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Aircraft, as one of the indispensable transport tools, plays an important role in military activities. Therefore, it is a significant task
to locate the aircrafts in the remote sensing images. However, the current object detection methods cause a series of problems
when applied to the aircraft detection for the remote sensing image, for instance, the problems of low rate of detection accuracy
and high rate of missed detection. To address the problems of low rate of detection accuracy and high rate of missed detection, an
object detection method for remote sensing image based on bidirectional and dense feature fusion is proposed to detect aircraft
targets in sophisticated environments. On the fundamental of the YOLOv3 detection framework, this method adds a feature
fusion module to enrich the details of the feature map by mixing the shallow features with the deep features together. Experimental
results on the RSOD-DataSet and NWPU-DataSet indicate that the new method raised in the article is capable of improving the
problems of low rate of detection accuracy and high rate of missed detection. Meanwhile, the AP for the aircraft increases by 1.57%

compared with YOLOV3.

1. Introduction

Object detection for remote sensing images, which is con-
sidered as the focus issue of remote sensing information
processing, exerts an enormous function on aviation and
transportation fields. In the wake of developments in the ac-
quisition technology for remote sensing images, we can obtain
clearer and higher resolution remote sensing images. These
high-resolution images can provide more detailed information,
which can help us better identify and locate the corresponding
target objects. However, in most cases, the scenario of the
aircraft for remote sensing images is usually complex. With the
uneven distribution of background and object, the recognition
difficulty is easily affected by background noise. What’s worse,
the object detection algorithm currently in common use for
remote sensing image has the problems of low rate of detection
accuracy and high rate of missed detection. Therefore, a new
method is needed to propose for object detection.

The initial object detection method is generally com-
posed of three parts, and they are region candidate, feature
extraction, and classifier classification, respectively. Firstly,
the sliding window strategy is used for the candidate regions
of interest. Then, features designed manually, such as Haar
[1], HOG [2], and DPM [3], are used for withdrawing the
candidate regions’ features. Finally, classifiers that have been
previously trained, such as SVM [4] and Adaboost [5], are
utilized for identifying the candidate regions. Traditional
methods for object detection, nevertheless, leveraging the
strategy of the sliding window for region candidate to im-
prove the area selection strategy. The sliding window
strategy is usually blind, needing to design a variety of
different window sizes ahead of time. To ensure that objects
of different sizes can get candidates, it will produce a great
number of redundant candidate windows, leading to the
calculation of ascension. In addition, features designed
manually usually refer to simple geometric features. Feature
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extraction based on features designed manually usually does
not have robustness for objects in complex scenes and
cannot cope well with noise interference caused by the
changeable environment.

In the wake of the progress of deep learning, the method
on the fundamental of convolutional neural network for
object detection has been proposed and widely utilized in a
variety of complex scenes. The methods mentioned above
are usually composed of two categories, namely, one-stage
methods and two-stage methods. One-stage methods, for
instance, YOLO [6], SSD [7], and Retinanet [8], distinguish
the object detection problem as a classification and re-
gression problem without the need to generate candidate
boxes in advance. Instead, images are directly input into the
detection network for feature extraction, and then object
classification and prediction box regression are carried out
simultaneously. Two-stage methods, for instance, R-CNN
[9], SPP-NET [10], FAST R-CNN [11], and Faster R-CNN
[12], firstly guide the generation of candidate boxes through
the predesigned clustering algorithm and then carry out
feature extraction operation on the candidate boxes. Then,
the classification of the target object and the regression of the
prediction box are carried out. One-stage methods, in
contrast to the two-stage methods, without the need to
generate candidate box area, have much smaller amount of
calculation, and the speed is much faster. With the classi-
fication and regression carried out simultaneously, it can
achieve the training for end-to-end. Although the two-stage
methods have lower speeds, with the guidance of the can-
didate boxes, detection accuracy is higher than the one-stage
methods.

