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a b s t r a c t 

Network structures have attracted much interest and have been rigorously studied in the past two 

decades. Researchers used many mathematical tools to represent these networks, and in recent days, 

hypergraphs play a vital role in this analysis. This paper presents an efficient technique to find the influ- 

ential nodes using centrality measure of weighted directed hypergraph. Genetic Algorithm is exploited for 

tuning the weights of the node in the weighted directed hypergraph through which the characterization 

of the strength of the nodes, such as strong and weak ties by statistical measurements (mean, standard 

deviation, and quartiles) is identified effectively. Also, the proposed work is applied to various biologi- 

cal networks for identification of influential nodes and results shows the prominence the work over the 

existing measures. Furthermore, the technique has been applied to COVID-19 viral protein interactions. 

The proposed algorithm identified some critical human proteins that belong to the enzymes TMPRSS2, 

ACE2, and AT-II, which have a considerable role in hosting COVID-19 viral proteins and causes for various 

types of diseases. Hence these proteins can be targeted in drug design for an effective therapeutic against 

COVID-19. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

A relation that connects a group of two or more systems or 

eople [18] forms a network. To assess a network, one may need 

nformation’s such as quality of relationships, perception of co- 

perations, network collaborations between nodes. In recent times 

ne of the computational concepts like the graph properties plays 

 significant role in analysing a network by exploring the accessi- 

ility of nodes [21] . Of which Multi-graph [3,17] can represent the 

omplex relational data of a network and works well provided that 
� Edited by: Maria De Marsico. 
∗ Corresponding author. 
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he significant changes are made only to the existing graph analy- 

is algorithms. 

In general, since the network comprises nodes in n -ary rela- 

ions, based on the literature so far, we could see Hypergraphs 

an handle n -ary relations more efficiently than graphs or multi- 

raphs. Berge [1] proposed this concept of hypergraph firstly as “a 

eneralisation of graphs” which [3] further defined and derived the 

otion of the ‘directed’ hypergraph. 

The hypergraphs [15,20] constructed from the shortest paths of 

he networks tend to leave out some influential nodes, which is 

ery important in analysing the network. Granovetter [5] proposed 

 method to identify influential nodes by weak ties for informa- 

ion dissemination. To surmount the frailty for hypergraph con- 

truction, this paper constructs a directed hypergraph based on the 

https://doi.org/10.1016/j.patrec.2021.12.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2021.12.015&domain=pdf
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Nomenclature 

