data reports

open 👌 access

Crystal structure of 4-[(*E*)-(4-fluorobenzylidene)amino]-3-methyl-1*H*-1,2,4triazole-5(4*H*)-thione

P. S. Manjula,^a B. K. Sarojini,^b B. Narayana,^c K. Byrappa^d and S. Madan Kumar^e*

^aDepartment of Chemistry, P A College of Engineering, Nadupadavu 574 153, D.K., Mangaluru, India, ^bDepartment of Industrial Chemistry, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, ^cDepartment of Chemistry, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, ^dDepartment of Materials Science, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, and ^ePURSE Lab, Mangalagangotri, Mangalore University, Mangaluru 574 199, India. *Correspondence e-mail: madanmx@mangaloreuniversity.ac.in

Received 19 October 2015; accepted 25 October 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The title compound, $C_{10}H_9FN_4S$, crystallizes with two molecules (*A* and *B*) in the asymmetric unit. The dihedral angle between the planes of the trizole and fluorobenzene rings is 7.3 (3)° in molecule *A* and 41.1 (3)° in molecule *B*. Molecule *A* features an intramolecular $C-H\cdots S$ hydrogen bond, which closes an *S*(6) ring. In the crystal, *A*+*B* dimers linked by pairs of N-H···S hydrogen bonds occur, generating $R_2^2(8)$ loops. Weak π - π stacking contacts [centroid–centroid separation = 3.739 (6) Å] are also observed.

Keywords: crystal structure; 1,2,4-triazole-5(4*H*)-thione; fluorobenzene; C—H···S hydrogen bond; N—H···S hydrogen bond; π – π stacking contacts.

CCDC reference: 1433065

1. Related literature

For a related structure, see: Manjula et al. (2015).

 $\gamma = 113.202 \ (19)^{\circ}$

V = 1112.1 (3) Å³

Mo $K\alpha$ radiation

 $0.46 \times 0.27 \times 0.14~\text{mm}$

7140 measured reflections

3864 independent reflections

2129 reflections with $I > 2\sigma(I)$

 $\mu = 0.28 \text{ mm}^-$

T = 273 K

 $R_{\rm int} = 0.042$

Z = 4

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{10} H_9 F N_4 S \\ M_r = 236.27 \\ Triclinic, P\overline{1} \\ a = 9.1878 \ (13) \ \mathring{A} \\ b = 11.0083 \ (16) \ \mathring{A} \\ c = 12.9851 \ (18) \ \mathring{A} \\ \alpha = 99.526 \ (6)^{\circ} \\ \beta = 104.963 \ (13)^{\circ} \end{array}$

2.2. Data collection

```
Rigaku Saturn724+ diffractometer
Absorption correction: numerical
(NUMABS; Rigaku 1999)
T_{min} = 0.913, T_{max} = 0.961
```

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.068$	291 parameters
$vR(F^2) = 0.241$	H-atom parameters constrained
S = 1.14	$\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$
3864 reflections	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Table 1			
Hydrogen-bond	geometry ((Å, '	').

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C8A - H8A \cdots S1A$	0.93	2.47	3.232 (5)	139
$N12A - H12A \cdot \cdot \cdot S1B^{i}$	0.86	2.54	3.391 (4)	173
$N12B - H12B \cdot \cdot \cdot S1A^{ii}$	0.86	2.49	3.326 (4)	163

Symmetry codes: (i) x + 1, y + 1, z + 1; (ii) x - 1, y - 1, z - 1.

Data collection: *CrystalClear SM Expert* (Rigaku, 2011); cell refinement: *CrystalClear SM Expert*; data reduction: *CrystalClear SM Expert*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Acknowledgements

The authors thank DST–PURSE, Mangalore University, Mangaluru, for providing the single-crystal X-ray diffraction facility. BKS and PSM gratefully acknowledge the Department of Chemistry, P. A. College of Engineering, for providing research facilities.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7528).

