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ABSTRACT

Using the presently available datasets of annotated
missense variants, we ran a protein family-specific
benchmarking of tools for predicting the pathogenic-
ity of single amino acid variants. We find that de-
spite the high overall accuracy of all tested methods,
each tool has its Achilles heel, i.e. protein families
in which its predictions prove unreliable (expected
accuracy does not exceed 51% in any method). As a
proof of principle, we show that choosing the optimal
tool and pathogenicity threshold at a protein family-
individual level allows obtaining reliable predictions
in all Pfam domains (accuracy no less than 68%). A
functional analysis of the sets of protein domains
annotated exclusively by neutral or pathogenic mu-
tations indicates that specific protein functions can
be associated with a high or low sensitivity to muta-
tions, respectively. The highly sensitive sets of pro-
tein domains are involved in the regulation of tran-
scription and DNA sequence-specific transcription
factor binding, while the domains that do not result in
disease when mutated are responsible for mediating
immune and stress responses. These results sug-
gest that future predictors of pathogenicity and es-
pecially variant prioritization tools may benefit from
considering functional annotation.

INTRODUCTION

The quest for automated annotation of single amino acid
variants (SAVs) has led to the development of numerous
methods for predicting the deleteriousness of missense mu-
tations. All of these methods rely on supervised machine
learning models, trained on a collection of manually anno-
tated variants to provide a probability of pathogenicity for
each queried mutant protein sequence. Internally, the algo-
rithms employ a combination of different modalities of pro-

teins, i.e. sequence, structure or meta-based features. Typi-
cally, the most informative feature is a metric of evolution-
ary conservation with more conserved sites being more sen-
sitive to mutations. Although their accuracy is constantly
increasing, with state-of-the-art models already achieving
area under the curve values (AUC) of over 0.9, many of the
tools exhibit low-to-moderate agreement (Pearson correla-
tion <0.7) between the binary predictions they yield (1).
What is more, it has recently become apparent that some
methods greatly overpredict the pathogenicity of variants,
assigning a disease-causing effect to even up to a third of
benign variants (2).

MetaSVM (1), which combines the output of multiple in-
dividual methods to arrive at an aggregate prediction, lever-
aged this to yield particularly high performance in bench-
marks (3). However, our recent analysis revealed that in se-
lect proteins its predictions still prove rather unreliable. For
example, in the cardiac sodium channel, MetaSVM greatly
exaggerates the pathogenicity of mutations, predicting a
deleterious effect in 75% of SAVs that are, in fact, anno-
tated as neutral (4). One line of reasoning that could explain
such results is that this protein, although conserved in evo-
lution (as captured by most models predicting a deleterious
effect for the majority of mutations), does not always result
in disease upon mutation––the observed evolutionary con-
servation may have resulted from the reduced fitness that the
nowadays-benign mutations could have been bringing to af-
fected hosts when competing for survival in the wild. In fact,
the first tool that attempted to account for the particular
context of the mutation in question was the weighted ver-
sion of the FATHHM method, which was tuned to yield the
best accuracy in a species-specific manner (5). Such context-
specific prediction methods can be taken a step further in
order to account for all the characteristics of each individ-
ual protein family. This can be accomplished, provided a
considerable number of curated SAVs are already available.
In the case when a method clearly over- or underestimates
the predicted effects of mutations in a certain protein fam-
ily, the most straightforward approach for obtaining more
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reliable results is shifting the pathogenicity threshold. Nev-
ertheless, in the case of the cardiac sodium channel, even
after increasing the pathogenicity threshold of MetaSVM,
the expected accuracy of predicting the effects of mutations
in this protein remains low––at roughly 55%.

Therefore, we hypothesized that different prediction
methods may differ in their reliability, depending on the
family of the queried protein. One trivial reason for this
is that each method is biased towards the dataset used for
training. Another reason is that different input features cap-
ture the various functional effects, which a mutation can
have to a different degree. For example, since FATHMM
(5) relies on amino acid residue transition probabilities en-
coded within hidden Markov model representations of each
protein domain family, it should be expected to be particu-
larly reliable for predicting cases of missense variants that
disrupt the structure (and thus function) of any protein be-
longing to that family. However, it may be less accurate in
cases where a mutation affects a protein from a family that
comprises many domains specializing in specific tasks, each
one requiring a different residue side chain at the same po-
sition in order to fulfil its particular role. In each individual
protein by itself, strict conservation of that crucial residue is
to be expected. However, at the family level, all of the differ-
ent residues are equally probable within the corresponding
HMM match state. In the latter example, methods captur-
ing the evolutionary conservation at specific genomic posi-
tions [such as CADD (6)] should be expected to yield more
accurate predictions.