A lot of algorithms for aircraft detection have been
developed and applied to different scenes. Wang et al. [13]
aimed at the problem that there were different scale aircraft
objects in the images of remote sensing, establishing a
minitype data set and proposing a multiscale aircraft de-
tection algorithm. Hou et al. [14] aimed at the problem that
infrared aircraft target was a blur and the detection was easy
to be interfered by noise, proposing an improved detection
method for microinfrared aircraft target. Zhiyong et al. [15]
aimed at the problem that LCCD with VHR optimal images
performed poorly because of high intraclass variation and
low interclass variance, presenting an overview of the de-
velopment of LCCD with VHR remote sensing images and
discussing the future challenges and opportunities in ap-
plying VHR remote sensing images in LCCD. Zhiyong et al.
[16] aimed at the problem that existing approaches had
limited capability to capture the objects of varying shapes/
sizes present in an area impacted by the landslide, devel-
oping an algorithm based on automatic adaptive region
extension using very-high-resolution remote sensing im-
ages. Wang et al. [13] aimed at the problem that spaceborne
optical remote sensing images were difficult to obtain and
costly, proposing the aircraft detection algorithm which
could detect aircraft objects with small samples. Li et al. [17]
aimed at detecting the keypoints of aircraft, proposing a
category-aware landmark detection network (CALDN) that
possessed two streams: a classification stream for size cat-
egorization and a localization stream for landmark
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detection. Zhao et al. [18] aimed at the problem that
detecting aircrafts accurately in SAR images was still chal-
lenging due to the effects of the special structures of aircrafts
and the complexity of SAR imaging mechanism, proposing a
novel network called pyramid attention dilated network
(PADN). Lin and Chen [19] aimed at the problem that
whether directly employing a large number of instances with
great variation would lead to a good performance, proposing
a you-only-look-once-v3-based detection process for auto-
matic aircraft detection. Yan et al. [20] aimed at the problem
that while many advanced works had been developed with
powerful learning algorithms in natural images, there still
lacked an effective one to detect aircraft precisely in remote
sensing images, especially in some complicated conditions,
proposing a novel method to detect aircraft precisely, named
aircraft detection using Center-based Proposal regions and
Invariant Features (CPIF). Wu et al. [21] aimed at the
problem that aircraft targets were usually small and the cost
of manual annotation was very high, proposing a simple yet
efficient aircraft detection algorithm called Weakly Super-
vised Learning in AlexNet (AlexNet-WSL). Luo et al. [22]
aimed at the problem that there were several major chal-
lenges in aircraft detection from synthetic aperture radar
(SAR) images, such as the shattered features of the aircraft,
the size heterogeneity, and the interference of a complex
background, proposing an Efficient Bidirectional Path Ag-
gregation Attention Network (EBPA2N). Heiselberg and
Heiselberg [23] aimed at the problem that detecting aircrafts
in satellite images was a challenge when the background was
strongly reflective clouds with varying transparency, pro-
posing a fast and effective detection algorithm that could
find almost all aircrafts above and between clouds in Sen-
tinel-2 multispectral images. Shi et al. [24] aimed at the
problem that it was still a challenge in remote sensing de-
tection due to complex background and multiscale char-
acteristics, proposing a two-stage aircraft detection method
based on deep neural networks, which integrated Decon-
volution operation with Position Attention mechanism
(DPANet). Xu et al. [25] aimed at the problem that the
aircraft to be detected was very small, external environ-
mental factors were easily fused, and the interference of
objects to aircraft had a great impact on the aircraft
characteristics in remote sensing images, proposing a re-
mote sensing aircraft detection method based on deep
learning. Zhou et al. [26] aimed at the problem that the
recent algorithms would miss some small-scale aircrafts
when applied to the remote sensing image, proposing the
Multiscale Detection Network (MSDN), which introduced
a multiscale detection architecture to detect small-scale
aircrafts. Although lots of methods for aircraft detection
have been proposed, there are still many problems when
the methods are applied to the remote sensing images,
needing a more suitable method for aircraft detection in
remote sensing images.

With the intention to address the problem of low rate of
detection accuracy and high rate of missed detection, on the
fundamental of the object detection algorithm of YOLOv3
[27], this paper analyzes the FPN [28] feature fusion module
in YOLOV3 and finds that the feature fusion module only
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fuses the shallow features. Because shallow features and deep
features are not combined effectively, some details will be
lost in the process of detection. Therefore, this paper pro-
poses a bidirectional and dense feature fusion detection
network. The bidirectional and dense feature fusion detec-
tion network fuses the feature map extracted from different
detection layers, making the detailed information of the
shallow features combined with the semantic information of
the deep features, so as to decrease the rate of missed de-
tection and false detection. The main contributions of this
paper are as follows:

(1) To address the problem of low rate of detection
accuracy, this paper proposes the Bidirectional
Feature Fusion Detection Network (BFFDN), which
not only transmits the shallow layers’ detailed in-
formation to the deep layers but also transmits the
deep layers’ semantic information to the shallow
layers, making the feature fusion more sufficient and
increasing the detection accuracy.

