
PROCEEDINGS Open Access

Protein-protein docking on hardware accelerators:
comparison of GPU and MIC architectures
Takehiro Shimoda1,2, Shuji Suzuki1,2,3, Masahito Ohue1,2,3, Takashi Ishida1, Yutaka Akiyama1,2*

From The Thirteenth Asia Pacific Bioinformatics Conference (APBC 2015)
HsinChu, Taiwan. 21-23 January 2015

Abstract

Background: The hardware accelerators will provide solutions to computationally complex problems in
bioinformatics fields. However, the effect of acceleration depends on the nature of the application, thus selection
of an appropriate accelerator requires some consideration.

Results: In the present study, we compared the effects of acceleration using graphics processing unit (GPU) and
many integrated core (MIC) on the speed of fast Fourier transform (FFT)-based protein-protein docking calculation.
The GPU implementation performed the protein-protein docking calculations approximately five times faster than
the MIC offload mode implementation. The MIC native mode implementation has the advantage in the
implementation costs. However, the performance was worse with larger protein pairs because of memory limitations.

Conclusion: The results suggest that GPU is more suitable than MIC for accelerating FFT-based protein-protein
docking applications.

Introduction
Many recently developed hardware accelerators, such as
ClearSpeed, Cell Accelerator Board, and GRAPE, were
developed for specific purposes, but graphics processing
units (GPUs) have currently become the most popular
because of their excellent performance and simple pro-
gramming environments, such as NVIDIA’s CUDA and
OpenCL [1].
Many integrated core (MIC) architectures are hardware

accelerators developed by Intel, which have been released
recently as the Xeon Phi co-processor. Similar to a GPU,
MIC includes many tiny computing cores. However, the
core can be used in the same ways as a general CPU
core. MIC is one of the main architectures used in cur-
rent supercomputing systems [2]. For example, Tianhe-2
at the National Super Computer Center in Guangzhou,
China, has 48,000 MIC boards and it was the “fastest”
supercomputer in the world in June 2014 [3]. However,

the TOP500 ranking only shows that MIC has good per-
formance when solving LINPACK benchmark problems
and it is still not known whether MIC can accelerate real
applications, because acceleration depends on the nature
of the application and the accelerator.
Thus, the actual applications should be considered

during evaluations of hardware accelerators.
At present, various applications have been mapped

onto accelerators. In particular, GPU-based applications
have been developed in various research fields, including
genome analysis [4,5], molecular dynamics simulations
[6,7], and quantum chemistry calculations [8,9]. By con-
trast, only a few MIC applications have appeared, such as
molecular dynamics simulations [10] and genome-wide
association studies [11], which means that it is difficult to
compare the performance of GPU and MIC in real appli-
cations based on previous studies.
In the present study, we evaluated the performance of

GPU and MIC using protein-protein docking calcula-
tions, which is a real-world application in computational
biology. Protein-protein docking is a method used to pre-
dict protein complex structures based on monomeric
protein structures. At present, the most popular docking

* Correspondence: akiyama@cs.titech.ac.jp
1Department of Computer Science, Graduate of Information Science and
Engineering, Tokyo Institute of Technology, 2-12-1 W8-76, Ookayama,
Meguro-ku, 152-8550 Tokyo, Japan
Full list of author information is available at the end of the article

Shimoda et al. BMC Systems Biology 2015, 9(Suppl 1):S6
http://www.biomedcentral.com/qc/1752-0509/9/S1/S6

© 2015 Shimoda et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:akiyama@cs.titech.ac.jp
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

methods employ rigid-body docking using a voxel-based
representation in a three-dimensional (3D) grid space
with a discrete convolution-based scoring function,
where the fast Fourier transform (FFT) is employed to
speed up the calculations [12-14]. FFT-based protein-
protein docking needs only a few minutes to compute a
protein pair, although the performance is not adequate
for large-scale interactome predictions, which require
docking calculations for millions of protein pairs. Thus,
further acceleration is still required.
In this study, we used MEGADOCK [15,16], which is a

FFT-based protein- protein docking program developed
by our group, and we mapped the docking calculations
onto GPU and MIC. Next, we compared the acceleration
obtained with these accelerators and evaluated the best
method for the acceleration of FFT-based real-world
applications. In addition to the computational perfor-
mance, we also considered the implementation costs.

MEGADOCK
MEGADOCK is a protein-protein interaction prediction
system that uses FFT-based protein-protein docking
based on the Katchalski-Katzir algorithm [12]. MEGA-
DOCK was implemented in C++. MEGADOCK evaluates
each docking pose based on three types of score function,
i.e., shape complementarity, electrostatic interactions,
and the desolvation free energy. It calculates these func-
tions using a single FFT calculation and is much faster
than the well-known docking program ZDOCK [13],
which requires eight FFT calculations. MEGADOCK has
already been parallelized using MPI and OpenMP for
multiple combinations of protein pairs [16,17].
Figure 1 shows the flow of the docking processes in

MEGADOCK, where the flow is based mainly on the
Katchalski-Katzir algorithm. In the Katchalski-Katzir
algorithm, the pseudo-interaction energy score (the
docking score S) between a receptor protein and a
ligand protein is calculated as the convolution of two
discrete functions using N3-point forward FFT and
inverse FFT (IFFT), as follows:

S(t) =
∑

v∈V
R(v)L(v + t) (1)

