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The anticancer drug 5-fluorouracil (5-FU) resistance is a major obstacle to reducing the
effectiveness of cancer treatment, and its detailed mechanism has not been fully
elucidated. Here, in 5-FU-resistant human oral squamous cell carcinoma (OSCC) HSC3
cells (HSC3/5-FU), the levels of 21 miRNA candidates were detected using RT-PCR and
miR-155-5p level increased strikingly in HSC3/5-FU cells compared to HSC3 cells.
Compared with HSC3 cells, the CCK-8 assay showed that the HSC3/5-FU cells
transfected with miR-155-5p inhibitors decreased 5-FU IC50. Ectopic expression of
miR-155-5p in HSC3 and HSC4 cells increased 5-FU IC50 (CCK-8 assay), migration
(wound-healing and transwell assays) and invasion (transwell assay) abilities. Seven miR-
155-5p target candidates were discovered by miRNA prediction algorithms (miRDB,
Targetscan, and miRWalk), and the RT-PCR results showed that in HSC3/5-FU cells
TP53INP1 was of the lowest mRNA expression level compared with HSC3 cells. The RT-
PCR and Western blotting assays showed that ectopic expression of miR-155-5p in
HSC3 and HSC4 cells decreased TP53INP1 expression level. Furthermore, the luciferase
reporter and RNA pull-down assays determined the interference effect of miR-155-5p on
TP53INP1 expression. The enhancement of cell viability (CCK-8 assay), migration (wound-
healing and transwell assays) and invasion (transwell assay) by miR-155-5p after 5-FU
treatment was reversed by TP53INP1 overexpression. After treatment with 5-FU, HSC3-
miR-155-5p tumor-bearing nude mice presented growing tumors, while HSC3-TP53INP1
group possessed shrinking tumors. In conclusion, these results lead to the proposal that
miR-155-5p enhances 5-FU resistance by decreasing TP53INP1 expression in OSCC.
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INTRODUCTION

Globally, head and neck cancer is ranked as the sixth most common
cancer and the majority cases are attributed to oral squamous cell
carcinoma(OSCC) (1). Presently, a multidisciplinary approach,
including surgery, radiotherapy, chemotherapy, or the
combinations of these treatments has been applied for the
treatment of OSCC patients (2). Although the treatment is
effective for patients at the early stage, the 5-year survival rate of
OSCC patients in advanced-stage remains <50% (3–5). Among the
chemotherapy, 5-fluorouracil (5-FU) is commonly used and its
active metabolites interferes with DNA and RNA synthesis,
resulting to cell cycle arrest or cell death (6). However, the
acquisition of resistance to 5-FU based chemotherapy leads to
treatment failure in advanced and recurrent OSCC, resulting in a
poor prognosis (7). Therefore, discovering the mechanism
underlying the resistance to 5-FU of OSCC is of great importance
for improving treatment regimen and bettering prognosis.

microRNAs (miRNAs/miRs) are critical gene expression
regulators that bind to the 3’-untranslated region (3’-UTR) of
target mRNAs, inducing mRNA degradation or translational
suppression (8). Accumulating evidence has shown that
aberrant expressions of miRNAs are involved in cancer
progression by influencing various cell biological behaviors (9–
11). miR-155 is one of the most important microRNAs, its
upregulation increases cell growth, invasion, migration,
stemness, and angiogenesis in many cancers (12). In OSCC, the
overexpression of miR-155 facilitates proliferation and invasion of
cancer cells and is associated with poor prognosis (13, 14). In
addition, research documented that overexpressed miR-155 is
found to be responsible for multidrug resistance in various
tumor types (15–17). Notably, miRNA is associated with 5-FU
resistance in colorectal cancer (17, 18). However, the role of miR-
155 in 5-FU resistance of OSCC cells are still elusive.