References

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Manjula, P. S., Sarojini, B. K., Yathirajan, H. S., Akkurt, M., Ersanh, C. C. & Glidewell, C. (2015). *Acta Cryst.* E71, 1003–1009.
- Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2011). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

supporting information

Acta Cryst. (2015). E71, o912-o913 [doi:10.1107/S2056989015020125]

Crystal structure of 4-[(*E*)-(4-fluorobenzylidene)amino]-3-methyl-1*H*-1,2,4-triazole-5(4*H*)-thione

P. S. Manjula, B. K. Sarojini, B. Narayana, K. Byrappa and S. Madan Kumar

S1. Comment

As part of our crystal structural studies of new Schiff base derivatives useful for the preparation of biologically active 5membered heterocyclic rings such as 3-methyl-1H-1,2,4-triazole-5(4H)-thione (Manjula *et al.*, 2015). We now elucidate the crystal structure of the title molecule.

The asymmetric unit consists of two symmetry-independent molecules (A and B) of the title compound as shown in Fig. 1. The conformation of the molecules are different as evidenced by the dihedral angles [7.3 (3) ° and 41.1 (3) ° between triazole and flurobenzene moiety for molecules A and B, respectively]. An intramolecular interaction of the type C8A—H8A···S1A is observed in molecule A and is absent in molecule B (Fig. 1).

The packing of the molecules is as shown in figure 2. The molecules are linked through the N—H…S hydrogen bonds (Fig. 2) forming $R_2^2(8)$ ring motifs. A π - π interaction exists between centroid s: Cg1 A…Cg2 A (distance = 3.739 (6) Å) and Cg2 A…Cg1 A (distance = 3.740 (6) Å). Where, Cg1 A is N10A/C11A/N12A/N13A/C14A.

S2. Experimental

For the synthesis of titled compound (3), a suspension of 4-fluoro benzaldehyde (2) (0.01 mol) in ethanol (15 ml) was added to 4-Amino-3-methyl-1*H*-1,2,4-triazole-5(4*H*)-thione (1) (0.01 mol) and heated to get a clear solution (scheme). To this few drops of conc·H₂SO₄ were added as a catalyst and refluxed for 36hrs on water bath. The precipitate formed was filtered and recrystallized from suitable reagent to get the titled compound. Single crystals were obtained from acetic acid. (mp. 431–433 K).

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The hydrogen atoms were fixed geometrically (C—H = 0.93–0.96 Å, N—H = 0.98 Å) and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C/N)$.

Figure 1

A view of the title molecule, with displacement ellipsoids drawn at the 50% probability level and an intramolecular hydrogen bond is drawn as a dashed line.

Figure 2

A viewed along the *c* axis of the crystal packing of the title compound. Hydrogen bonds are drawn as a dashed lines.

Figure 3 Reaction scheme.

4-[(E)-(4-Fluorobenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione

Crystal data	
$C_{10}H_9FN_4S$	Triclinic, $P\overline{1}$
$M_r = 236.27$	a = 9.1878 (13) Å

b = 11.0083 (16) Å c = 12.9851 (18) Å $a = 99.526 (6)^{\circ}$ $\beta = 104.963 (13)^{\circ}$ $\gamma = 113.202 (19)^{\circ}$ $V = 1112.1 (3) \text{ Å}^{3}$ Z = 4F(000) = 488

Data collection

Data collection	
Rigaku Saturn724+	7140 measured reflections
diffractometer	3864 independent reflections
Radiation source: Sealed tube	2129 reflections with $I > 2\sigma(I)$
Confocal monochromator	$R_{\rm int} = 0.042$
Detector resolution: 7.111 pixels mm ⁻¹	$\theta_{\rm max} = 25.1^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$
profile data from ω scans	$h = -10 \rightarrow 10$
Absorption correction: numerical	$k = -13 \rightarrow 13$
(NUMABS; Rigaku 1999)	$l = -15 \rightarrow 15$
$T_{\min} = 0.913, \ T_{\max} = 0.961$	