(2) To address the problem of the high rate of missed
detection, this paper proposes the Dense Feature
Fusion Detection Network (DFFDN), which not
only shortens the path for feature propagation but
also reduces the loss for feature propagation, making
full utilized of the features and decreasing the missed
detection.

(3) To address the problem mentioned above simulta-
neously, this paper combines the Bidirectional
Feature Fusion Detection Network with the Dense
Feature Fusion Detection Network and name the
novel network structure as the Bidirectional and
Dense Feature Fusion Detection Network
(BDFFDN), which makes the feature fusion more
sufficient and makes fully utilized of the features.

2. Related Work

2.1. YOLOv3 Detection Framework. The YOLOV3 object
detection algorithm adopts Darknet-53 network structure as
the backbone network. The backbone network uses the
residual connection which is used in the ResNet [29] net-
work for reference, so that the problem of gradient disap-
pearance can be avoided while deepening the network’s
depth. In order to eliminate the negative effects brought by
pooling, a stride of 2 convolutional operations is adopted to
replace the pooling operation. The backbone network in-
cludes 5 subsampling operations. The input image has to go
through 5 subsampling operations when passing through the
backbone network, and the output feature image’s size
becomes 1/32 of the original’s. With the intention to en-
hance the prediction of minitype objects, YOLOV3 uses three
different scales of the feature maps for target prediction, and
by leveraging the characteristics of the FPN feature fusion
for reference, the different scales of the feature maps are
spliced together by way of upsampling. The YOLOv3

network structure is shown in Figure 1. As we can clearly
catch from the figure, if the size of the input image is
416 x 416, the backbone network gets Predictl at the 82nd
Layer after convolution of several layers, that is, the 13 x13
detection scale. The feature map at the 82nd Layer gets 32
times subsampling operation, and the feature map is ap-
propriate for detecting max-type objects due to the large
scale receptive field it has. The backbone network performs
an upsampling operation on the 79th layer’s feature map and
performs feature fusion with the 61st layer’s feature map to
obtain the feature map at the 9lst layer. The backbone
network gets Predict2 at the 94th Layer after convolution of
several layers, that is, the 26 x 26 detection scale. The feature
map at the 94th Layer gets 16 times subsampling operation,
and the feature map is appropriate for detecting middle-type
objects due to the middle scale receptive field it has. The
backbone network performs an upsampling operation on
the 91st layer’s feature map and performs feature fusion with
the 36th layer’s feature map to obtain the feature map at the
103rd layer. The backbone network gets Predict3 at the 106th
Layer after convolution of several layers, that is, the 52 x 52
detection scale. The feature map at the 106th Layer gets 8
times subsampling operation, and the feature map is ap-
propriate for detecting minitype objects due to the small-
scale receptive field it has.

The prediction of the boundary box is shown in Figure 2,
where the dark blue box stands for the predicted boundary
box and the light blue box stands for the prior box. The
purpose of the prediction of the boundary box is to forecast
the boundary box’s position through the prior box so that
the predicted position of the boundary box is closer to that of
the real box. The prediction formulas of the boundary box
are shown in the following equations:

b, =0(t,)+cy (1)
by = o(ty) +cy, (2)
b, = p,e", (3)
by, = Pheth’ (4)

where £, f, represent the center point’s coordinates of the
prediction box relative to the center point of the cell, £, t,,
represent the prediction box’s length and width relative to
the prior box, o represents the sigmoid activation function,
o(ty), o(t,) represent the offset based on the upper-left
coordinates of the center point of the rectangle, p,, pj,
represent the length and width of the corresponding a priori
box, c,, c, represents the coordinates of the upper-left
corner of the cell, and b,, b,, b,, b, stand for the prediction
box’s position and the length and the width.