ab i j the fitness of j th individual in i th generation in 

roulette wheel selection 

ab i j the average fitness of j th individual in i th gener- 

ation in roulette wheel selection 

c h 
d 
(v i ) the weighted node degree centrality of a node i 

in H W DG 

cd j the probability for selecting j th string 

c h 
sd 

(v i ) the strong tie degree centrality of a node i in 

H W DG 

c h 
wd 

(v i ) the weak tie degree centrality of a node i in 

H W DG 

E H G the hyperedges of H G 

E HBM G 
the hyperedges in H BM G 

E H WDG 
the set of all weighted directed hyperedges of 

the weighted directed hypergraph H W DG 

E HF M G 
the directed hyperedges in H F M G 

F the total fitness value 

f j the fitness value of j th individuals 

f min the minimum fitness 

f max the maximum fitness 

G the graph 

H DG the directed hypergraph 

HD HBM G 
the head set in the minimal hypergraph H BM G 

H W DG the weighted directed hypergraph 

H(E H DG 
) the head of the directed hyperedge E H DG 

H G the hypergraph 

H BM G 
the minimal B -hypergraph of H DG 

H F M G 
the minimal F -hypergraph of H DG 

M(H W DG ) the number of directed hyperedges in H W DG 

M(G ) the number of edges in the graph G 

ngen the number of generations 

N(H W DG ) the number of vertices of a weighted directed 

hypergraph 

N(G ) the number of nodes in the graph G 

pr i probability rank of the i th generation 

r i j the rank of j th individual in i th generation for 

rank selection 

rsum i sum of ranks in i th generation 

T (E H DG 
) the tail of the directed hyperedge E H DG 

ST H WDG 
the set of strong tie nodes 

ST (H W DG ) the range of strong tie vertices in H W DG 

V H G the set of all nodes of the hypergraph H G 

V H DG 
the set of all nodes of the directed hypergraph 

H DG 

V H WDG 
the set of all nodes of the weighted directed hy- 

pergraph H W DG 

w i j the weight of the node v i corresponding to the 

directed hyperedge e j 
W T H WDG 

the set of weak tie nodes 

W T (H W DG ) the range of weak tie vertices in H W DG 

W M 

the mean of the weights 

W q 1 the 1 st quartile of the weights 

W q 3 the 3 st quartile of the weights 

W QD the quartile deviation of the weights 

W SD the standard deviation of the weights 

elationship between the data. Later, degree centrality measure is 

mployed for finding the influential nodes. 

Among various centrality measures like degree, betweenness, 

loseness, eccentricity, cross-click, network, random walk between- 

ess, page rank, leverage, eigenvector, subgraph, information and 

any, degree centrality have high impact in analysing any net- 
247 
orks. Also, it classifies the nodes as strong and weak ties from 

hich weak tie is more influential so, this takes less number of 

odes that are responsible for spreading of news. Hence, we use 

he degree centrality for predicting the influential nodes. 

In this paper, initially the weight of the node is the degree cen- 

rality of a node that is, ..., the number of hyperedges incidence 

ith the node. Thus, the same is calculated for all network nodes 

nd fed into the Genetic Algorithm (GA) for further optimisations. 

fter which statistical measures like mean, standard deviation and 

uartiles are employed to classify the nodes as strong tie and weak 

ie. 

The proposed work is applied to Protein-Protein Interaction 

PPI) networks to obtain the influential proteins. Predicting pro- 

ein function is always a stumbling block in computational biology 

esearch. These proteins of PPI network help in drug target recog- 

ition, identify the role of a protein or gene, develop successful 

ethods for treating different diseases, and provide early detection 

f disorders. 

Recently, many researchers aims to detect the COVID-19 

hrough images of X-rays using the concept of Cascaded Recurrent 

eural Network (CRNN) [12] and ultrasound X-rays by classifying 

hem using Multi-layers Fusion [16] . Here, we aim to detect the in- 

uential nodes which gives a promising direction in the impact of 

urrent pandemic COVID-19 and in need of designing drugs. Drug 

esign requires the knowledge of the functionality of the COVID- 

9 viral protein interacting with human proteins. For this purpose, 

e identified some of the critical human proteins using centrality 

easures of the hypergraph. 

These proteins belong to the enzymes - TMPRSS2, ACE2, AT- 

I, protein sets - IL6, cytoplasmic, cytokine storm. Some of them 

ay cause diseases like decease chronic obstructive pulmonary 

isease, lower respiratory infections, blood pressure, diabetes mel- 

itus, stroke and tuberculosis. The resultant proteins play a consid- 

rable role in COVID-19 viral interactions. 

The major contributions are a state-of-the-art representation of 

rotein interaction networks by weighted directed hypergraph and 

dentifying influential nodes using weak tie of a weighted directed 

ypergraph. The degree centralities and genetic algorithm are hy- 

ridized to optimize the weights of nodes. Finally, validation of 

he proposed method identifies influential COVID-19 proteins from 

rotein interactions that can be used for drug design. 

Section 2 deals with basic definitions. The proposed methodol- 

gy is presented in Section 3 . The results of the ten biological net- 

orks and their comparison with existing graph centrality mea- 

ures are presented in Section 4 . Our method has been validated 

ith the real-time pandemic COVID-19 viral-protein interactions in 

ection 5 . The paper is concluded with a summary in the final Sec- 

ion. 

. Preliminaries 

Some preliminary concepts on hypergraph are recalled in this 

ection. 

Let H G = (V H G , E H G ) be a hypergraph [1] , where V H G , and E H G 
re set of all nodes and hyperedges respectively. Moreover, V H G = 

 v i : i = 1 , . . . , n } and E H G = { E j : j = 1 , . . . , m } , with every E j is a

ubset of the set V H G . 