Altogether, this reasoning points to the idea that predic-
tions of pathogenicity could be tuned with respect to the
specific characteristics of each protein. The major caveat,
for the time being, is that such endeavour would require a
large number of manually annotated SAVs already available
for each protein. Nevertheless, owing to the recurrence of
protein domains within the genome, annotated mutations
occurring within the same protein family can be pooled to-
gether to determine which tools and parameters are opti-
mal for predicting the pathogenicity of other SAVs in those
families. As proof of concept, we apply this idea on a sub-
set of Pfam domain families, for which a sufficient num-
ber of annotated SAVs are available. We show that such
fine-tuning could, in principle, allow obtaining significantly
more reliable predictions of pathogenicity than standard
off-the-shelf methods. Although predicting which method
and threshold of pathogenicity should be used in families
lacking enough curated SAVs proved difficult, based on a
functional enrichment analysis of families annotated ex-
clusively by benign or pathogenic SAVs, we provide indi-
cations suggesting that future predictors of pathogenicity
might benefit from utilizing annotations of protein func-
tion. Finally, a further discussion of the results provokes
reconsidering the definition of a neutral mutation.

MATERIALS AND METHODS

Annotation of mutations

Mutations with precalculated predictions of deleterious-
ness from popular methods published to date were ex-
tracted from the dbNSFP database (1); the predictions from
the SNAP2 method were calculated on our server. The

pathogenicity scores selected for analysis were chosen to
be the raw outputs of the respective methods (indicated as
‘raw/score’ within dbNSFP). Where available, annotations
specialized for predicting the effects of protein coding vari-
ants were selected (indicated as ‘coding’ within dbNSFP).
Methods for which precalculated predictions were unavail-
able for all variants were excluded from the analysis. In the
case when multiple versions of a method were published as
multiple separate scores, each one was included in the analy-
sis. Altogether, 26 different scores developed across 23 stud-
ies were considered in the benchmarking (Supplementary
File 4).

dbNSFP provides annotations of pathogenicity primar-
ily from ClinVar, accessed on 22 July 2019 (7); we addi-
tionally added variant annotations from SwissVar (8) and
UniProt (9). Since there is a surplus of variants annotated to
be pathogenic, in order to increase the breadth of the anal-
ysis, we included an additional list of mutations that are
most likely neutral. Following Bendl et al. (10), we added
mutations from the VariSNP (11) database. Briefly, neutral
variants extracted from dbSNP (12) were filtered to exclude
all pathogenic mutations found in ClinVar, SwissProt and
PhenCode (13) as well as any SNPs that occurred in cancer
[COSMIC (14)] or the NHGRI GWAS catalogue (15).

The Pfam database (16) was used to map mutations in
proteins to their respective domain families (mapping was
achieved via UniProt accession and position of the muta-
tion in the respective protein). There are 6512 distinct Pfam
families within the human proteome, covering 71% of all
protein sequences at 45% residue coverage (16). A total of
88 687 labelled mutations were mapped to 3422 Pfam do-
mains (at least one mutation), 63 398 of which were an-
notated as pathogenic (or ‘likely pathogenic’, as annotated
in UniProt), while the remaining 25 289 variants were re-
garded as likely benign. In order to ensure a high quality
of the comparisons, families with <10 curated mutations
in the two classes, i.e. ‘pathogenic’ or ‘neutral’, were ex-
cluded from the benchmarking steps. Three hundred fifty-
two families have at least 10 annotated mutations in each
class, giving a total of 14 916 neutral and 42 161 pathogenic
SAVs. Forty-nine families have been annotated exclusively
with neutral mutations, while 106 families feature only dele-
terious variants (Supplementary Files 1 and 2). In order to
achieve higher data coverage, SAVs could be mapped to the
clan level of the Pfam hierarchy. However, since some clans
are very prominent, the specificity of each protein family
would be lost.