The loss of YOLOV3 is composed of three parts: coor-
dinate loss, confidence loss, and category loss. The formula
of coordinate loss, confidence loss, and category loss is
shown in the following equations, respectively:
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FIGURE 2: Bounding box prediction.
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where 1,4 stands for the weight of coordinate error, A,

represents the weight of no-target error, A,; represents the
weight of target error, A, represents the weight of the
classification error; where S represents the grid size, for the
416 x 416 images, the three grid sizes are 13,26 and 52, re-
spectlvely, where B stands for the bounding boxes” number,
L ]’ stands for if there is a target object in the bounding box at
the j position of the i grid, if there is a target object, then the
value of I °% s 1, otherwise is 0. As well, 1;2°” represents if
there is not a target object in the boundmg box at the j
position of the i grid. If there is not a target object, then the
value of [, 199%) is 1, otherwise is 0, where x, ¥, w, h, ¢, p(c)
stands for the true box's center coordinates, width, height,
confidence, and probability of the category, respectively, X,
9, W, h, ¢, p(c) represent the bounding box’s center coor-
dinates, width, height, confidence, and probability of the
category, respectively, where 2 — w * h represents the scale
factor, the smaller the target object is, the larger the re-
gression loss is, and the stronger the detection effort for
detection the small objects.

2.2. FPN Feature Fusion Module. Because the shallow layers’
features include more detailed information, and the deep
layers” features include more semantic information. With
the process of downsampling constantly, the feature map
will contain more and more semantic information while
with less and less detailed information. However, most
object detection algorithms focus on the deep layers’ features
only and ignore the shallow layers’ features, leading to in-
accurate target positioning.

To settle the problem down, the FPN Feature Fusion
Module is proposed. The FPN Feature Fusion Module is
capable of integrating the shallow layers’ features with the
deep layers’ features by introducing the feature pyramid
structure, making the fused feature map have both the
shallow layers’ detailed information and the deep layers’
semantic information. The FPN Feature Fusion Module is
shown in Figure 3, in which the operation down-
sampling x 0.5 represents 2 times downsampling, Convl,
Conv2, Conv3 represents the 2 times, 4 times, and 8 times
downsampling, respectively, the operation 1 x 1 represents
using the 1x1 convolution size to adjust the number of
channels, the operation 3 X3 represents using the 3x3
convolution size to eliminate the effect of confusion by

Conv3
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- ) 3%3 .
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Down-Sampling OAST Mixl 3 %3 B Predicl
Input
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FiGure 3: FPN feature fusion module.

upsampling, and the operation upsampling x 2 represents
the 2 times upsampling. Mix2 is formed by feature splicing
of Mix3 after 2 times upsampling with Conv2 after 4 times
downsampling, and Mix1 is formed by feature splicing of
Mix2 after 2 times upsampling with Convl after 2 times
downsampling. In this way, the spliced Mix1 and Mix2 not
only contain more detailed information from the shallow
layers but also contain more semantic information from the
deep layers, and then use three feature maps of different
scales, namely, Mix1, Mix2, and Mix3, to make predictions.

3. Proposed Method

3.1. Bidirectional Feature Fusion Module. FPN Feature Fu-
sion Module transmits the shallow features’ detailed infor-
mation to the deep features by means of upsampling, so that
deep features have the shallow features’ detailed information.
However, it does not transfer the deep features’ semantic
information to the shallow features, so that the feature fusion
is not sufficient. With the intention to let the shallow features
have the deep features’ semantic information, this paper
proposes the Bidirectional Feature Fusion Module. The Bi-
directional Feature Fusion Module is shown in Figure 4. The
Bidirectional Feature Fusion Module, based on the FPN
Feature Fusion Module, not only passes the feature of Mix3 to
Conv2 by upsampling to form Mix2 and passes the feature of
Mix2 to Convl by upsampling to form Mix1 but also makes
the feature splice of Mix1’ after 2 times downsampling with
Mix2 to from Mix2' and makes the feature splice of Mix2'
after 2 times downsampling with Mix3 to form Mix3’, and
then using three different scales of feature maps, namely
Mix1’, Mix2', and Mix3', to make predictions. This paper
introduces the Bidirectional Feature Fusion Module into the
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FiGURrE 4: Bidirectional feature fusion module.

YOLOV3 method and names the new method Bidirectional
Feature Fusion Detection Network (BFFDN).