 $D_{\rm x} = 1.411 {\rm Mg m^{-3}}$

 $\theta = 3.1 - 50.2^{\circ}$

 $\mu = 0.28 \text{ mm}^{-1}$

Block, colourless

 $0.46 \times 0.27 \times 0.14 \text{ mm}$

T = 273 K

Mo *K* α radiation, $\lambda = 0.71075$ Å

Refinement

Refinement on F^2 Primary atom site location: structure-invariant Least-squares matrix: full direct methods $R[F^2 > 2\sigma(F^2)] = 0.068$ Hydrogen site location: inferred from $wR(F^2) = 0.241$ neighbouring sites S = 1.14H-atom parameters constrained 3864 reflections $w = 1/[\sigma^2(F_0^2) + (0.1091P)^2]$ 291 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1A	0.39859 (16)	1.12479 (13)	1.02659 (11)	0.0573 (5)	
F7A	-0.4939 (4)	0.8642 (3)	0.4693 (2)	0.0760 (10)	
N9A	-0.0027 (5)	0.8484 (4)	0.9077 (3)	0.0473 (10)	
N10A	0.1291 (4)	0.8735 (4)	1.0034 (3)	0.0432 (10)	
N12A	0.3539 (5)	0.9370 (4)	1.1424 (3)	0.0561 (12)	
H12A	0.4552	0.9845	1.1908	0.067*	
N13A	0.2420 (5)	0.8131 (4)	1.1474 (3)	0.0554 (12)	
C1A	-0.1016 (6)	1.0207 (5)	0.7051 (4)	0.0500 (13)	
H1A	-0.0018	1.1037	0.7368	0.060*	
C2A	-0.2264 (6)	1.0043 (5)	0.6090 (4)	0.0530 (13)	
H2A	-0.2120	1.0753	0.5764	0.064*	
C3A	-0.3703 (6)	0.8814 (5)	0.5640 (4)	0.0522 (13)	

