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Abstract
Galectin-3 is a member of the galectin family, widely expressed in immune cells and plays a role mainly in inflammation, 
autoimmunity, apoptosis, and chemotaxis. We summarized the roles of Galectin-3 in diabetes and its complications, as well 
as the underlying mechanisms. Clinical research has determined that the circulating level of Galectin-3 is closely related 
to diabetes and its complications, thus it is promising to use Galectin-3 as a predictor and biomarker for those diseases. 
Galectin-3 also may be considered as an ideal therapeutic target, which has broad prospects in the prevention and treatment 
of diabetes and its complications, especially macrovascular and microvascular complications.
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Abbreviations
AGEs  Advanced glycation end products
BMI  Body mass index
CEA  Carcinoembryonic antigen
CHD  Coronary heart disease

CPB-35  Carbohydrate-binding protein-35
CRD  Carbohydrate recognition binding domain
CRP  C reactive protein
CVD  Cardiovascular diseases
DFUs  Diabetic foot ulcers
DM  Diabetes mellitus
DXA  Dual-energy x-ray absorptiometry
HFD  High fat diet
IRS1  Insulin receptor substrate 1
JNK  C-Jun-N-terminal kinase
NASH  Nonalcoholic steatohepatitis
NLRP3  NOD-like receptor family pyrin domain pro-

tein 3
LAMP-1  Lysosomal-associated membrane proteins 1
LAMP-2  Lysosomal-associated membrane proteins 2
LncRNA  Long non-coding RNA
LPS  Lipopolysaccharide
OGTT   Oral glucose tolerance test
PAD  Peripheral artery disease
PPAR  Peroxisome proliferator-activated receptor

Facts ➢ Diabetes has become a top healthcare concern 
worldwide. Chronic complications of diabetes, especially 
cardiovascular complications, are the primary causes of death 
and disability in the ageing population.

➢ There is a growing concern that medical advances in 
reducing cardiovascular disease will be reversed by the epidemic 
of obesity and diabetes.

➢ Galectin-3 is widely expressed in inflammatory cells and 
plays a role in the activation, transport, and cytokine release of 
inflammatory cells.

Open questions ➢ Is circulating Galectin-3 a risk factor for 
diabetes and diabetes complications?

➢ What are the specific mechanisms of Galectin-3 in the 
pathophysiology of diabetes and diabetes complications?

➢ Can we get clinical and theranostic opinion for treating 
diabetes-related cardiovascular diseases regarding the potential of 
Galectin-3 in diabetes and its complications?

 * Tian Li 
 fmmult@foxmail.com; tian@fmmu.edu.cn

 * Yang Xiao 
 xiaoyang29@csu.edu.cn

1 Department of Metabolism and Endocrinology, National 
Clinical Research Center for Metabolic Diseases, The 
Second Xiangya Hospital of Central South University, No. 
139, Renmin Rd, Changsha 410011, China

2 Department of Metabolism and Endocrinology, The 
Third Hospital of Changsha, 176, West Labour Road, 
Changsha 410011, China

3 School of Basic Medicine, Fourth Military Medical 
University, No. 169 Changle West Rd, Xi’an 710032, China

/ Published online: 27 January 2022

Reviews in Endocrine and Metabolic Disorders (2022) 23:569–577

http://orcid.org/0000-0002-8281-4459
http://crossmark.crossref.org/dialog/?doi=10.1007/s11154-021-09704-7&domain=pdf


1 3

T1D  Type 1 diabetes mellitus
T2D  Type 2 diabetes mellitus

1 Introduction

Diabetes mellitus (DM) is a public health problem world-
wide. It was reported that the global diabetes prevalence 
in 2019 was estimated to be 463 million people, rising to 
578 million by 2030 and 700 million by 2045 [1–4]. Meta-
inflammation theory suggests that both type 1 diabetes mel-
litus (T1D) and type 2 diabetes mellitus (T2D) are chronic 
inflammatory diseases. T1D involves inflammation in pan-
creatic islet tissue, while inflammation in adipose tissue 
result in T2D, which are attributed to the imbalance of pro-
inflammatory and anti-inflammatory cells and molecules [5, 
6].