3.2. Dense Feature Fusion Module. The FPN Feature Fusion
Module transmits the shallow features’ detailed information
to the deep features by way of upsampling so that the deep
features have the shallow features’ detailed information.
However, in the process of feature transmission, some fea-
tures and details will be lost due to the upsampling operation
for several times. With the intention to reduce the loss of
features, the Dense Feature Fusion Module is proposed
through the study of DenseNet [30]. The Dense Feature
Fusion Module is shown in Figure 5. The Dense Feature
Fusion Module, based on the FPN Feature Fusion Module,
not only passes the feature of Mix3 to Conv2 by upsampling
to form Mix2 and passes the feature of Mix2 to Convl by
upsampling to form Mix1 but also makes the feature splice of
Mix3 after 4 times upsampling with Conv1 and transmits the
feature information of Mix3 directly to Convl. The operation
shortens the transfer path from Mix3 to Mix2 to Mix1 so that
the feature loss caused by multiple times upsampling is al-
leviated and the feature information of Mix1 is enriched and
then, using three different scales of feature maps, namely
Mix1, Mix2, and Mix3, to make predictions. This paper in-
troduces the Dense Feature Fusion Module into the YOLOv3
method and names the new method Dense Feature Fusion
Detection Network (DFFDN).

3.3. Bidirectional and Dense Feature Fusion Module. To make
the feature map have the shallow features’ detailed infor-
mation and the deep features’ semantic information and
shorten the path of feature propagation, this paper combines
the Bidirectional Feature Fusion Module with the Dense

Feature Fusion Module and formats the Bidirectional and
Dense Feature Fusion Module. The Bidirectional and Dense
Feature Fusion Module is shown in Figure 6. The Bidirec-
tional and Dense Feature Fusion Module has the advantages
of the Bidirectional Feature Fusion Module and the Dense
Feature Fusion Module, making feature splice of Mix3 after
2 times upsampling with Conv2 and making feature splice of
Mix3 after 4 times upsampling with Conv1, making splice of
Mix2 after 2 times upsampling with Convl, making feature
splice of Mix1’ after 2 times downsampling with Mix2 and
making feature splice of Mix1’ after 4 times downsampling
with Mix3, and making feature splice Mix2' after 2 times
downsampling with Mix3, and then using three different
scales of feature maps, namely Mix1’, Mix2', and Mix3', to
make predictions. This paper introduces the Bidirectional
and Dense Feature Fusion Module into the YOLOv3 method
and names the new method Bidirectional and Dense Feature
Fusion Detection Network (BDFFDN).

4. Experiments’ Results and Analysis

4.1. Experimental Environments. The operating system used
in this paper is Ubuntul6.4.0, the processor is Intel(R)
Xeon(R) Silver 4114 CPU @ 2.20 GHz, and the graphics card
is two-piece Quadro P4000. The dataset adopted is the
RSOD-DataSet annotated by Wuhan University [31, 32].
Some examples of the RSOD-DataSet are shown in Figure 7.
RSOD includes four kinds of objects, including aircraft, oil
tank, playground, and overpass and contains a total of 976
pictures, each of which is about 1100 x 900 pixels in size.
And the aircraft contains 446 pictures with a total of 4,993
targets, the oil tank contains 165 pictures with a total of 1,586
targets, the playground contains 189 pictures with a total of
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Ficure 6: Bidirectional and dense feature fusion module.



(c1)
FIGURE 7: Some examples of the RSOD-DataSet. (a, b) Aircraft targets; (¢, d) oil tank targets; (e, f) playground targets; (g, h) overpass targets.

191 targets, and the overpass contains 176 pictures with a
total of 180 targets. The annotation format of the RSOD is
the VOC format, and the annotation is saved in the XML file.
Each picture corresponds to an XML file, which contains the
target object’s position and scale. The position of the target
object is represented by the coordinates of the top left corner
and the bottom right corner. The ratio of the training set to
the test set is 4 to 1. For the aircraft target, the train set
contains 356 pictures and the test set contains 90 pictures. In
the experiment, learning rate attenuation is adopted to
adjust the learning rate. The initial learning rate is 0.001,
momentum is 0.9, weight attenuation is 0.0005, and the
number of iterations is 40200. As the iterations reach the
32000 generations and 36000 generations, respectively, the
learning rate is adjusted to 0.1 and 0.01 of the initial learning
rate, respectively. In this way, the convergence speed of loss
can be adjusted.