C4A	-0.3998 (6)	0.7748 (5)	0.6106 (4)	0.0552 (14)
H4A	-0.5011	0.6931	0.5785	0.066*
C5A	-0.2734 (6)	0.7923 (5)	0.7079 (4)	0.0536 (14)
H5A	-0.2902	0.7215	0.7409	0.064*
C6A	-0.1226 (6)	0.9155 (5)	0.7551 (4)	0.0454 (12)
C8A	0.0114 (6)	0.9380 (5)	0.8561 (4)	0.0510 (13)
H8A	0.1110	1.0211	0.8837	0.061*
C11A	0.2945 (6)	0.9791 (5)	1.0568 (4)	0.0446 (12)
C14A	0.1047 (6)	0.7753 (5)	1.0609 (4)	0.0526 (13)
C15A	-0.0608 (6)	0.6508 (5)	1.0301 (4)	0.0719 (18)
H15A	-0.1473	0.6790	1.0294	0.108*
H15B	-0.0529	0.6011	1.0838	0.108*
H15C	-0.0889	0.5918	0.9572	0.108*
S1B	-0.26267 (16)	0.12273 (14)	0.35120 (11)	0.0610 (5)
F7B	0.5646 (4)	0.4091 (3)	0.9385 (2)	0.0814 (11)
N9B	0.1189 (5)	0.4053 (4)	0.4714 (3)	0.0496 (11)
N10B	0.0075 (5)	0.3641 (4)	0.3610 (3)	0.0484 (10)
N12B	-0.2067 (5)	0.2789 (4)	0.2102 (3)	0.0521 (11)
H12B	-0.3036	0.2243	0.1587	0.063*
N13B	-0.0935 (5)	0.3990 (4)	0.1997 (4)	0.0613 (13)
C1B	0.2667 (6)	0.2306 (5)	0.6557 (4)	0.0508 (13)
H1B	0.2079	0.1415	0.6058	0.061*
C2B	0.3733 (6)	0.2533 (5)	0.7627 (4)	0.0512 (13)
H2B	0.3869	0.1811	0.7849	0.061*
C3B	0.4578 (6)	0.3861 (5)	0.8343 (4)	0.0562 (14)
C4B	0.4449 (7)	0.4946 (5)	0.8038 (4)	0.0625 (15)
H4B	0.5082	0.5838	0.8534	0.075*
C5B	0.3360 (6)	0.4708 (5)	0.6976 (4)	0.0555 (14)
H5B	0.3230	0.5439	0.6768	0.067*
C6B	0.2462 (6)	0.3377 (5)	0.6221 (4)	0.0451 (12)
C8B	0.1354 (6)	0.3082 (5)	0.5079 (4)	0.0475 (12)
H8B	0.0759	0.2175	0.4608	0.057*
C11B	-0.1542 (6)	0.2535 (5)	0.3070 (4)	0.0470 (12)
C14B	0.0355 (6)	0.4495 (5)	0.2934 (4)	0.0574 (14)
C15B	0.1950 (7)	0.5814 (6)	0.3281 (5)	0.087 (2)
H15D	0.2052	0.6437	0.3938	0.130*
H15E	0.1922	0.6232	0.2688	0.130*
H15F	0.2904	0.5622	0.3439	0.130*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	0.0503 (8)	0.0540 (8)	0.0611 (10)	0.0180 (7)	0.0128 (7)	0.0283 (7)
F7A	0.065 (2)	0.094 (2)	0.061 (2)	0.0378 (18)	0.0029 (16)	0.0320 (18)
N9A	0.044 (2)	0.050(2)	0.041 (2)	0.021 (2)	0.0039 (19)	0.015 (2)
N10A	0.044 (2)	0.048 (2)	0.038 (2)	0.022 (2)	0.0117 (19)	0.0175 (19)
N12A	0.049 (3)	0.062 (3)	0.057 (3)	0.022 (2)	0.016 (2)	0.032 (2)
N13A	0.054 (3)	0.056 (3)	0.050 (3)	0.018 (2)	0.014 (2)	0.024 (2)

supporting information

C1A	0.050 (3)	0.051 (3)	0.041 (3)	0.016 (2)	0.012 (2)	0.016 (2)
C2A	0.064 (3)	0.052 (3)	0.039 (3)	0.025 (3)	0.011 (3)	0.018 (3)
C3A	0.050 (3)	0.061 (3)	0.047 (3)	0.027 (3)	0.014 (3)	0.020 (3)
C4A	0.043 (3)	0.059 (3)	0.049 (3)	0.019 (3)	0.005 (2)	0.010 (3)
C5A	0.050 (3)	0.048 (3)	0.056 (3)	0.015 (3)	0.016 (3)	0.022 (3)
C6A	0.045 (3)	0.057 (3)	0.043 (3)	0.029 (3)	0.019 (2)	0.019 (3)
C8A	0.044 (3)	0.053 (3)	0.053 (3)	0.020 (2)	0.015 (2)	0.020 (3)
C11A	0.046 (3)	0.045 (3)	0.046 (3)	0.023 (2)	0.015 (2)	0.018 (2)
C14A	0.053 (3)	0.054 (3)	0.061 (4)	0.029 (3)	0.022 (3)	0.030 (3)
C15A	0.066 (4)	0.064 (4)	0.073 (4)	0.015 (3)	0.020 (3)	0.037 (3)
S1B	0.0540 (9)	0.0608 (9)	0.0584 (10)	0.0150 (7)	0.0144 (7)	0.0318 (7)
F7B	0.085 (2)	0.078 (2)	0.050(2)	0.0233 (18)	-0.0030 (17)	0.0199 (17)
N9B	0.050 (2)	0.047 (2)	0.036 (2)	0.015 (2)	0.0017 (19)	0.015 (2)
N10B	0.051 (2)	0.042 (2)	0.043 (2)	0.016 (2)	0.008 (2)	0.019 (2)
N12B	0.044 (2)	0.052 (2)	0.051 (3)	0.014 (2)	0.011 (2)	0.022 (2)
N13B	0.055 (3)	0.058 (3)	0.067 (3)	0.017 (2)	0.017 (2)	0.037 (2)
C1B	0.058 (3)	0.046 (3)	0.041 (3)	0.021 (2)	0.013 (2)	0.012 (2)
C2B	0.060 (3)	0.045 (3)	0.042 (3)	0.023 (3)	0.011 (3)	0.013 (3)
C3B	0.052 (3)	0.064 (4)	0.038 (3)	0.014 (3)	0.011 (2)	0.020 (3)
C4B	0.074 (4)	0.042 (3)	0.045 (3)	0.016 (3)	0.005 (3)	0.004 (3)
C5B	0.070 (4)	0.048 (3)	0.058 (4)	0.032 (3)	0.026 (3)	0.023 (3)
C6B	0.045 (3)	0.045 (3)	0.047 (3)	0.019 (2)	0.016 (2)	0.021 (2)
C8B	0.052 (3)	0.047 (3)	0.050 (3)	0.027 (2)	0.020 (2)	0.014 (3)
C11B	0.052 (3)	0.045 (3)	0.043 (3)	0.020 (2)	0.015 (2)	0.020 (2)
C14B	0.052 (3)	0.054 (3)	0.062 (4)	0.018 (3)	0.015 (3)	0.032 (3)
C15B	0.067 (4)	0.071 (4)	0.083 (5)	0.001 (3)	0.002 (3)	0.047 (3)