Annotation of Pfam domain families

For each protein family, the corresponding alignment based
on representative proteomes (clustered at sequence identity
of 75%) was extracted from the Pfam database. The align-
ment depth provides a measure of prevalence across refer-
ence proteomes. The number of effective sequences was ob-
tained by redundancy clustering at 80% sequence identity
using CD-HIT (17). JPred4 (18) was used to obtain known
(with the ‘pdb’ option set to true) or predicted secondary
structure. A mapping of Pfam domains to PDB (19) struc-
tures was obtained from the Pfam database (available for
294 of the 352 Pfam families included in the benchmarking
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analysis) (20). For predicting, which prediction tool will of-
fer the highest accuracy in the given protein family, the fol-
lowing characteristic features were extracted from the multi-
ple sequence alignment corresponding to each Pfam: align-
ment depth (number of proteins in the alignment), domain
length and mean weighted Shannon entropy (calculated us-
ing Mstat-X).

Apart from the sequence-based characteristics, we con-
sidered structure-specific data, including fraction of se-
quence annotated with secondary structure elements, frac-
tion of residues forming helices and strands, and features
related to specific inter-residue contacts extracted from the
PDB files. First, contact density was taken as the total num-
ber of contacts normalized by domain length. Second, the
maximum inter-residue contact connectivity was calculated
from the residue connectivity graph [the igraph library was
used for this task (21)]. This feature describes the minimum
number of vertices that have to be removed from the graph
to eliminate all paths between a pair of nodes; it was shown
to correlate with designability (22). Third, relative contact
order is a measure of the locality of the inter-amino acid
contacts in the protein’s native state tertiary structure; it de-
scribes the protein’s compactness and is predictive of folding
rates (23).

Relative contact order is calculated as

CO = 1
L · N

∑N
�Si j ,

where L is the protein length, N is the total number of con-
tacts and �Si j is the separation (in sequence space) between
residues i and j, which are in contact. For the calculation
of the above features, a pair of residues was regarded to be
in contact if the physical distance between the correspond-
ing alpha carbon atoms of the residues was no more than
6 Å; local contacts between residues up to five positions
apart in sequence space were disregarded. The final feature
considered was the network degree (number of interacting
partners) within the domain–domain interaction network
[obtained from the 3did database (24)]. The distributions
of features grouped according to top-performing prediction
methods (limited to the top 8 methods, each of which per-
formed the best in at least 15 families) were tested for statis-
tical significance using the non-parametric Kruskal–Wallis
H-test. The distributions of features attributed to families
annotated exclusively with neutral or exclusively pathogenic
mutations were tested to detect statistically significant dif-
ferences using the non-parametric Mann–Whitney U-test.

Benchmarking the performance of methods

For each Pfam and each prediction tool, a univariate logis-
tic regression model with balanced class weights (samples
were weighted inversely proportional to class frequencies in
the input data) was fitted. The decision boundaries (corre-
sponding to the threshold of pathogenicity) were extracted
directly from the parameters of the fitted model (negative
ratio of the fitted y-intercept and the corresponding regres-
sion coefficient). The accuracy (sum of true positive and
true negative predictions divided by the total number of
predictions) of each prediction tool on the given Pfam was
taken as the mean accuracy obtained over 100 randomly

chosen balanced (equal number of pathogenic and neutral
mutations) subsamples; the standard deviation serves as a
confidence measure for the reported value. Spearman’s cor-
relation coefficients were calculated between the accuracy
achieved and each family’s characteristics.

RESULTS

The top-performing methods differ across families

In protein families [Pfam domains (16)] that were anno-
tated with at least 10 mutations of each class (neutral or
pathogenic), we investigated which methods provide the
highest accuracy of predictions. The performance of tools
across Pfam families is summarized in Table 1 and Figure
1; detailed results for all families analysed independently are
available for inspection in Supplementary File 3.