Here, we displayed that miR-155 was increased in 5-FU
resistant OSCC HSC3 cells. In silico analysis and functional
studies further revealed that miR-155 contributes to 5-FU
resistance in OSCC cells by targeting tumor protein p53
inducible nuclear protein 1 (TP53INP1). Our study suggests
that miR-155 is a potential therapeutic target for overcoming 5-
FU resistance during the treatment of OSCC.
RESULTS

Establishment of miR-155-5p Associated
with 5-FU Resistance in HSC3 Cells
To identify miRNAs contributing to 5-FU resistance of OSCC
cells, we first incubated HSC3 cells with 5-FU (HSC3/5-FU) and
increased the concentration of 5-FU every two weeks. After 5
months, the IC 50 of 5-Fu in HSC3/5-FU cells were
approximately 6.945 mM, it was estimated to be approximately
seventeen folders higher than that to HSC3 cells (Figure 1A).
Then, we further investigated the expression profile of miRNA
candidates [miR-155 (18, 19), miR-27a (19), miR-135b (20),
miR-182 (20), miR-587 (21), miR-23a (22), miR-125b (23), miR-
224 (24), miR-21 (25), miR-1290 (26), miR-425-5P (27), miR-
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10b (28), miR-196b-5p (29),miR-330 (30), miR-375-3p (31),
miR-203 (32), miR-218 (33), miR-139-5p (34), miR-129 (35),
miR-192 (36), miR-215 (36)] in HSC3/5-FU and HSC3 cells and
analyzed the expression of miRNAs using RT-PCR. The results
showed that the expression of miR-155-5p was strikingly
upregulated in HSC3/5-FU cells compared to HSC3 cells
(Figure 1B). These results indicate that the deregulation of
miR-155 might be involved in the 5-FU-resistance of OSCC cells.

To further investigate the role of miR-155-5p in the resistance
to 5-FU in OSCC cells, we transfected HSC3/5-FU cells with
negative control (NC) and miR-155-5p inhibitors (anti-miR-
155-5p) and determined the expression level of miR-155-5p by
RT-PCR (Figure 1C). As a result, half-maximal inhibitory
concentration (IC50) was determined to be 1.555 mmol/L for
Anti-miR-155-5p group (Figure 1D).

MiR-155-5p Increased 5-FU Resistance in
HSC3 and HSC4 Cells
To explore the influence of miR-155-5p on 5-FU resistance in
OSCC cells, we transfectedHSC3 andHSC4 cells withmiR-155-5p
mimic vector tooverexpressmiR-155-5p (Figure2A), and themiR-
155-5p increased cell viability (Figure 2B). IC50was determined to
be 6.086 mmol/L and 5.842 for the miR-155-5p overexpression
HSC3andHSC4cells, while 0.277mmol/L and 0.251mmol/L for the
HSC3 and HSC4 mock cells respectively (Figure 2C). The wound-
healing assay (Figure 2D), transwell migration assay (Figure 2E)
and transwell invasion assay (Figure 2F) showed that miR-155-5p
increased sensitivity to 5-FU.