Galectin-3, encoded by LGALS3 gene, is a member of 
β-galactoside-binding lectin family subtype of galectin, for-
merly known as carbohydrate-binding protein-35 (CBP-35) 
[7–9]. Human Galectin-3 is a 26 kDa size lectin, mainly 
comprises a C-terminal carbohydrate recognition binding 
domain (CRD) and N-terminal domain [10–12]. Galectin-3 
is widely distributed in the tissues such as human hemat-
opoietic tissues, thymus, lymph nodes, spleen, and mainly 
produced by immune cells such as macrophages, mast cells, 
and eosinophils, et al., and can be secreted extracellularly 
[13, 14]. It is regarded as a powerful pro-inflammatory sign-
aling factor, which plays an important role in the activation, 
chemotaxis, and cytokine release of inflammatory cells. 
Increasing evidence has proven that levels of circulating 
Galectin-3 are elevated in chronic inflammatory diseases 
including obesity, diabetes and its complications, suggest-
ing that Galectin-3 is closely related to those disease status 
[15]. Thus, clarifying the potential pathogenic mechanism 
of Galectin-3 in diabetes and diabetic complications will 
provide a basis for finding new biomarkers for precision dis-
ease prediction and early-diagnosis, and developing potential 
therapeutic targets.

Therefore, we reviewed the clinical evidence of Galectin-3 
in diabetes and its complications and discussed the potential 
mechanism of such relevance. Furthermore, further perspec-
tives and potential directions were provided, which can be 
used as a reference for further clinical research and scientific 
foundation for new drug development.

2  Galectin‑3 in type 2 diabetes

T2D is a chronic inflammatory disease, characterized by 
obesity-associated insulin resistance [16–20]. Autoimmunity 
plays a pivotal part in a series of chronic diseases [21–23]. 
Several clinical studies reported that circulating level of 

Galectin-3 was significantly higher in T2D patients [24–28] 
(Table 1). Weigert et al. [24] found that serum Galectin-3 
level was significantly higher in T2D patients. Interestingly, 
they reported that Galectin-3 level reduced by metformin 
treatment, the mechanism of which may be metformin low-
ered oxidative stress and the formation of advanced glyca-
tion end products (AGEs), and then decreased Galectin-3 
expression. In 2019, a cross-sectional study conducted by 
Atalar et al. [25] enrolling healthy control, prediabetes and 
T2D, found that serum Galectin-3 increased in T2D but not 
prediabetes and healthy controls, and had a positive cor-
relation with FPG and HbA1c, as well as hs-CRP, whose 
level was a useful biomarker for early estimating the chronic 
inflammatory process in diabetes. The findings of this study 
suggested that Galectin-3 may play a role in the progression 
of prediabetes stage to diabetes stage. In summary, all cur-
rent human studies provided strong evidence of Galectin-3 
as a marker, even a pathogenic factor, of T2D.

Efforts on mechanism investigation also have been made 
both in cell studies and animal studies. Li et al. [29] showed 
that the genetic depletion of Galectin-3 improved both sys-
temic and tissue insulin sensitivity, and glucose tolerance in 
HFD mice, indicating Galectin-3 induces insulin resistance 
and deteriorates glucose homeostasis. Mechanically, they 
found that elevated circulating Galectin-3 from macrophages 
directly interacted with insulin receptor, impaired the major 
steps of insulin signaling pathway, inducing cellular insulin 
resistance in adipose tissue, liver and muscle. Petrovic et al. 
[30] further demonstrated that pancreatic Galectin-3 over-
expression promoted β-cell apoptosis triggered by cytokines 
and palmitate, and increased  NO2-induced oxidative stress in β 
cells, suggesting that Galectin-3 participants in β-cell damage 
and insulitis in HFD-induced T2D. Yu et al. [31] reported that 
the inhibition of Galectin-3 by TD139, an effective inhibitor of 
the galactoside binding pocket of Galectin-3, improved insulin 
resistance in HFD-induced mice, suggesting the potential of 
TD139 in the treatment of T2D.