A hypergraph is a standard graph, when every hyperedge E i ∈ 

 H G 
, satisfies | E i | ≤ 2 for i = 1 , 2 , . . . , m . 

A hypergraph is said to be a directed hypergraph ( H DG ) [3] ,

f every hyperarc E H DG 
= (T ( E H DG 

) , H(E H DG 
)) has a direction, where

 (E H DG 
) is the tail of EH G while H(E H DG 

) is its head. 

If every node of a directed hypergraph has a weight associated 

ith it, then the directed hypergraph is a weighted directed hy- 

ergraph ( H ). 
W DG 
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Algorithm 3: Conversion of H DG into H W DG . 

INPUT: H DG from Algorithm 2 

OUTPUT: Weighted Directed Hypergraph H W DG 

1: V H WDG 
= V H DG 

, E H WDG 
= E H DG 

2: for i = 1 to n do 

3: for j = 1 to m do 

4: if v i ∈ e j then 

5: w j = w j + 1 

6: end if 

7: end for 

8: Append the weight of v i as w j in H W DG 

9: end for 

10: Return H W DG 
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The directed hyperedge or hyperarc E H DG 
= (T (E H DG 

) , H(E H DG 
)) 

s said to be a Backward hyper-arc [3] , or B-arc , if 

 H(E H DG 
) | = 1 . Similarly, the directed hyperedge or hyperarc 

 H DG 
= (T (E H DG 

) , H(E H DG 
)) is said to be a Forward hyperarc [3] , or

-arc , if | T (E H DG 
) | = 1 . 

A directed hypergraph is said to be a B -graph (or B -hypergraph), 

hose hyperarcs are B -arcs. A directed hypergraph is said to be an 

 -graph (or F -hypergraph), if hyperarcs are F -arcs. A directed hy- 

ergraph is said to be a BF -graph (or BF -hypergraph), if hyperarcs 

re either B -arcs or F -arcs. 

. Proposed methodology 

This section discusses the proposed technique for the identifica- 

ion of influential nodes in a network. It consists of following four 

redominant steps: 

1) Construction of directed hypergraph. 

2) Conversion of directed hypergraph into weighted directed hy- 

pergraph. 

3) Optimizing the weights using Genetic Algorithm (GA). 

4) Identifying influential nodes. 

Algorithm 1 comprises the above four steps: 

Algorithm 1: DHHGA. 

INPUT: Network 

OUTPUT: Strong and Weak Ties 

Procedure: Construction of Directed Hypergraph (Network) 

(Algorithm 2) 

Procedure: Conversion of H DG into H W DG (Algorithm 3) 

Procedure: Genetic Algorithm ( w j ) (Algorithm 4) 

Procedure: Weighted Directed Hypergraph Degree Centrality

[WDHDC] (Optimized w j ) (Algorithm 5) 

Algorithm 2: Construction of directed hypergraph. 

INPUT: Network 

OUTPUT: Directed Hypergraph ( H DG ) 

for i = 1 to n do 

if v i not in T (E H DG 
) (by using theorem 1) then 

Construct E H DG 
of the directed hypergraph H DG with 

T (E H DG 
) = v i and 

H(E H DG 
) = { v i +1 : if v i has a communication with v i +1 } 

end if 

end for 

Return H DG . 

.1. Construction of directed hypergraph 

If there is a communication between v i to { v j | j = 

 , 2 , . . . h, h ∈ N } , then directed hyperedge E H DG 
=

T (E H DG 
) , H(E H DG 

)) is constructed where T (E H DG 
) = { v i } and

(E H DG 
) = { v j | j = 1 , 2 , . . . h, h ∈ N } . 

efinition 3.1 (Minimal hypergraph based on. B -hyperarc) A di- 

ected hypergraph H M G 
is said to be minimal hypergraph (di- 

ected hyperedges are in B -hyperarc form or F -hyperarc form) with 

 H M G 
| = k , if there is no minimal hypergraph H M1 G 

with | H M1 G 
| =

p < k = | H M G 
| . 
248 
In general, B -hypergraph has | H(E H BMG 
) | = 1 for every hyper-

dge, and there is no repetition in head of the hyperedge. 