MiR-155-5p Reduced TP53INP1
Expression in OSCC Cells
To discover the target mRNAs of miR-155-5p, we employed
three different miRNA prediction algorithms (miRDB,
Targetscan, and miRWalk) (37–40). A survey revealed that
seven mRNAs, JARID2, BACH1, KDM5B, TP53INP1, TSHZ3,
VAV3 and RGP1 are possible targets of miR-155-5p (Figure 3A,
Supplementary Table 2), and we measured their mRNA
expression levels in HSC3, HSC3/5-FU, HSC3/5-FU+Anti-
miR-155-5p cells. The results showed that among the seven
genes, TP53INP1 presented the lowest expression level in HSC3/
5-FU clone, compared to HSC3 cells (Figure 3B). To assess the
roles of miR-155-5p in TP53INP1 regulation, we analyzed both
mRNA and protein levels of TP53INP1 after transfection of
mock, miR-155-5p mimic, miR-155-5p mimic+Anti-miR-155-
5p (Rescue) vector into HSC3 and HSC4 cells. The results
showed that both mRNA and protein levels of TP53INP1 were
downregulated by miR-155-5p (Figures 3C, D). The 3′-UTR of
TP53INP1 mRNA contains a complementary site for the seed
region of miR-155-5p (Figure 3E). To further confirm
TP53INP1 regulation by miR-155-5p, we generated luciferase
reporter constructs containing the TP53INP1 mRNA 3′UTR
(741-748 nt) (pluci-TP53INP1 3U) or mutant 3′UTRmissing the
seed region binding sites for miR-155-5p (pluci-TP53INP1
3UM), and 48 h post-transfection, analyzed luciferase reporter
expression after miR-155-5p over-expression. As shown in
Figure 3F, miR-155-5p downregulated pluci-TP53INP1 3U
reporter expression but did not affect the luciferase control or
January 2022 | Volume 11 | Article 706095
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pluci-TP53INP1 3UM. Moreover, the RNA pull-down assay
showed that TP53INP1 was enriched by biotinylated miR-155-
5p, proving their direct interaction (Supplementary Figure 2).
These results indicate that miR-155-5p negatively regulated the
expression of TP53INP1 by binding to its 3′-UTR.
Frontiers in Oncology | www.frontiersin.org 3
MiR-155-5p Stimulates 5-FU Resistance
by Targeting TP53INP1 in OSCC
We noticed that miR-155-5p increased cell viability after 5-FU
treatment (Figure 2B) and downregulated TP53INP1 expression
(Figures 3C, D, F). To further determine whether the increase in
A B

DC

FIGURE 1 | Upregulation of miR-155-5p in 5-FU resistant HSC3/5-FU cells. (A) The IC50 of 5-Fu in 5-FU resistant HSC3/5-FU cells. (B) The expression profile of
miRNA candidates in HSC3/5-FU cells analyzed using RT-PCR. (C) The level of miR-155-5p in HSC3/5-FU cells with miR-155-5p inhibitors (Anti-miR-155-5p) was
measured by RT-PCR. (D) The IC50 of 5-FU in HSC3/5-FU cells transfected with anti-miR-155-5p was measured using CCK-8 assay. IC50, half-maximal inhibitory
concentration. *p < 0.05, **p < 0.01.
A B
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E F
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FIGURE 2 | Over-expression of miR-155-5p induces resistance to 5-FU in HSC3 and HSC4 cells. (A) RT-PCR results showed the expression of miR-155-5p in
HSC3 and HSC4 cells overexpressing miR-155-5p. (B) CCK-8 assay presented the proliferation of HSC3 and HSC4 cells overexpressing miR-155-5p. (C) The IC50
of 5-FU in HSC3 and HSC4 cells overexpressing miR-155-5p. Analysis of 5-FU-treated HSC3 and HSC4 cells transduction of miR-155-5p and mock vector using
(D) the wound-healing assay, (E) the transwell migration assay, and (F) the transwell invasion assay. Scale bar, 100 mm. *p < 0.05, **p < 0.01.
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5-FU resistance by miR-155-5p is mediated by the
downregulation of TP53INP1, we investigated the sensitivity of
HSC3-miR-155-5p and HSC4-miR-155-5p cells to 5-FU after
over-expression of TP53INP1 (Supplementary Figure 1). As a
result, increased cell viability (Figure 4A), migration
(Figures 4B, C) and invasion (Figure 4D) by miR-155-5p after
5-FU treatment was reversed by over-expression of TP53INP1.
These results demonstrated that the miR-155-5p regulated the 5-
FU resistance of OSCC cells via targeting TP53INP1.

