edge ai→ ci−1(1).
Note that this may not be a subgraph of G; however, it is a tree [since, as
above, there is no path in T from ci−1(1) to ai , by the minimality of k], and
therefore its energy Eγ (T′i ) may still be defined via Eq. 1. Moreover, we have
Eγ (Ti)≤Eγ (T′i ), since Av (Ti)≤Av (T′i ) for every vertex v ∈V(G), and, hence,
by the observations above,

Eγ (T)6 Eγ (Ti)6 Eγ (T′i ).

For each i∈Zk, let us write ξi for the (unique) path in T from ci(1) to the root
of T . Observe that Av (T′i ) = Av (T)−wi for each v ∈V(ξi) r V(ξi−1), where
wi := Aai , and that Av (T′i ) = Av (T) + wi for each v ∈V(ξi−1) r V(ξi), so

Eγ (T′i ) = Eγ (T) +
∑

v∈V(ξi )\V(ξi−1)

((Av (T)−wi)
γ −Av (T)γ)

+
∑

v∈V(ξi−1)\V(ξi )

((Av (T) + wi)
γ −Av (T)γ). [11]

Now, let us write Sv := {i∈Zk : v ∈V(ξi)} for each vertex v ∈V(G), and
define VR := {v ∈V(G) : Sv = R} for each set R⊂Zk. Note that the vertices
in VR form a subpath of each ξi such that i∈ R, and set

fR(x) :=
∑

v∈VR

((Av (T) + x)γ −Av (T)γ).

Since Eγ (T)≤Eγ (T′i ), it follows from Eq. 11 that∑
R : i∈R,
i−1/∈R

fR(−wi) +
∑

R : i/∈R,
i−1∈R

fR(wi) ≥ 0. [12]

Now, observe that fR is a concave function of x for any γ ∈ (0, 1) and R⊂Zk,
and note that fR(0) = 0. It follows that there exists a constant αR ∈R such
that fR(x)≤αRx for every x∈R, and moreover fR(x)<αRx whenever x 6= 0
and VR 6= ∅. Hence, it follows from Eq. 12, and the fact that wi > 0, that∑

R : i∈R,
i−1/∈R

αR ≤
∑

R : i/∈R,
i−1∈R

αR, [13]

and moreover, the inequality is strict if VR 6= ∅ for any set R included in either
sum. Hence, adding the αR with {i− 1, i}⊂ R to both sides of Eq. 14, we
obtain ∑

R : i∈R

αR <
∑

R : i−1∈R

αR, [14]

since ci(1)∈V{i}, so V{i} 6= ∅. Setting αi :=
∑

R : i∈R αR, it follows that α1 >

α2 > · · ·>αk >α1, which is the desired contradiction. �
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