Geometric parameters (Å, °)

SIA-C11A	1.683 (5)	S1B-C11B	1.684 (4)
F7A—C3A	1.367 (5)	F7B—C3B	1.365 (5)
N9A—N10A	1.390 (5)	N9B—N10B	1.404 (5)
N9A—C8A	1.266 (5)	N9B—C8B	1.283 (5)
N10A-C11A	1.393 (5)	N10B—C11B	1.391 (5)
N10A—C14A	1.392 (5)	N10B—C14B	1.386 (6)
N12A—H12A	0.8600	N12B—H12B	0.8600
N12A—N13A	1.371 (5)	N12B—N13B	1.377 (5)
N12A—C11A	1.344 (5)	N12B—C11B	1.341 (5)
N13A-C14A	1.314 (6)	N13B—C14B	1.307 (6)
C1A—H1A	0.9300	C1B—H1B	0.9300
C1A—C2A	1.389 (6)	C1B—C2B	1.393 (6)
C1A—C6A	1.391 (6)	C1B—C6B	1.386 (6)
C2A—H2A	0.9300	C2B—H2B	0.9300
C2A—C3A	1.360 (6)	C2B—C3B	1.374 (6)
C3A—C4A	1.373 (6)	C3B—C4B	1.356 (7)
C4A—H4A	0.9300	C4B—H4B	0.9300
C4A—C5A	1.402 (6)	C4B—C5B	1.391 (6)
С5А—Н5А	0.9300	C5B—H5B	0.9300