MiR-155-5p Enhanced 5-FU Resistance of
OSCC In Vivo by Targeting TP53INP1
To further explore the role of TP53INP1 in the treatment of
OSCC using 5-FU, we constructed OSCC nude mice through
subcutaneous injection of HSC3, HSC3/5-FU, HSC3-miR-155-
5p, and TP53INP1 overexpression HSC3 (HSC3-TP53INP1)
cells (Figure 5A). Then, we treated the OSCC nude mice with
5-FU and found that HSC3-TP53INP1 group possessed
shrinking tumors compared with HSC3/5-FU and HSC3-miR-
155-5p tumor-bearing mice (Figures 5B–D).
DISCUSSION

There are more than 650,000 oral cancer cases annually and
OSCC accounts for >90% (41). Despite the current treatment is
effective for patients at early stage, OSCC still has a high
recurrence rate and causes 330,000 deaths every year (41, 42).
Frontiers in Oncology | www.frontiersin.org 4
As adjuvant chemotherapy, 5-FU is frequently used alongside
surgery in patients with advanced OSCC. However, drug
resistance makes tumor regression extremely difficult. And the
mechanisms of the acquisition of drug resistance to 5-FU in
OSCC cells are not fully understood. In this study, we
constructed the 5-FU resistant cell HSC3/5-FU and explored
the mechanism of miR-155-5p in the acquisition of 5-FU
resistance in OSCC.

After inhibiting miR-155-5p in HSC3/5-FU cells, we found
that the cell viability of 5-FU treated cells was reduced compared
to the parental cells. We overexpressed miR-155-5p in HSC3 cell
and processed it with 5-FU, miR-155-5p decreased sensitivity to
5-FU. In this study, we only selected the 5-FU resistant cell
HSC3/5-FU, the selection results from this single cell line may
not be common in OSCC. To explore whether this mechanism is
universal in OSCC resistance to 5-FU, we also conducted the
above-mentioned experiments in the OSCC cell line HSC4 and
found consistent results. In addition to inhibiting tumor cell
proliferation, it is also documented that 5-FU could suppress
inhibit the migration and invasion of a variety of tumor cells (43–
45). Consistent with these published researches, we found that 5-
FU could also inhibit the migration and invasion of OSCC, and
further experiments proved that miR-155-5p could attenuate
these effects of 5-FU.

Because miRNAs function through interference with gene
expression, we sought the target gene candidates of miR-155-5p
using in silico analysis. TP53INP1 presented the lowest mRNA
expression among the candidates in HSC3/5-FU cells, and this
A B

D

E

F

C

FIGURE 3 | TP53INP1 is a direct target of miR-155-5p in OSCC cells. (A) Three different miRNA prediction algorithms (miRDB, Targetscan, and miRWalk) revealed
miR-155-5p targets candidates. (B) The mRNA expression levels of miR-155-5p targets candidates in HSC3, HSC3/5-FU, HSC3/5-FU+Anti-miR-155-5p cells.
(C) The mRNA and (D) protein levels of TP53INP1 in HSC3 and HSC4 cells infected with vectors expressing miR-155-5p mimic or miR-155-5p mimic +anti-miR-155-5p
(rescue). (E) The prediction of the binding between miR-155-5p and TP53INP1 by Pictar. (F) Relative luciferase activity of the indicated TP53INP1 reporter constructs in
HSC3 cells. *p < 0.05, **p < 0.01.
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low expression could be improved by inhibiting miR-155-5p.
MiR-155-5p overexpression suppressed the expression of
TP53INP1 in both HSC3 while the rescue experiments could
weaken this inhibition. Through luciferase assay and RNA pull-
Frontiers in Oncology | www.frontiersin.org 5
down, we determined the direct interference effect of miR-155-
5p on TP53INP1.