We found that different methods achieve different lev-
els of accuracy in predicting the deleteriousness of muta-
tions, depending on the particular protein family that is
analysed. Most importantly, however, no single method can
be regarded as reliable in all individual families. CADD (6)
proved to be the top method in most individual Pfam fami-
lies (77 out of 352, 22%) but on average, its accuracy (84%)
was only the second best. Moreover, its performance was
not satisfactory across all families analysed; for example, it
achieved only 34% accuracy on the RING (Really Interest-
ing New Gene) finger, a type of zinc finger domain, which is
among the most prevalent domain families across reference
proteomes. The tool that provided the best accuracy over-
all (85%) is REVEL (25); moreover, most likely owing to
the fact that it is an ensemble method leveraging strengths
of 13 other tools, it yielded one of the highest accuracies
in the worst case (50% in guanylate kinases) and it was
never the worst performing prediction tool across all fami-
lies analysed. A marginally better performance in the worst
case (51% in the ThiF family) was achieved by Polyphen2-
HVAR (26), but overall its average accuracy was consid-
erably lower (76%). As a consequence, our results suggest
that REVEL should be the tool of choice in families for
which the best performing method is unknown. Neverthe-
less, in such cases, the accuracy cannot be guaranteed to ex-
ceed 50%, which still demonstrates room for improvement.
On the other hand, methods that have been found to yield
the worst performance in the highest number of individual
families are GenoCanyon (27), LRT (28), MutationTaster
(29), FATHMM-XF (coding) (30) and FATHMM (5). It
should be noted that most of the aforementioned methods
are among the tools that were developed the earliest. In this
regard, we detected a moderate correlation between predic-
tion accuracy and the tool’s publication date (Spearman’s �
= 0.49, P = 0.01) suggesting that incremental improvements
are constantly being made (Figure 2). However, it must be
noted that the recently developed methods have the advan-
tage of being trained on larger and newer datasets, which
undoubtedly feature a greater overlap with the benchmark
set used in this study. Therefore, their superior performance
may be partly attributed to this bias.

The key observation that we would like to point out is
that across all methods the worst accuracy was achieved in
different Pfam families (with the exception of guanylate ki-
nases, which proved to be the hardest case for three tools).
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Table 1. Performance of methods across families

Number of Pfams

Method With best accuracy With worst accuracy Mean accuracy Worst accuracy Hardest Pfam

CADD 77 2 0.84 0.34 PF00097
REVEL 66 0 0.85 0.50 PF00625
VEST4 54 1 0.83 0.48 PF18199
PrimateAI 29 7 0.78 0.35 PF04732
M-CAP 19 2 0.79 0.34 PF12031
Eigen-PC 15 5 0.78 0.41 PF00625
MetaLR 15 1 0.81 0.45 PF01044
MetaSVM 15 1 0.82 0.46 PF04558
SNAP2 13 2 0.76 0.45 PF04814
FATHMM-XF 8 44 0.66 0.30 PF00396
MVP 8 1 0.77 0.47 PF00531
DEOGEN2 7 3 0.76 0.46 PF01624
Eigen 6 1 0.80 0.43 PF00625
PROVEAN 5 5 0.75 0.41 PF00230
DANN 3 14 0.67 0.40 PF00858
FATHMM-MKL 2 11 0.68 0.40 PF04814
FATHMM 2 30 0.67 0.39 PF00364
MutationAssessor 2 0 0.77 0.50 PF01344
LRT Omega 2 16 0.67 0.27 PF08645
Polyphen2 HVAR 1 0 0.76 0.51 PF00899
Polyphen2 HDIV 1 0 0.74 0.50 PF00622
SIFT4G 1 3 0.72 0.42 PF11577
SIFT 1 2 0.70 0.40 PF00003
GenoCanyon 0 79 0.59 0.39 PF04757
MutationTaster 0 58 0.59 0.43 PF15156
LRT 0 64 0.60 0.33 PF00616

The columns include the method name (from dbNSFP), number of families in which the method achieved the best accuracy, number of families in
which the method achieved the worst accuracy, mean accuracy across all families, worst accuracy in a specific Pfam and the hardest Pfam for this method
(corresponding to the lowest accuracy achieved).