In conclusion, serum Galectin-3 is elevated in T2D 
patients, and the elevated Galectin-3 plays a role in patho-
genesis of T2D by disturbing insulin signaling pathway in 
insulin-targeting organs and inducing β-cell inflammation 
and death in pancreatic islets. Thus, it is promising to use 
Galectin-3 as a predictive biomarker and therapeutic target 
for T2D.

3  Galectin‑3 in type 1 diabetes

In recent years, the incidence of T1D has increased rapidly at a 
rate of 3%-5% per year worldwide. T1D is an autoimmune dis-
ease caused by the selective destruction of insulin-producing β 
cells. Damaged β cells release their own antigens and present 
them to autoreactive T cells in the pancreatic draining lymph 
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nodes (PLN) [32, 33]. These activated autoreactive T cells 
migrate to the pancreatic islets, thereby promoting inflamma-
tion and mediating β-cell apoptosis [34–36].

Early studies have shown that Galectin-3 plays a pivotal role 
in autoimmune diseases including autoimmune encephalomy-
elitis (EAE) [37], rheumatoid arthritis (RA) [38] and systemic 
sclerosis [39], et al. Karlsen, A.E. et al. identified six polymor-
phisms in the Galectin-3 gene (LGALS3) and proved that a 
haplotype containing three SNPs transmitted to unaffected off-
spring in 257 T1D families increased significantly. This finding 
was verified in an independent set of 170 T1D families, sug-
gesting that LGALS3 is a T1D susceptibility gene, providing 
genetic association between Galectin-3 and T1D [40].

The destruction of pancreatic β-cells in T1D is mainly 
due to disorders of adaptive immune cells as well as innate 
immune cells [41]. Macrophage is the first-line cell to 
invade the pancreatic islets, and acts as an antigen pre-
senting cell and an effector cell, contributing to the patho-
genesis and development of autoimmune diabetes [42–45]. 
A study in vitro showed that Galectin-3 chemoattracts 
monocytes and macrophages through the G protein cou-
pling pathway [46]. Galectin-3 involves in the migration 
of neutrophils to sites of infection or inflammation, acti-
vates neutrophils and promotes their adhesion [47, 48]. If 
the infection persists and is not controlled by neutrophils, 
Galectin-3 recruits macrophages to the site of infection, 

Table 1  Changes in the galectin-3 levels in diabetes and complications in human

Authors, Year Type of Study Study Subjects Major Findings

Type 1 diabetes
Karlsen et al. 2006 [40] Genetic research Non-diseased offspring of 257 T1D 

families
Galectin-3 was a susceptibility gene for 

T1D
Type 2 diabetes
Weigert et al. 2010 [24] Cross-sectional study 23 normal-weight controls, 30 overweight 

controls, 30 T2D patients (Male)
Galectin-3 was increased in overweight 

controls and T2D
Lin et al. 2021[26] Cross-sectional study 270 controls, 135 T2D patients Galectin-3 was increased in T2D
Ohkura et al. 2014 [27] Cross-sectional study 20 T2D patients Low serum Galectin-3 concentrations 

strongly correlated with insulin resistance 
and hyperinsulinemia

Atalar et al. 2019 [25] Cross-sectional study 41 controls, 34 prediabetes, 84 T2D 
patients

Galectin-3 was increased in T2D

Vora et al. 2019 [28] Multiethnic cohort study 6586 participants from the Dallas Heart 
Study

Galectin-3 was associated with diabetes 
prevalence and incidence

Diabetic macrovascular complication
Seferovic et al. 2014 [81] Cross-sectional study 189 participants (70 T2D, 60 T2D with 

hypertension, 71 hypertention)
Galectin-3 was increased in T2D with 

hypertention
Ozturk et al. 2015 [63] Observational study 157 DM patients (80 non-coronary 

artery disease, 77 coronary artery 
disease)