Therefore, we focused on TP53INP1 for further exploration.
This study showed that the TP53INP1 expression in OSCC is
A B

DC

FIGURE 4 | MiR-155-5p enhanced 5-FU resistance through targeting TP53INP1 in OSCC. After 5-FU treatment, (A) IC50 of 5-FU, (B) the wound-healing assay,
(C) the transwell migration assay, and (D) the transwell invasion assay in HSC3 and HSC4 cells transfected with mock, miR-155-5p mimic, miR-155-5p+TP53INP1
(rescue) or TP53INP1 over-expression plasmid. Scale bar, 100 mm. *p < 0.05, **p < 0.01, *** p < 0.001.
A B

DC

FIGURE 5 | MiR-155-5p enhanced 5-FU resistance in OSCC mouse models by targeting TP53INP1. (A) HSC3, HSC3/5-FU, HSC3-miR-155-5p, or HSC3-TP53INP1
cells were subcutaneously injected into male athymic nude mice and were then treated with 5-FU. (B) The length and width of tumor bulks was measured every other
day, tumor volume=length × width2 × p/6. Tumors were taken out, (C) photoed and (D) weighed. *p < 0.05, **p < 0.01.
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consistent with former research that it is often lost during cancer
development from different organs (46–48). It has been
documented that TP53INP1 exerts tumor suppressor function
through involvement in cell death, cell-cycle arrest and cellular
migration (47–49). It was found that miR-155-5p could promote
epithelial-to-mesenchymal transition (EMT) through regulating
TP53INP1 in paclitaxel-resistant gastric cancer cells (50). And
exosomal miR-155-5p-5p could also enhance proliferation and
migration capabilities of cancer cells by inhibiting TP53INP1
expression in gastric cancer (51). In addition, miR-155-5p could
also promote liver cancer stem cell acquisition and self-renewal
by targeting the gene TP53INP1 (52).

Up to now, there are few studies on the influence of miRNA
on chemotherapy resistance through TP53INP1. It was reported
that miR-182 increases cisplatin resistance in hepatocellular
carcinoma cells by targeting TP53INP1 (53). Tie et al. claimed
that let-7f-5p promotes 5-FU resistance and it could directly
repress several pro-apoptotic proteins including TP53INP1 in
colorectal cancer, indicating that TP53INP1 might negatively
regulate 5-FU resistance (54). However, the regulation of
TP53INP1 on 5-FU resistance still lacks direct evidence. In this
study we demonstrated that miR-155-5p contributes to 5-FU
through directly targeting the 3’ UTR of TP53INP1 in OSCC.

Because 5-FU could inhibit cell proliferation, migration, and
invasion (55, 56), we evaluated the influence of miR-155-5p/
TP53INP1 pathway on these capacities of HSC3/5-FU cells using
the corresponding experiments. This study found that miR-155-
5p suppressed the OSCC cell proliferation, migration and
invasion through interfering with TP53INP1. Our findings
confirmed that in vivo, resistance of OSCC to 5-FU was
associated with the overexpression of miR-155-5p. In mice
OSCC model accepting 5-FU treatment, HSC3-miR-155-5p
cells-based tumor progressed rapidly, compared to that of the
OSCC model based on HSC3 parent cells. Meanwhile, we
demonstrated the role of TP53INP1 in improving the
sensitivity of OSCC cells to 5-FU treatment. HSC3-TP53INP1
cells-based tumors were sensitive to 5-FU treatment, the tumor
grew slowly, and has a good prognosis.

Our research provides novel insights into the role of miR-
155-5p in the resistance of OSCC to 5-FU, which is conducive to
the development of the use of miR-155-5p as a prognostic
marker, or the use of anti-miR-155-5p as a treatment strategy
to improve the efficacy of chemotherapy, especially 5-FU.
MATERIALS AND METHODS

Cell Lines and Cell Culture
HSC3 and HSC4 cells were maintained in Dulbecco’s modified
Eagle’s medium (DMEM, Invitrogen, Carlsbad, CA, USA)
containing 10% fetal bovine serum (FBS) and 1% penicillin/
streptomycin. The cells were cultured at 37°C in humidified air
with 5% CO2.

Establishment of 5-FU-Resistant Clones
To identify 5-FU resistant cell lines, human OSCC HSC3 cells
were seeded in 10 cm dishes and first incubated with medium
Frontiers in Oncology | www.frontiersin.org 6
containing 0.2 mM 5-FU (Catalog No.: 51-21-8, Sigma-Aldrich,
Shanghai, China). The 5-FU concentration increased 0.5 mM
every two weeks. The selection continued for 5 months, and the
final IC 50 of 5-Fu in HSC3/5-FU cells was 6.945 mM.