4.2. Experimental Results. Loss curve is one of the perfor-
mance indicators to evaluate the object detection algorithm.
Generally speaking, the smaller the loss value of a model is,
the better the model is trained and the better the training
effect will be. The loss comparison of different models is
shown in Figure 8, where the horizontal axis stands for the
loss value and the vertical axis stands for the iteration
number. It can be clearly seen from the figure that the loss
value of different models decreases rapidly between 0 and
2000 iterations. After 3000 iterations, the loss value of
different models gradually tends to be stable and fluctuates
within a certain small range. Between 35000 and 40200 it-
erations, it can be seen that the BDFFDN algorithm is at the
lowest point of loss value, which means that compared with
the YOLOV3 algorithm, BFFDN algorithm, and DFFDN
algorithm, the BDFFDN algorithm has a better training
effect.

IOU Curve is one of the performance indicators to
evaluate the object detection algorithm. IOU stands for the
overlapping area between the predicted boundary box and
the labeled real box, that is, the ratio of their intersection and
union. The closer the value is to 1, the greater the overlap
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FiGure 8: The loss comparison of different models.

area between the predicted bounding box and the labeled
real box will be, and the closer the predicted bounding box is
to the labeled real box. The calculation formula of IOU is
shown in the following equation:

_ Predict N GroundTruth

10U = s
Predict U GroundTruth

(8)

where Predict represents the predicted bounding box
calculated by the network model, GroundTruth represents
the labeled real box. The IOU curve comparison of dif-
ferent models is shown in Figure 9, where the horizontal
axis represents the IOU value, and the vertical axis rep-
resents the iteration number. As can be seen from the
figure, the IOU value fluctuates greatly at the beginning of
training. As the number of iterations increases, the value
of IOU gradually tends to be stable and fluctuates within a
certain range. Compared with the YOLOv3 algorithm,
BFFDN algorithm and DFFDN algorithm, the fluctuation
of IOU of the BDFFDN algorithm is smaller and tends to
0.8.
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FIGURe 9: The IOU curve comparison of different models.

The P-R Curve comparison of different models is shown
in Figure 10, where the horizontal axis represents the
Precision, and the vertical axis represents the Recall. The area
of the P-R curve represents the performance of the model.
Generally speaking, the larger the area of the P-R curve is,
the better the performance of the model is. It can be clearly
seen from the figure that the YOLOV3 algorithm occupies
the smallest area compared with other algorithms, followed
by the BFFDN algorithm, followed by the DFFDN algo-
rithm, and finally BDFFDN algorithm. BDFFDN algorithm
occupies the largest area compared with other algorithms,
which means that the BDFFDN algorithm has the best
performance.

In addition to Precision, Recall, IOU, and other perfor-
mance indicators, F1-ccore, AP, and FPS can also be used as
indicators to evaluate object detection algorithms. For aircraft
object detection, the positive example is aircraft, and the
negative example is the objects other than aircraft. Generally,
we call the correctly classified positive examples TP, the
misclassified positive examples FP, the correctly classified
negative examples TN, and the misclassified negative examples
FN. For the RSOD-DataSet, the aircraft contains 446 images
and a total of 4993 targets. The train set and the test set are
divided according to the ratio of 4 to 1. The performance
indicators of the aircraft test set are shown in Table 1. For the
YOLOV3 algorithm, TP=936, FP=99, FN =116, for the
BFFDN algorithm, TP =990, FP = 44, FN = 62, for the DFFDN
algorithm, TP =998, FP =33, FN =54, and for the BDFFDN
algorithm, TP =997, FP =28, FN =55. It can be clearly seen
from the table that the performance of the BDFFDN algorithm
is higher than that of other algorithms, and the visualization of
the performance indicator comparison chart is shown in
Figure 11. The calculation formulas of performance indexes of
Precision, Recall, F1-Score, and AP are shown in the following
equations, respectively:
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FiGUure 10: The P-R curve comparison of different models.