In fact, when using the best performing method in each
family, the accuracy of predictions is universally high––the
mean accuracy is 92% and the lowest accuracy score in any
family is 68% (for the glycoside hydrolase family 22). Figure
3 shows the performance gains achieved by using the best
method in each family, compared with the scores achieved
when sticking to the single tool (CADD) that achieved the
best performance in the highest number of families. Apply-
ing the best performing tool for the given family allows pre-
dicting the effects of mutations with at least 85% accuracy
in 75% of families.

Functional enrichment of families annotated exclusively with
benign or pathogenic variants

In an attempt to gain insight into the characteristics of pro-
tein families that are particularly sensitive, or conversely, ro-
bust to mutations, we performed a functional enrichment
of the Pfam domains annotated exclusively by pathogenic
and neutral mutations, respectively. A domain-centric func-
tional enrichment (31) allows transferring functional anno-
tation from the gene level [as provided by the Gene Ontol-
ogy (32,33)] to protein domains.

The results obtained indicate that protein families, which
are particularly sensitive to mutations, are involved in regu-
lation of transcription, specifically DNA sequence-specific
transcription factor binding and regulation of RNA poly-
merase II activity (Supplementary File 1). This suggests that
enhancing biological complexity through fine regulation of
transcription by DNA sequence-specific binding comes at

the cost of becoming more prone to replication errors. On
the other hand, the relatively robust Pfam domains are
mainly responsible for immune or stress responses (Sup-
plementary File 2). One explanation for this is that these
proteins are very adaptable due to the constantly changing
pressures exerted by external stimuli (e.g. pathogens). How-
ever, it should be noted that the majority of these functions
are necessary for survival only in specific conditions (pres-
ence of external pathogens or stress stimuli) and may not
need to be activated otherwise. Therefore, although muta-
tions of these protein families do not immediately cause dis-
ease, it is questionable whether they do not reduce the host’s
fitness by impeding its ability to withstand environmental
pressures in the event of their occurrence. Therefore, the
available annotation may not always be a complete repre-
sentation of the mutation’s effect.

This points to the need for a better definition of what is
meant by a neutral mutation. Two methods with unique ap-
proaches to the problem of predicting which variants are
neutral, based on their definitions of neutrality, are Pri-
mateAI (34) (aims to predict which variants are evolution-
arily neutral by leveraging additional data on common vari-
ants from primates) and SNAP2 (35) (trained to predict
whether a variant causes any functional effect, rather than
disease itself). Based on the most commonly used definition
of deleteriousness, in which a variant is deemed pathogenic
only if it is directly implicated in causing disease, the latter
method may be underperforming in benchmarks.

On top of this, we observed mild but statistically signif-
icant signals indicating that particularly sensitive protein



NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2 5

Figure 1. Overview of methods with regard to how many individual fami-
lies they are optimal for (blue; optimal = yielding highest accuracy for all
pooled mutations in a given Pfam) or suboptimal for (orange; suboptimal
= yielding lowest accuracy) when predicting the pathogenicity of variants.

families have a higher degree in the domain–domain inter-
action network (Figure 4), while the mutation-insensitive
families are more prevalent across reference proteomes
(Figure 5). The former observation agrees with previous
results indicating that deletions of proteins with a high
protein–protein interaction network degree are more likely
to be lethal (36). This finding is in line with the observation
that mutation-sensitive families are enriched for transcrip-
tion factor binding functions, which are known to have a
high network degree (37)). The latter observation, on the

other hand, may be a reflection of paralogue compensa-
tion (38) (copies of the domain encoded by other genes may
compensate for the loss of a specific instance).

Can we predict which method is optimal for analysing muta-
tions in a specific protein family?

Since the majority of families have not yet been annotated
with curated variants, it is unknown which method is the
most suitable for predicting the pathogenicity of their mu-
tations. We sought to find universal features of protein fam-
ilies that may be informative for identifying the most ac-
curate prediction tool. We investigated the following fea-
tures: prevalence across reference proteomes (measured in
terms of the total alignment depth), number of effective se-
quences in the alignment, domain length, fraction of sec-
ondary structure, fraction of helix, fraction of extended
strands, mean entropy, maximum inter-residue contact con-
nectivity [shown to correlate with designability (22)], con-
tact order (predictive of folding rates) (23), and contact
density. Unsatisfactorily, none of the features tested carry
enough information that would allow predicting the best
method for analysing the pathogenicity of mutations in a
family-specific manner (Supplementary Figures S1–S11).
Additionally, we tested a recently reported abstract embed-
ding of protein sequences in the form of 1024-dimensional
feature vectors (39). For this analysis, the embeddings for
each Pfam were compressed to 16 dimensions by using an
autoencoder, which was trained in a previous step com-
pressing all protein sequences in UniRef50 (40). However,
the unsupervised t-SNE clustering (41) did not show any in-
dication of adding value towards our goal (Supplementary
Figure S12). For the time being, our attempts at predicting
the top-performing method in a family-specific manner re-
main futile; however, as more annotations of pathogenicity
become available, it will be possible to analyse more Pfam
domain families explicitly.