In Vitro Cytotoxicity Tests
HCS3 or HSC4 cells were plated in triplicate at 1 × 104 cells per
well in 96-well plates. Four hours later, 5-FU in different
concentrations was added and incubated for 72 h.

Cell Viability Assay
Cell viability was assessed using CCK-8 assay (Catalog No.:
96992, Sigma-Aldrich), and it was conducted following
manufacture’ instruction (https://www.sigmaaldrich.cn/CN/en/
product/sigma/96992?context=product). In brief, cells in 24-well
plates were transfected with miR-155-5p mimic, inhibitor or
control miRNA and incubated with 5-FU for 72 h and then
further incubated with CCK-8 for 4 h. CCK-8 assay was
performed at 0, 24, 48, 72, 96 h after seeding cells. All
experiments were performed at least three times.

Cell Wound-Healing Assay
Cell migration was assessed using wound-healing assay. HSC3 or
HSC4 cells transfected with miR-155 grew to confluence in 24-
well plates, cells were scratched using a sterile 200 mL pipette tip
and maintained in serum-free medium. Images were taken at 0,
24, 48h. Wound closure was photographed along the scrape line
using phase contrast microscopy (Nikon Eclipse TS100 inverted
microscope). The wound distance was calculated based on the
distance migrated compared to the original scratch width.

Transwell Assay
The chambers were washed thoroughly with 10 mM PBS, fixed in
4% paraformaldehyde for 30 min, and stained with 0.2% crystal
violet for 10 min. Non-invading cells, from the membrane upper
surface, were removed using a cotton swab. The membranes
containing the invaded cells (under the surface of membrane),
were photographed. Images of three random microscope fields
were captured in duplicate, using an inverted optical microscope
(Floid Cell Imaging Station, Life Technologies, Carlsbad, CA,
USA). The areas of cell invasion were determined by Image
J software.

Cell migration and invasion were analyzed using transwell
culture system. To detect cell migration, 2×105 cells in 200ml
serum-free DMEM were seeded into the upper chambers, and
DMEM containing 20% FBS was added to the lower chamber as
a chemoattractant. Following incubation at 37°C for 24 h,
supernatant was discarded and cells in the membrane upper
surface were removed using a cotton swab. Invasive cells located
on the lower surface were fixed with paraformaldehyde (Thermo
Fisher Scientific) and stained with 0.1% crystal violet (Catalog
No.: V5265, Sigma-Aldrich) for 10 min at room temperature. To
detect cell invasion, the inner sides of the Transwell chambers
were pre-coated with Matrigel (BD Biosciences, San Jose, CA,
USA) at room temperature, after which, the procedure was
performed to assess cell invasion. An inverted optical
microscope (Floid Cell Imaging Station, Life Technologies,
January 2022 | Volume 11 | Article 706095
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Carlsbad, CA, USA) was used to count and photograph the
migrated and invaded cells. The areas of cell migration and
invasion were determined by Image J software (NIH, Bethesda,
MD, USA).

Luciferase Reporter Assay
To confirm the binding of miR-155a-5p to TP53INP1 mRNA, a
Dual-Luciferase Reporter Assay System (cat. no. E1910; Promega
Corporation) was utilized according to the manufacturer’s
i n s t r u c t i o n s . B r i efl y , m iR - 1 5 5 a - 5p m im i c s ( 5 ’ -
UUACACACUAACAUUAGCAUUAA-3’) and a miR-155a-5p
mutant (5’-UUACACACUAACAUUGAAUCGUA-3’) were
synthesized by BioSunne Inc. (Shanghai, China). The
Luciferase control, pLuci-TP53INP1 3U or pLuci-TP53INP1
3UM luciferase reporter plasmid (8 µg) and NC (GFP plasmid)
or miR-155a-5p mimic plasmid (100 ppm) were transfected into
HSC3 cells using Lipofectamine 3000 Transfection Reagent
(Catalog No.: L3000015, Thermo Fisher Scientific.). At 48 h
following transfection, the cells were lysed, and the luciferase
activity was measured using the Reporter Assay System
(Promega Corporation). Cotransfection experiments were
carried out in triplicate.