C5A—C6A	1.393 (6)	C5B—C6B	1.393 (6)
C6A—C8A	1.454 (6)	C6B—C8B	1.464 (6)
C8A—H8A	0.9300	C8B—H8B	0.9300
C14A—C15A	1.488 (6)	C14B—C15B	1.491 (6)
С15А—Н15А	0.9600	C15B—H15D	0.9600
C15A—H15B	0.9600	C15B—H15E	0.9600
C15A—H15C	0.9600	C15B—H15F	0.9600
C8A—N9A—N10A	120.5 (4)	C8B—N9B—N10B	116.0 (4)
N9A—N10A—C11A	133.3 (4)	C11B—N10B—N9B	129.7 (4)
N9A—N10A—C14A	118.5 (4)	C14B—N10B—N9B	121.4 (4)
C14A—N10A—C11A	108.1 (4)	C14B—N10B—C11B	108.0 (4)
N13A—N12A—H12A	122.3	N13B—N12B—H12B	122.5
C11A - N12A - H12A	122.3	C11B— $N12B$ — $H12B$	122.5
C11A - N12A - N13A	115 4 (4)	C11B - N12B - N13B	114 9 (4)
C14A = N13A = N12A	103.5(4)	C14B— $N13B$ — $N12B$	1034(4)
C2A - C1A - H1A	119.3	C^2B — C^1B — H^1B	119.3
C_{2A} C_{1A} C_{6A}	121 4 (4)	C6B - C1B - H1B	119.3
C6A - C1A - H1A	119 3	C6B - C1B - C2B	121.5 (5)
C1A - C2A - H2A	121.0	C1B $C2B$ $C2B$	121.3 (3)
$C_{3A} - C_{2A} - C_{1A}$	121.0 1181(4)	$C_{1B} = C_{2B} = C_{1B}$	121.2 117.6(4)
C_{3A} C_{2A} H_{2A}	121.0	C3B = C2B = H2B	121.2
F7A - C3A - C4A	121.0 118 2 (4)	F7B - C3B - C2B	121.2 117.7(4)
C_{2}^{2}	110.2(4) 118 5 (4)	C4B-C3B-E7B	117.7 (4) 119.4 (5)
$C_2A = C_3A = C_4A$	113.3(4) 123.3(5)	C4B - C3B - C2B	117.4(5) 122.8(5)
$C_{2A} = C_{3A} = C_{4A} = H_{4A}$	125.5 (5)	$C_{4}B_{-}C_{3}B_{-}C_{4}B_{-}H_{4$	122.8 (3)
$C_{3A} = C_{4A} = C_{5A}$	120.8	C3B = C4B = C5B	120.4
$C_{A} = C_{A} = C_{A}$	118.5 (5)	C5B = C4B = C5B	119.2 (5)
C_{A} C_{A} C_{A} H_{A}	120.8	$C_{4}D = C_{4}D = H_{4}D$	120.4
C4A - C5A - H5A	119.9	C4D - C5D - H5D	119.9
C6A C5A H5A	120.2 (4)	C4D - C5D - C0D	120.2 (4)
$C_{1A} = C_{5A} = M_{5A}$	119.9 119.9(4)	C1P $C6P$ $C5P$	119.9
C1A - C6A - C8A	110.0(4) 110.2(4)	C1B = C0B = C3B	110.0(4)
CIA = COA = COA	119.3 (4)	$C_{1}B = C_{0}B = C_{0}B$	119.1(4)
$C_{A} = C_{A} = C_{A}$	121.9(4) 122.3(4)	NOP COP COP	122.3(4)
N9A - C8A - C0A	122.3 (4)		121.2 (4)
N9A - C8A - H8A	118.9		119.4
COA - COA - HOA	110.9	$\begin{array}{c} COD \\ \hline COD \\ \hline$	119.4
NIDA—CIIA—SIA	130.3(3)	NIUD—CIID—SID	129.7(3)
NIZA—CIIA—SIA	127.4 (4)	N12B—C11B—S1B	127.8 (4)
NIZA—CITA—NIUA	102.2 (4)	N12B—C11B—N10B	102.4 (4)
N10A - C14A - C15A	122.8 (4)	N10B—C14B—C15B	122.2(4)
N13A - C14A - N10A	110.9 (4)	N13B—C14B—N10B	111.2 (4)
NI3A - UI4A - UI3A	120.2 (4)	N15B - C14B - C15B	126.6 (4)
C14A = C15A = H15B	109.5		109.5
CI4A—CI5A—HI5B	109.5	CI4B—CI5B—HI5E	109.5
UI4A—UI5A—HI5U	109.5	UI4B—UI5B—HI5F	109.5
HISA—CISA—HISB	109.5	HISD—CISB—HISE	109.5
H15A—C15A—H15C	109.5	H15D—C15B—H15F	109.5