Suppose there are two hyperedges ((v i , . . . , v k ) , v j ) 
nd ((v a , . . . , v b ) , v j ) with same H(E HBM G 

) , then combine

he hyperedges and regenerate it as a single hyperedge 

(v i , . . . , v k , v a , . . . , v b ) , v j ) . 
Continue this until the heads of the hyperedges are distinct. 

Let HD HBM G 
be the head set in the minimal hypergraph H BM G 

. 

Now, add the head of each hyperedge | E HBM G 
| of H BM G 

to the

et HD HBM G 
. Thus, 

 HD HBM G 
| = b < n, 

ince the heads in HD HBM G 
are distinct and at most | V H DG 

| . 
Since the number of hyperedges is equal to the number of ele- 

ents in the head set HD HBM G 
by B -hypergraph construction, 

| E HBM G 
| = | HD HBM G 

| 
gives | E HM G 

| = | HD HBM G 
| = b < n 

nd hence | E HBM G 
| = b < n 

imilar arguments holds for F and BF hypergraphs and thus we 

ave Theorem 1 . 

heorem 1. Let H DG = (V H DG 
, E H DG 

) be a directed hypergraph 

ith | V H DG 
| = n , then there exists a minimal hypergraph H BM G 

=
V H DG 

, E HBM G 
) such that every directed hyperedge E HBM G 

of H BM G 
is 

 -hyperarc or H BM G 
is a B -hypergraph. Also, there exist a minimal hy- 

ergraph H F M G 
= (V H DG 

, E HF M G 
) such that every hyperedge E HF M G 

of 

 F M G 
is F -hyperarc or H F M G 

is an F -hypergraph. 

.2. Weighted node degree centrality (WNDC) 

efinition 3.2. The weights of the node incidence with the corre- 

ponding hyperedge is called as weighted node degree centrality 

9,13] . It is given by 

 

h 
d (v i ) = 

m ∑ 

j=1 

w j , (i = 1 , 2 , . . . , n ) (1)

here w j takes the value 1 if v i is incident with e j , 0 otherwise. 

.2.1. Construction of weighted node degree centrality 

Initially, every vertex v i of a directed hypergraph is assigned 

ith a weight as its degree centrality and it is presented in 

lgorithm 3 . 

Here, the weight w j is calculated as defined in Definition 3.2 . 

hese weights are tuned using the GA ( Algorithm 4 ). 
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Algorithm 4: Genetic algorithm. 

INPUT: Genetic Algorithm (w j ) 

OUTPUT: Best solution 

1: p t ← 0 

2: Generate populations at random (population (p t )) 

3: Determine the fitness values of population (p t ) 

4: for p t = 0 to T C (Termination Condition (TC)) do 

5: Choose the best individuals from the groups of 

population (p r ) using Roulette Wheel Ranking Selection 

6: Apply single-point crossover to the resultant population 

7: Apply uniform mutation to the resultant population 

8: Evaluate optimised fitness values 

9: end for 

10: Return best solution 
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.3. GA weight optimization 

GA is a search heuristic, which optimizes the solution of search 

roblems [21] . Usually, GA is a population-based search technique 

sed in computing, with each candidate represented as fixed- 

ength binary string chromosomes. The Roulette wheel with rank- 

ng selection, one-point crossover and a uniform mutation are the 

omponents of GA in this work. The objective function of GA is, 

(objective function) Y = 

n ∑ 

i =1 

(x i ∗ w i ) , 

here x i is the initial weight of the node v i , and w i (weight) is the

arameter that is to be maximized. 