Galectin-3 was increased in CAD group

Saeed et al. 2021 ([86]) Cohort study 295 T1D subjects Galectin-3 was significantly associated 
with future CHD in subjects with type 
1 diabetes

Diabetic nephropathy
Tan et al. 2018 [67] Prospective cohort study 1320 T2D participants Galectin-3 was independently associated 

with the doubling of serum creatinine 
and incident macroalbuminuria

Hodeib et al. 2019 [68] Single-center prospec-
tive cohort study

100 T2D with ACR < 30 mg/g; 100 
T2D with ACR within 30–300 mg/g; 
100 T2D with ACR > 300 mg/g

Galectin-3 was increased in patients with 
ACR > 300 mg/g

Iacoviello et al. 2016 [87] Cross-sectional study 61 individuals with microalbuminuria; 
133 with normoalbuminuria

Galectin-3 was increased in  
microalbuminuria

Diabetic foot
Gunes et al. 2018 [77] Prospective cohort study 91 participants (30 controls; 30 T2D; 

31 T2D with DFU)
Galectin-3 was correlated with the 

VEGF-A level
Diabetic cardiomyopathy
Bolotskykh and Rudyk 2014 [82] Cross-sectional study 74 patients with HFpEF with and 

without T2D
Galectin-3 was increased in heart failure 

patients
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strengthening further defenses [49, 50]. Galectin-3 also 
participates in the innate immune response and is con-
sidered to be a regulator of T cell activation [51], thus 
promoting pro-inflammatory cytokines which up-regulate 
the apoptotic signal [52, 53]. Cytokines can increase the 
expression of Galectin-3 mRNA, making it a vicious circle 
process [54].

In vitro data provided that the expression of Galectin-3 
was upregulated in BB-DP islets after IL-1β exposure, how-
ever, whether Galectin-3 elevation is a causal factor leading 
to apoptosis, or a compensatory effect to combat apoptosis is 
unclear [55]. Saksida et al. [52] proved that genetic deletion 
or pharmacological inhibition of Galectin-3 preserved β cell 
function and promoted survival by reducing mitochondrial 
apoptotic pathway triggered by pro-inflammatory cytokines, 
indicating the pro-inflammatory property of Galectin-3 in pan-
creatic β cell apoptosis. The main mechanism is that Galectin-3 
downregulates the expression of major genes in this apoptotic 
pathway and upregulates the expression of anti-apoptotic genes 
[52, 55]. By analyzing TD139-treated RINm5F cells, TD139 
significantly ameliorates cell apoptosis by Galectin-3 under the 
action of various cytokines [56]. In contrast, an in vitro study 
showed that overexpression of Galectin-3 in RIN-cell inhibited 
cytokine mediated apoptosis, suggesting the protective role 
of Galectin-3 against cytokine toxicity induced β cell apop-
tosis [40]. Indeed, different location of Galectin-3 exerts vari-
ous functions, for example, cytoplasmic Galectin-3 has anti-
apoptotic activity maintaining mitochondrial integrity, whereas 
nuclear and extracellular Galectin-3 plays pro-apoptotic role 
[57], which may explain the controversial results.

Animal studies also conducted to investigate whether 
Galectin-3 contributes to the pathogenesis of T1D. Mensah-
Brown et al. demonstrated that the lack of Galectin-3 pro-
tected C57BL/6 mice from MLD-STZ induced diabetes, 
accompanied with significant less mononuclear infiltration 
in the pancreatic islets and with retention of higher insulin 
content when compared with WT mice. Macrophages in 
the abdominal cavity and pancreatic draining lymph nodes 
from Galectin-3 knockout mice expressed lower interferon-γ 
(IFN-γ), TNF-α, IL-17 and inducible nitric oxide synthesis 
(iNOS) than those from WT mice [58]. On summary, the 
studies above confirmed that both the deletion of Galectin-3 
gene or pharmacological inhibition reduces the apoptosis of 
pancreatic β-cells. Therefore, Galectin-3 plays a role in the 
occurrence of β-cell destruction in T1D and is a promising 
therapeutic target for T1D patients.