supporting information

H15B—C15A—H15C	109.5	H15E—C15B—H15F	109.5
F7A—C3A—C4A—C5A	-179.9 (4)	F7B—C3B—C4B—C5B	180.0 (4)
N9A—N10A—C11A—S1A	2.6 (8)	N9B-N10B-C11B-S1B	-7.1 (8)
N9A—N10A—C11A—N12A	-178.2 (4)	N9B-N10B-C11B-N12B	171.0 (4)
N9A—N10A—C14A—N13A	178.6 (4)	N9B-N10B-C14B-N13B	-171.9 (4)
N9A—N10A—C14A—C15A	-5.3 (7)	N9B—N10B—C14B—C15B	7.9 (8)
N10A—N9A—C8A—C6A	179.4 (4)	N10B—N9B—C8B—C6B	-179.2 (4)
N12A—N13A—C14A—N10A	-0.4 (5)	N12B-N13B-C14B-N10B	0.9 (6)
N12A—N13A—C14A—C15A	-176.4 (5)	N12B—N13B—C14B—C15B	-178.9 (6)
N13A—N12A—C11A—S1A	-179.8 (3)	N13B—N12B—C11B—S1B	176.2 (4)
N13A—N12A—C11A—N10A	0.9 (5)	N13B-N12B-C11B-N10B	-1.9 (5)
C1A—C2A—C3A—F7A	-179.9 (5)	C1B—C2B—C3B—F7B	-178.9 (4)
C1A—C2A—C3A—C4A	1.8 (8)	C1B—C2B—C3B—C4B	-2.0 (8)
C1A—C6A—C8A—N9A	177.3 (5)	C1B—C6B—C8B—N9B	-176.7 (5)
C2A—C1A—C6A—C5A	-0.8 (7)	C2B—C1B—C6B—C5B	0.4 (8)
C2A—C1A—C6A—C8A	-179.6 (5)	C2B—C1B—C6B—C8B	178.6 (4)
C2A—C3A—C4A—C5A	-1.7 (8)	C2B—C3B—C4B—C5B	3.1 (9)
C3A—C4A—C5A—C6A	0.2 (8)	C3B—C4B—C5B—C6B	-2.4 (8)
C4A—C5A—C6A—C1A	1.0 (7)	C4B-C5B-C6B-C1B	0.7 (8)
C4A—C5A—C6A—C8A	179.8 (5)	C4B—C5B—C6B—C8B	-177.4 (5)
C5A—C6A—C8A—N9A	-1.4 (8)	C5B—C6B—C8B—N9B	1.4 (7)
C6A—C1A—C2A—C3A	-0.5 (8)	C6B—C1B—C2B—C3B	0.2 (8)
C8A—N9A—N10A—C11A	-6.6 (8)	C8B—N9B—N10B—C11B	45.3 (7)
C8A—N9A—N10A—C14A	176.6 (4)	C8B-N9B-N10B-C14B	-147.4 (5)
C11A—N10A—C14A—N13A	1.0 (6)	C11B—N10B—C14B—N13B	-2.1 (6)
C11A—N10A—C14A—C15A	177.1 (5)	C11B—N10B—C14B—C15B	177.7 (5)
C11A—N12A—N13A—C14A	-0.3 (6)	C11B—N12B—N13B—C14B	0.7 (6)
C14A—N10A—C11A—S1A	179.7 (4)	C14B—N10B—C11B—S1B	-175.8 (4)
C14A—N10A—C11A—N12A	-1.1 (5)	C14B—N10B—C11B—N12B	2.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
C8A—H8A····S1A	0.93	2.47	3.232 (5)	139
$N12A$ — $H12A$ ···· $S1B^{i}$	0.86	2.54	3.391 (4)	173
N12 <i>B</i> —H12 <i>B</i> ····S1 <i>A</i> ⁱⁱ	0.86	2.49	3.326 (4)	163

Symmetry codes: (i) *x*+1, *y*+1, *z*+1; (ii) *x*-1, *y*-1, *z*-1.