TP

Precision = ————, 9)
TP + FP
TP
Recall = ————, 10
TP+ EN (10)
F1 — Score = 2 * M, (11)
Precision + Recall

1
AP = J Precision (Recall)dRecall. (12)

0

The contrastive results in the RSOD-DataSet are presented
in Table 2. From Table 2, we are capable of seeing that the mAP
of BDFFDN is 91.41%, which increases by 18.44%, 16.34%,
15.55%, 15.43%, 14.83%, 13.62%, 3.65%, 3.49%, 3.08%, 2.68%,
and 1.99% compared with SSD, DSSD, FESSD, ESSD, DC-
SPP-YOLO, UAV-YOLO, FRCN, DConvNet, MRFF-YOLO,
Improved-YOLOv3, and SigNMS, respectively. The results
demonstrate that our proposed method has superior perfor-
mance than other algorithms. Although the index of FPS is not
very high compared with other algorithms and the AP for
overpass is not the highest among the algorithms, it could still
meet the basic demand for aircraft detection.

As shown in Figure 12, there are 20 images for com-
paring the detection result of YOLOv3 with BDFFDN.
Among these images, the 1st column and the 2nd column are
the detection result of YOLOV3, and the 3rd column and the
4th column are the detection result of BDFFDN. From
Figure 12, we can clearly see that the objects in the images are
mostly in small size, and the objects are distributed densely,
which increases the difficulty of detection. The detection
result of YOLOv3 has shown the result that YOLOv3 has
defectiveness when detecting the small-size objects and
missing the small-size objects, while our proposed method
has detected the objects missed by YOLOv3. This
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TaBLE 1: The performance indicators of the aircraft test set.
TP FP FN Precision (%) Recall (%) Fl-ccore (%) 10U (%) AP (%) FPS

YOLOV3 936 99 116 90.43 88.97 89.70 67.42 89.24 30
BFFDN 990 44 62 95.74 94.11 94.92 75.68 90.21 28
DFFDN 998 33 54 96.80 94.87 95.82 76.00 90.77 28
BDFFDN 997 28 55 97.27 94.77 96.00 78.59 90.81 26
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FiGure 11: The visualization of performance indicator comparison chart.
TasLE 2: The contrastive results in the RSOD-DataSet.
AP (%)
Method Backbone ) ) FPS
Aircraft Oil tank Overpass Playground mAP

SSD [7] VGG-16 69.17 71.20 70.23 81.26 72.97 61.5
DSSD [33] ResNet-101 72.12 72.49 72.10 83.56 75.07 6.1
FFSSD [34] VGG-16 72.95 73.24 73.17 84.08 75.86 38.2
ESSD [35] VGG-16 73.08 72.94 73.61 84.27 75.98 37.3
DC-SPP-YOLO [36] Figure 5 in [35] 73.16 73.52 74.82 84.82 76.58 33.5
UAV-YOLO [37] Figure 1 in [36] 74.68 74.20 76.32 85.96 77.79 30.12
FRCN [12] VGG-16 85.85 86.67 88.15 90.35 87.76 6.1
DConvNet [38] ResNet-101 71.87 90.35 89.59 99.88 87.92 6.7
MRFF-YOLO [39] Figure 5 in [38] 87.16 86.56 87.56 92.05 88.33 25.1
Improved-YOLOV3 [40] Figure 3 in [39] 86.42 87.57 89.37 91.56 88.73 25.8
SigNMS [41] VGG-16 80.60 90.60 87.40 99.10 89.40 6.7
BDFFDN (ours) Figure 6 90.81 90.73 84.12 100.00 91.41 26

demonstrates that our proposed method, BDFFDN, has
better performance when detecting the small-size objects for
remote sensing images than YOLOV3.

4.3. Extended Experiments. With the intention to prove the
algorithm’s generality and generalization, besides the ex-
periments in the RSOD-DataSet, we also do the experiments
in the NWPU-DataSet. The NWPU-DataSet [42-44] is a
remote sensing dataset used for object detection, which
consists of ten kinds of objects, including airplane, ship,
storage tank, baseball diamond, tennis court, basketball
court, ground track field, harbor, bridge, and vehicle. It

contains a total of 800 pictures, of which 650 pictures were
used for the positive image set and 150 pictures used for the
negative image set. The ratio of the training set to test set is 4
to 1. The total number of iterations is 40200 generations, the
learning rate is initialized to 0.001, and the method of
constant attenuation is adopted. As the iterations reach the
32000 generations, the learning rate is 0.0001, and as the
iterations reach the 36000 generations, the learning rate is
0.00001.