Now, Roulette wheel and ranking selection [10] methods are 

ombined to select the best individual from the groups (of indi- 

iduals) formed out the population, for the objective function. The 

oulette Wheel uses, 

b i, j = 

N ∑ 

j=1 

ab i j 

N 

here ab i, j represents the average fitness of the population for i th 

eneration which varies from 1 to ngen. This value is used to place 

n the segment of roulette wheel, the bigger the value, the larger 

he segment and it is more probably to be selected. 

d j = 

ab i j 

N ∑ 

j=1 

ab i j 

here cd j represents the probability for selecting the j th individ- 

al and ab i j is the fitness value of the j th individual in the i th

eneration, and for ranking 

pr i = 

r i j 

rsum i 

, rsum i = 

N ∑ 

j=1 

r i j 

here i varies from 1 to ngen (number of generations) and j varies 

rom 1 to N (population size). 

Pioneer technique used in the crossover is the single-point 

rossover, and it is given as, 

(Single-point crossover) crossov er = Bas 

(
off spring-size 

2 

)

here Bas stand for Binary array of size. 

We select a random gene from chromosome, lets say x i and as- 

ign a uniform random value to it. 

(Uniformmutation) x = U(a , b ) 
i i i 

249 
here i ∈ [1 , n ] , a i and b i are random integer, U(a i , b i ) ∈ [ a i , b i ] is a

niform random number. 

The fitness value [4] F is calculated using normalized weighted 

um evaluation function given by 

(Fitness) F = 

N ∑ 

j=1 

w j 

f j − f min 
j 

f max 
j 

− f min 
j 

. 

here f j is actual fitness value, f max 
j 

is the worst fitness value, 

f min 
j 

is the best fitness value, of j th individual. 

Now, Algorithm 5 categorizes the nodes as strong (ST H WDG 
) and 

Algorithm 5: WDHDC. 

INPUT: H W DG from Algorithm 3 

OUTPUT: Strong ( ST H WDG 
) and Weak ( W T H WDG 

) Tie nodes 

1: | V H WDG 
| = n and | E H EDG 

| = m , ST H WDG 
= φ and W T H WDG 

= φ, 

2: Calculate the Mean ( W M 

) and Standard Deviation ( W SD ) of th

Weights 

3: for i = 1 to n do 

4: if w i > W M 

+ W SD then 

5: ST H WDG 
= ST H WDG 

∪ { v i } 
6: else if w i < W M 

− W SD then 

7: W T H WDG 
= W T H WDG 

∪ { v i } 
8: end if 

9: end for 

10: Return the sets W T H WDG 
and ST H WDG 

eak (W T H WDG 
) ties from the optimized weights of Algorithm 4 . 

The categories of ties based on their strength using mean and 

tandard deviation is given as, 

C h sd (v i ) = C h d (v i ) > W M 

+ W SD , for strong ties , 

 

h 
wd (v i ) = C h d (v i ) < W M 

− W SD , for weak ties . 

Here W M 

stands for the mean of the weights, and W SD stands 

or the weights’ standard deviation. 

Similarly, the categorization of tie strength using quartile can 

lso be defined as follows: 

C h sd (v i ) = C h d (v i ) > W q 3 + W Q D , for strong ties , 

 

h 
wd (v i ) = C h d (v i ) < W q 1 − W Q D , for weak ties . 

Here W q 1 , W q 3 stands for 1 st and 3 rd quartile of the weights 

nd W Q D 
stands for quartile deviation of the weights. 

. Implementation 

The proposed technique is applied to the following ten biologi- 

al networks [14] using Python 3.5 in Intel® Core TM i7-6700 Quad 

ore 3.4 GHz, 4.0 GHz system running in Ubuntu 16.4. (i) bio- 

ormNet-v3-benchmark, (ii) bio-DR-CX’s, (iii) bio-DM-CX’s, (iv) 

io-HS-LC’s, (v) bio-HS-CX’s, (vi) bio-CE-CX’s, (vii) bio-grid-fission- 

east’s, (viii) bio-grid-yeast’s, (ix) bio-grid-human’s, (x) bio-dmela. 

here the networks (i)–(vi), are all a kind of WormNet network, 

ith nodes as genes and edges as links between them and they are 

n integration’s of all data-type-specific networks (CE-CX, CE-GN, 

E-GT, CE-HT, CE-LC, CE-PG, DM-CX, DM-HT, DM-LC, DR-CX, HS-CX, 

S-HT, HS-LC, SC-CC, SC-CX, SC-HT, SC-LC, SC-TS) through modi- 

ed Bayesian integration. And for the remaining networks (vii)–(x), 

odes are proteins and the edges are PPI. 
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Table 1 

Range of influential nodes (Weak ties) using mean and SD, and quartiles. 