CADD tends to be more accurate in less prevalent protein
families or ones that have fewer interaction partners

We also investigated whether any protein family features
correlate with the achieved prediction accuracies across
methods. In most cases, Spearman’s correlation coefficient
was close to zero, but we found two features exhibiting a
weak negative correlation with the prediction accuracy of
CADD: the tool yields a higher accuracy in protein families
that are less prevalent across reference proteomes (indicated
by a negative correlation between prediction accuracy and
alignment depth: Spearman’s � = −0.2; P = 0.0006; Supple-
mentary Figure S13) and in those families that have fewer
interaction partners (indicated by a negative correlation be-
tween prediction accuracy and number of domain interac-
tion partners in the domain–domain interaction network:
Spearman’s � = −0.22; P = 0.0001; Supplementary Figure
S14). Considering that CADD only relies on the charac-
teristics of the specific genomic locus where the mutation
occurred, this implies that its prediction of pathogenicity
could potentially be improved by adding information ex-
tracted from other members of each protein’s family.
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Figure 2. Mean prediction accuracy across families analysed versus publication date of the tool.

Figure 3. Accuracy for classifying neutral and pathogenic variants mea-
sured for each Pfam independently: as achieved by the overall top-
performing method CADD (green) or the method achieving the highest
accuracy for the given family (orange).

DISCUSSION

Altogether, we have shown that despite the very high over-
all accuracy of most tools for predicting the pathogenicity
of mutations, virtually each method has its Achilles heel, i.e.
the protein families for which its predictions are unreliable.
We have also shown that thanks to the heterogeneity of
the approaches, for all families analysed, there is at least
one prediction tool that provides good levels of reliability.
Nevertheless, predicting which method is optimal in each
particular case proves difficult. This is additionally appar-
ent from the fact that ensemble methods (included in the
analysis) do not alleviate the problem of inaccurate pre-

Figure 4. Distribution of domain–domain interaction network degrees in
families annotated exclusively with pathogenic (red) or neutral (blue) mu-
tations.

dictions in specific families, for which their predictions are
also unreliable. For the time being, we are unable to sug-
gest a method for predicting which tool is optimal for pre-
dicting the pathogenicity of mutations in the families lack-
ing enough already curated data. On average, the safest ap-
proach is to use REVEL, which was shown to achieve an
accuracy of no less than 50% in any Pfam analysed.

The functional enrichment of families annotated exclu-
sively by benign or pathogenic mutations indicates that
functional annotation may be of value in predicting whether
a mutation is implicated in disease. However, doing so will
require caution since functional annotation is highly biased
by the current state of knowledge on the disease. Notably,
worth considering is the definition of neutrality used in the
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Figure 5. Distribution of prevalence across reference proteomes of families
annotated exclusively with pathogenic (red) or neutral (blue) mutations.

annotation of variants, since mutations that do not immedi-
ately cause a disease may not necessarily lack any molecular
effects (42).

The final remark regards the apparent superiority of the
more recently developed methods. In part, it may be at-
tributed to their higher levels of sophistication and design
ingenuity. However, another important factor at play is the
bias in the distribution of variants used in the training of
each individual method (43). Due to the constantly expand-
ing and evolving annotation of SAVs, the training sets used
in the development of the newer methods should be ex-
pected to be more similar to the benchmark dataset used
in this study. It would be interesting to see how much better
(if at all) would the older methods fare following an update
of their parameters to reflect the characteristics of the most
current training set.

The data that support the findings of this study are avail-
able from the corresponding author upon reasonable re-
quest.
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