RNA Pull-Down
The biotin-labeled miR-155-5p mimic, biotin-labeled mutated
miR-155-5p and negative control were transfected into HSC3
and HSC4 cells. After 48 h, the cells were harvested and lysed,
and the lysate was added to the Dynabeads™M-280 streptavidin
magnetic beads (Invitrogen, Carlsbad, CA, USA). The mixture
was incubated at room temperature for 15-30 min. The
enrichment of the co-deposited TP53INP1 RNA was
determined using RT-PCR.

Real-Time Reverse Transcription PCR
The expression levels of miRNA and miR-155a-5p target
candidate mRNA were analyzed via the real-time reverse
transcription PCR (RT-PCR). Total RNAs were isolated for
mRNA analysis before cDNAs were prepared via reverse
transcription, The abundance of transcripts was assessed by
RT-PCR analysis using LightCycler® RNA Master SYBR Green
I (Roche, Basel, Switzerland) and gene-specific primer sets on a
StepOne Plus instrument (Applied Biosystems, Foster City, CA,
United States). The relative level of miRNA or mRNA was
normalized to the U6 RNA or GAPDH mRNA using the
comparative delta CT (2-DDCT) method. Primer sequences are
listed in Supplementary Tables 1 and 3.

Western Blotting
Whole cell lysates were prepared using RIPA buffer (Catalog No.:
89900, Thermo Fisher Scientific, Waltham, MA, USA), and the
protein concentration was measured using Pierce™ BCA Protein
Assay Kit (Catalog No.: 23227, Thermo Fisher Scientific). Protein
extracts were separated by electrophoresis in SDS-containing
polyacrylamide gels, and then transferred onto Immun-Blot®

PVDF Membrane (Catalog No.: 162017, BIO-RAD, Hercules,
CA, USA). The membranes were incubated with the primary
rabbit monoclonal antibody against human TP53INP1 (Catalog
Frontiers in Oncology | www.frontiersin.org 7
No.: MA5-34751, Thermo Fisher Scientific) or a-tublin (Catalog
No.: A11126, Thermo Fisher Scientific) and then incubated with
HRP-conjugated goat anti-Rabbit IgG secondary antibody
conjugated to horseradish peroxidase (Catalog No.: 31466,
Thermo Fisher Scientific). GAPDH was used as an
internal control.

Animal Experiments
To evaluate the roles of miR-155-5p and TP53INP1 in 5-FU
resistance in OSCC, we injected HSC3, HSC3/5-FU, HSC3-miR-
155-5p, or HSC3-TP53INP1 cells (1×107 cells/100 ml DMEM/
mouse) subcutaneously into male athymic nude mice (6-week-
old). All mice were treated with 5-FU in the concentration of
6.945 mmol/L. The volume of tumor bulks was measured per 2
days using digital calipers and were calculated using the formula:
volume= length × width2 × p/6. 1 month after cell inoculation,
all mice were sacrificed, and tumors were taken out and weighed.
The animal studies were approved by Animal Welfare and
Research Ethics Committee of Capital Medical University, and
the animal experiments were conducted in accordance with the
institutional and national regulations.

Statistics
All data are expressed as mean ± standard deviation. Statistical
analysis was performed using GraphPad Prism 8.0 (GraphPad
Software, CA, USA). Student’s t-test (two-tailed) was used to
compare two groups, and analysis of variance was used to
compare multiple groups. The differences were considered
statistically significant when p < 0.05, and indicated as * (P <
0.05), ** (0.05< P < 0.001), and *** (P < 0.001). All experiments
were performed in triplicate.
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