H WDG N(H WDG ) M(H WDG ) Range of W T (H WDG ) nodes by mean and SD Range of W T (H WDG ) nodes by quartiles 

bio-grid-fission-yeast’s 2031 2026 [400, 450] [470, 530] 

bio-WormNet-v3-benchmark 2445 2316 [490, 540] [550, 640] 

bio-DR-CX’s 3289 3051 [650, 720] [750, 850] 

bio-DM-CX’s 4040 3594 [820, 890] [930, 1020] 

bio-HS-LC’s 4227 3391 [850, 930] [1000, 1050] 

bio-HS-CX’s 4413 3975 [900, 1000] [1000, 1150] 

bio-grid-yeast’s 6010 6008 [1215, 1280] [1430, 1480] 

bio-dmela 7399 6640 [1500, 1600] [1750, 1900] 

bio-grid-human’s 9527 9536 [1970, 2050] [2300, 2390] 

bio-CE-CX’s 16,347 14,692 [3420, 3490] [3900, 4150] 

Table 2 

Comparison of number of influential nodes with other centrality measures. 

G N(G ) M(G ) DC G CC G EC G HC G 

bio-grid-fission-yeast’s 2031 25,274 964 450 450 450 

bio-WormNet-v3-benchmark 2445 78,736 2032 2295 2152 2197 

bio-DR-CX’s 3289 84,940 1478 1647 1344 1158 

bio-DM-CX’s 4040 112,688 1267 964 957 1060 

bio-HS-LC’s 4227 39,484 2835 1673 1753 1661 

bio-HS-CX’s 4413 108,818 1493 1044 1392 1037 

bio-grid-yeast’s 6010 313,890 3150 4791 5414 4791 

bio-dmela 7399 25,571 4078 3681 6383 6370 

bio-grid-human’s 9527 62,364 6621 8029 8029 8029 

bio-CE-CX’s 16,347 762,822 7734 5081 7596 5047 

Table 3 

Comparison of influential proteins (Count) with our algorithm in the COVID-19 interaction data-set. 

Enzyme/disease Total number of proteins in cleaned data-set Number of proteins obtained using our algorithm 

TMPRSS2 47 47 

ACE2 4 4 

AT-II 11 11 

Sudden cardiac attack 10 10 

IL6 33 33 

Cytoplasmic 1159 1159 

Cytokines 3 3 

Chronic obstructive pulmonary disease 2 2 

Lower respiratory infections 3 3 

Blood pressure 35 35 

Diabetes mellitus 35 35 

Stroke 23 23 

Tuberculosis 18 18 
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.1. Results and discussion 

The influential proteins (or) genes of above ten biological net- 

orks are identified through Algorithm 1 of weak ties and pre- 

ented in the Table 1 with data: the number of nodes, number of 

irected hyperedges in H W DG , range of weak tie nodes using Mean, 

D and quartile. 

Various graph centrality measures like Degree Centrality (DC G ) , 

loseness Centrality (CC G ) , Eigen Vector Centrality (EC G ) and Har- 

onic Centrality (HC G ) are compared with the proposed technique. 

able 2 presents the influential nodes of the above explained ten 

iological networks. 

The minimum number of influential nodes are to be derived 

hich are responsible to maximize the influence to entire network. 

t is apparent from the values tabulated, our proposed work yields 

he minimum number of influential nodes both in mean, SD and 

uartile when comparing with the other centrality measures ex- 

ect the bio-grid-fission-yeast’s. In bio-grid-fission-yeast’s network 

he number of the influential nodes using quartile is greater than 

he existing centralities. 