4  Galectin‑3 in diabetes complications

The most common complication of diabetes is vascular 
disease, which is also the main cause of morbidity and 
mortality in diabetic patients [59]. Vascular complications 

are mainly divided into macrovascular complications 
including cerebrovascular, cardiovascular and peripheral 
vascular disease, and microvascular complications includ-
ing retinopathy, nephropathy, and diabetic foot [60].

4.1  Macrovascular complications

The major vascular complication of diabetes is the accelerated 
formation of atherosclerosis, which involves important blood 
vessels in the body, such as coronary arteries, carotid arteries, 
and peripheral arteries [61]. Galectin-3 plays a pro-inflammatory 
role in the occurrence and development of atherosclerosis and 
can be used as a risk factor for atherosclerosis [62].

Ozturk et  al. performed coronary CT scans on 158 
patients with T2D and reported that Galectin-3 was posi-
tively correlated with the number of coronary arteries with 
atherosclerosis [63]. Saeed et al. followed up a population-
based nationwide cohort in Norway, and found that after 
the adjustment of conventional risk factors, Galectin 3 was 
significantly associated with the risk of future coronary 
heart disease (CHD) and may help to predict the occur-
rence of CHD in patients with T1D [64]. These findings 
suggest that Galectin-3 could be a predictor for coronary 
atherosclerosis in patients with T1D or T2D.

4.2  Microvascular complications

4.2.1  Diabetic nephropathy

Diabetic nephropathy is the main cause of end-stage renal 
disease in diabetic patients [65, 66]. A prospective study 
involving 1320 cases of T2D with an average follow-up 
of 9 years showed that the level of serum Galectin-3 was 
independently associated with the progression of diabetic 
nephropathy [67]. Compared with patients with baseline 
serum Galectin-3 levels in the lower quarter, patients 
with Galectin-3 levels in the upper quarter had a three-
fold increase in the risk of renal function decline and a 
two-fold increase in the risk of massive proteinuria [67]. 
The results of a single-center prospective clinical study 
demonstrated that Galectin-3 levels are elevated in diabetic 
nephropathy and are positively correlated with the urine 
albumin/creatinine ratio [68]. These findings suggest that 
increased circulating Galectin-3 may be predictive of poor 
prognosis in diabetic nephropathy.

4.2.2  Diabetic retinopathy

Approximately two-thirds of diabetic patients have dia-
betic retinopathy. Studies have found that Galectin-3 
is related to the pathogenesis of diabetic retinopathy. 
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Galectin-3 may affect visual function during diabetes by 
combining with AGEs [69]. An animal study by Bauer 
et al. on lipopolysaccharide-induced neuroinflammation 
found that Galectin-3 is expressed in both Müller cells 
and microglia/macrophages of the normal retina; and 
demonstrated that increase in Galectin-3 expression was 
accompanied by significant increased neurotoxicity in the 
explanted retina [70]. Abreu et al. showed that the damage 
to optic nerve fibers caused by microglia/macrophages 
was reduced in Galectin-3 knockout mice [71]. Compared 
with the microglia of wild-type mice, the microglia of 
Galectin-3 knockout mice were less pro-inflammatory, 
resulting in excess white matter [72] and reduced retinal 
ganglion cell apoptosis [71]. The cause may be that iNOS 
is less activated in the optic nerve of Galectin-3 knockout 
mice [73]. Stitt et al. [74] infused preformed AGEs into 
wild-type and Galectin-3 knockout mice and found that, 
in oxygen-induced proliferative retinopathy, Galectin-3 
knockout mice have reduced retinal ischemia and higher 
retinal angiogenesis potential. Therefore, Galectin-3 
seems to be a pivotal molecule triggering neurodegen-
erative, oxidative and inflammatory processes preced-
ing vascular modifications in diabetic retinopathy, and 
its modulation might be a useful tool to prevent diabetic 
visual complications.