The contrastive results in the NWPU-DataSet are pre-
sented in Table 3. From Table 3, we are capable of seeing that
the mAP of BDFFDN is 88.99%, which increases by 43.08%,
24.88%, 21.49%, 16.36%, 12.59%, 12.49%, 11.49%, 9.89%,
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F1GURE 12: The comparison results of YOLOv3 and BDFFDN in the RSOD-DataSet. (al-al0) the detection results of YOLOv3; (b1-b10) the
detection results of BDFFDN.

TaBLE 3: The contrastive results in the NWPU-DataSet.

Method

AP (%) EB-V-F- ? C]?I\_T CPISNet* RICNN FRCN R-P-F NEOON DConvNet DNN BDFFDN

BR [45] (46] [47] [44] [12] RCN [48] [49] [37] [50] (ours)
Airplane 47.85 69.38 43.10 88.35 82.80 90.40 78.29 87.30 92.40 99.02
Shﬂ) 35.41 61.82 58.20 77.34 77.50 75.00 81.68 81.40 79.30 78.89
SUHagetank 63.52 69.66 74.60 85.27 52.50 44.40 94.62 63.60 87.10 90.67
B.aseball 4291 62.58 86.20 88.12 96.30 89.90 89.74 90.40 93.20 90.68
diamond
Tennis court 52.47 61.23 74.50 40.83 62.90 79.70 61.25 81.60 81.00 90.91
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TasLE 3: Continued.
Method

AP (%) EB-V-F- ?3\’1 CPISNet* RICNN FRCN  R-P-F  NEOON DConvNet DNN  BDFEDN

BR [45] [46] [47] [44] RCN [48] [49] [37] [50] (ours)
fjfll;ftbau 55.57 7321 83.60 58.45 68.80 77.60 65.04 74.10 89.30 81.50
g;?iund track 47 47 75.28 92.50 86.73 98.40 87.70 93.23 90.30 75.80 100.00
Harbor 39.85 57.83 66.60 68.60 82.50 79.10 73.15 75.30 72.50 90.70
Bridge 36.83 53.77 35.70 61.51 78.80 68.20 59.46 71.40 72.80 86.23
Vehicle 37.26 56.38 59.70 71.10 63.80 73.20 78.26 75.50 83.00 81.30
mAP 45.91 64.11 67.50 72.63 76.40 76.50 77.50 79.10 82.60 88.99

(29) (al0)

(b8)

(b9) (b10)

FIGURE 13: The comparison results of YOLOv3 and BDFFDN in the NWPU-DataSet. (al-al0) the detection results of YOLOv3; (b1-b10)

the detection results of BDFFDN.

6.39% compared with EB-V-F-BR, AD-FCN, CPISNet*,
RICNN, FRCN, R-P-FRCN, NEOON, DConvNet, and
DNN, respectively. The results demonstrate that our pro-
posed method has superior performance than other algo-
rithms. Although the AP for ship, storage tank, baseball
diamond, basketball court, and vehicle is not the highest
among the algorithms, it could still be acceptable.

As shown in Figure 13, there are 20 images for com-
paring the detection result of YOLOv3 with BDFFDN.
Among these images, the 1st column and the 2nd column are
the detection result of YOLOV3, and the 3rd column and the
4th column are the detection result of BDFFDN. Through
the comparison of the detection result, we are capable of
seeing that our method has detected the objects YOLOV3
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missed, which demonstrates our method has superior
performance than YOLOV3.

5. Conclusions

This paper focuses on the issues of low rate of detection
accuracy and high rate of missed detection and finds that the
FPN Feature Fusion Module has the problem of insufficient
tusion of shallow layers and deep layers through the research
of the FPN Feature Fusion Module, which will lead to an
insufficient combination of the shallow features’ detailed
information and the deep features’ semantic information, and
thus lead to inaccurate positioning of small targets, proposing
the Bidirectional and Dense Feature Fusion Detection Net-
work and carrying out the experiments on the RSOD-DataSet
and NWPU-DataSet. Experimental data show that the pro-
posed Bidirectional and Dense Feature Fusion Detection
Network is significantly better than the YOLOV3 object de-
tection algorithm in Precision, Recall, F1-score, IOU, AP, and
other performance indicators, and detects various small
targets that YOLOV3 object detection algorithm cannot de-
tect. With the increase of the detection accuracy and the
decrease of missed detection, the computation cost of the
method has increased and the detection speed has decreased.
In the future direction, how to decrease the computation cost
while increasing the detection accuracy will be researched.
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