Fig. 1 illustrates the count of edges of graph and hyperedges, 

t is apparent that number of hyperedges is much lesser than the 

umber of edges of graph. Figs. 2 and 3 depicts the comparison of 
250 
egree centralities of the proposed work based on mean-standard 

eviation, and quartiles-quartile deviation respectively, with the 

raph based centralities. 

. COVID-19 validation 

In this section, we intend to validate our technique for COVID- 

9 protein-protein interaction. On Dec 8, 2019, the coronavirus 

COVID-19) had identified in the seafood market in the Wuhan city 

f China. Coronavirus is one of a kind belonging to severe acute 

espiratory syndrome (SARS) virus. The world health organization 

WHO) declared coronavirus as a pandemic. 

Coronavirus (SARS-COV-2 or COVID-19) is one of the family 

embers of Coronaviridae and order Nidovirales. This family con- 

ains two subfamilies, namely, Coronavirnae and Torovirinae. The 

oronavirnae are classified into four categories: 

• Alphacoronavirus - which consists of human coronavirus 

(HCOV) 
• Betacoronavirus - which includes of human coronavirus (HCOV) 

with the SARS-COV-2 virus. 
• Gammacoronavirus - which includes the viruses of bird and 

whales. 
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Fig. 1. Comparison of edge and hyperedge count. 

Fig. 2. Comparison of degree centrality of graph with hypergraph (Using mean and SD). 
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Fig. 3. Comparison of degree centrality of graph with hypergraph (Using quartiles). 
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• Deltacoronavirus - which consists of viruses which are isolated 

from birds and pigs. 

The COVID-19 is Betacoronavirus together with the impact of 

iruses, namely, middle SARS viruses and pathogenic viruses. From 

he biological laboratory results [2,6,11,19] some crucial proteins 

ave been identified, that plays a vital role in the protein-protein 

nteractions(PPI’s) of COVID-19 with the human body. And, some 

f these essential proteins belong to the enzymes TMPRSS2 (Trans- 

embrane protease, serine 2), ACE2 (Angiotensin - Converting En- 

yme 2), and AT2 (Angiotensin II). 

The COVID-19 protein-protein interactions (PPI’s) from [7] has 

een constructed as directed hypergraph. Here the nodes are the 

roteins and the directed hyperedge is constructed if there is an 

nteraction between viral protein with human host proteins and 

uman host protein with human proteins. Now, the directed hyper- 

raph is transformed to weighted directed hypergraph by assigning 

he weights as the number of PPI’s. These weights are tuned using 

A and the classification of weak tie proteins is summarized in 

able 3 . 

Proteins in TMPRSS2, ACE2, AT-II enzymes are 47, 4 and 11, re- 

pectively, in the cleaned SARS COVID II and human interactome 

ata-set [8] . These proteins act as a major cause of various disease. 

e had also identified the proteins which cause the cytoplasmic, 

ytokine storm, chronic obstructive pulmonary disease, lower res- 

iratory infections, blood pressure, diabetes mellitus, stroke, tuber- 

ulosis. 

. Conclusion 

In this work, hypergraph is being exploited as a more pow- 

rful tool that reduces the complexity considerably compared to 

raphs as the weighted directed hypergraph of any network has 

ewer directed hyperedges. The influential nodes of the network 
252 
re obtained by weak ties of degree centrality. The weights of the 

odes are tuned using GA is employed by combining the Roulette 

heel and ranking selection. The empirical results obtained from 

he computation show that proposed work perform better than 

ther graph based centrality measures. Also, obtained critical pro- 

eins which play an influential role in COVID-19 viral interactions. 

hese proteins may be a direct or indirect host of the COVID-19 

iral protein and useful in drug design. For big data the elapsed 

ime proliferates in identifying the influential nodes by the pro- 

osed technique. In the future, a suitable dimensionality reduction 

cheme will be introduced along with a congenial evolutionary al- 

orithm to handle big data efficiently. Also, the expected protein 

nteractome will be verified by protein docking based on the dif- 

erent mathematical modelling. 
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