4.2.3  Diabetic foot

Diabetic foot is one of the long-term complications of dia-
betes, and 50%-60% of diabetic foot patients have some 
degree of peripheral artery disease [75, 76]. Studies have 
reported that Galectin-3 is associated with the occurrence 
of diabetic foot ulcers [75, 77]. Galectin-3 promotes blood 
vessel formation and new blood vessel formation because 
Galectin-3 increases the level of VEGF-A [78, 79]; thus, 
Galectin-3 promotes the healing of diabetic foot ulcers 
(DFUs). In a prospective study with 30 healthy controls, 
30 patients diagnosed with T2D but without DFUs and 
evident peripheral artery disease (PAD) as the diabetic 
control group and 31 patients diagnosed with T2D with 
DFUs at Wagner stage 2–4, serum Galectin-3 levels 
together with VEGF-A were significantly higher in T2D 
with DFUs compared with the other two groups, indicating 
as a defense mechanism against DFUs, thus contributing 
to wound healing [77]. When chronic skin damage occurs, 
Galectin-3 expression is inversely correlated with the level 
of AGEs in diabetic or non-diabetic patients, suggesting 
that Galectin-3 helps to reduce the accumulation of AGEs 
in the skin wound [80]. These studies provide an insight 
about Galectin-3 as an emerging biomarker which may 
give an indication of prognosis in diabetic foot with spe-
cial reference to DFUs.

4.3  Diabetic cardiomyopathy

Diabetic cardiomyopathy is the main cause of heart fail-
ure in diabetes patients. Jelena et al. enrolled 189 partici-
pants with T2D and/or arterial hypertension (HT), and 
found that levels of galectin-3 were higher in patients 
with both T2D and HT, and correlated with left ventricu-
lar (LV) mass, indicating the potential role of Galectin-3 
for early detection of myocardial structural and func-
tional alterations [81]. Bolotskykh et al. found that non-
diabetic patients with heart failure are accompanied by 
insulin resistance, and the levels of Galectin-3, TNF-α 
and insulin in such heart failure patients are significantly 
increased [82]. Myocardial inflammation and fibrosis are 
accompanied by changes in the Galectin-3 concentration 
[83]. Further studies confirmed that the mechanism of 
inducing cardiomyocyte changes including hypertrophy, 
fibrosis, increased stiffness, and impaired relaxation is 
triggered by the pro-inflammatory environment caused 
by adipose tissue dysfunction, and Galectin-3 can be used 
as a biomarker for changes in myocardial function and 
fibrosis caused by high calories [84, 85]. This finding 
shows that Galectin-3 is involved in the development of 
cardiac fibrosis and impaired myocardium remodeling, 
resulting in heart failure and atrial fibrillation [85]. The 
role of Galectin-3 as a prognostic marker of heart failure 
is described, and the tentative use of Galectin-3 inhibi-
tion is a potential therapeutic approach to prevent cardiac 
inflammation and fibrosis.

5  Further perspectives

As a powerful cytokine related to inflammation, autoim-
munity, apoptosis, and chemotaxis, Galectin-3 is involved 
in several metabolic abnormalities, mainly in diabetes and 
diabetic complications (Fig. 1). A large number of clinical 
studies have shown that Galectin-3 is related to the occur-
rence of diabetes and its complications. The main conclusion 
is that the level of serum Galectin-3 is higher in patients with 
diabetes and its complications.

There are also a large number of animal experiments reveal-
ing that Galectin-3 promotes the inflammation of pancreatic islet 
β cells and insulin target organs, leading to pancreatic β cell 
failure and insulin resistance, which in turn leads to diabetes. 
According to existing evidence, Galectin-3 inhibitors such as 
TD139 can reduce the expression of Galectin-3, thereby improv-
ing diabetes and its complications. However, whether Galectin-3 
can be used in clinical medicine still needs to be resolved.

To fill in the current gaps, the following research including: 
1) To further clarify the specific mechanism of Galectin-3 
in diabetes and remove obstacles for clinical research. 2) To 
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develop safe and effective Galectin-3 inhibitors for the preven-
tion and treatment of diabetes are warrant.
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