= IFFT[FFT[R(v)] ∗ FFT[L(v)]], (2)

where R and L are the discrete score functions of the
receptor and ligand proteins, respectively, v is a coordi-
nate in the 3D grid space V, t is the parallel translation
vector of the ligand protein, * is the complex conjuga-
tion operator, and N , which is referred to as the FFT
size, is double the size of the grid. The discrete score
functions R and L are based on shape complementarity
(rPSC model [15]), electrostatic interactions (FTDock

potential [18]) and desolvation free energy (RDE model
[19]). To identify the best docking pose, the possible
ligand orientations are examined exhaustively at nθ rota-
tion angles with a given step size θ. For each rotation,
the ligand protein is translated into N/2 × N/2 × N/2
voxels in the V grid space (where N/2 is an edge of V).
The decoy (relative conformation model of the receptor
and ligand) that yields the highest value of S for each
rotation is recorded. In this method, a total of nθ × N3

docking poses are evaluated for one protein pair. To
execute the simple convolution sums in eq. (1) directly,
O(N6) calculations are required, although this is
reduced to O(N3 log N) using the FFT in eq. (2). The
FFT-based docking calculation comprises the following
processes: initialization (P1), receptor voxelization (P2),
forward FFT of a receptor (P3), ligand voxelization (P4),
forward FFT of a ligand (P5), convolution (P6), inverse
FFT (P7), identifying the best solutions (P8), and post
processes (P9), as shown in Figure 1. Processes (P4)-(P8)
are looped nθ times. MEGADOCK uses an nθ value of
3,600 as the default setting. Table 1 shows the propor-
tions of the docking calculation time required by each
process in MEGADOCK. This profile was obtained
based on the docking calculation of a protein complex
(Protein Data Bank (PDB) [20] ID: [PDB:1JK9]; receptor:
CCS metallochaperone (243 residues), ligand: SOD1
superoxide dismutase (153 residues)). The FFT size N of
the docking calculation was 128, which is typical in the
current protein structure database. The profile was
obtained using an Intel Xeon E5-2670 2.60 GHz, one
CPU core. FFT processes (P5 and P7) accounted for
most of the processing time (75.9%). However, other
calculations, such as voxelization and identifying the
best solutions, still accounted for considerable propor-
tions of the total time.

GPU implementation
To compare GPU and MIC, the MEGADOCK program
should be mapped onto both GPU and MIC. The MIC
implementation was newly implemented for this study.
For GPU implementation, we used MEGADOCK-GPU
developed in the previous study [21]. In this section, we
provide a brief description of the GPU implementation.
We implemented the following processes on a GPU: for-
ward FFT of a receptor (P3), ligand rotation and voxeli-
zation (P4), forward FFT of a ligand (P5), convolution
(P6), inverse FFT (P7), and identifying the best solutions
(P8). The details of each implementation are described
in the following sections.
In ligand rotation process (P4), the atomic coordinates

of a ligand are updated according to a given rotation
matrix. The process is independent for each atom and it
can be fully parallelized. We mapped the atomic coordi-
nates onto a GPU. In ligand voxelization process (P4),

Shimoda et al. BMC Systems Biology 2015, 9(Suppl 1):S6
http://www.biomedcentral.com/qc/1752-0509/9/S1/S6

Page 2 of 10

MEGADOCK sets a suitable rPSC score, electrostatic
interaction values, and desolvation free energy scores for
the ligand voxel model during this process. Ligand voxe-
lization calculates the distance between the coordinates
of an atom and each grid, before assigning a value to
each grid within the van der Waals radius of the atom.
The assignment process can be parallelized for each
atom. The rPSC score and the desolvation free energy
score of a ligand has only binary states (0 or 1), and the
electrostatic interaction value of a grid is calculated as
the cumulative sum of the values of all adjacent atoms,

thus the calculation order for each atom can be
exchanged freely. Therefore, we processed the atoms in
parallel and mapped them onto a GPU. Thus, multiple
atoms were processed simultaneously on different GPU
cores in this process. In FFT processes (P3, P5, P7), single
precision complex 3-dimentional FFT is performed using
the NVIDIA cuFFT library to map the FFT calculations
onto a GPU. In convolution process (P6), the output of
FFT of receptor voxel is complex conjugated and multi-
plied by the output of FFT of ligand voxel. The convolu-
tion can be independent for each grid, thus we mapped

Figure 1 Process flow of FFT-based protein-protein docking tools.

Shimoda et al. BMC Systems Biology 2015, 9(Suppl 1):S6
http://www.biomedcentral.com/qc/1752-0509/9/S1/S6

Page 3 of 10

them onto a GPU. In identifying the best solutions pro-
cess (P8), the best docking pose was selected according
to the docking score. This process was also implemented
on a GPU using reduction.
In our implementation, the transfer of large volumes

of data from a host to a GPU occurred only once. These
data comprised the original atom coordinates of a ligand
and the Fourier transformed receptor grid information,
which were transferred first. Only trivial volumes of
data transfer were required (12 bytes for angular infor-
mation and 8 bytes for the calculation results) in the
loop for each ligand rotation angle.

Rotation of the ligand
In this process, the atomic coordinates of a ligand are
updated according to a given rotation matrix. The process
is independent for each atom and it can be fully paralle-
lized. We mapped the atomic coordinates onto a GPU.

Ligand voxelization
MEGADOCK sets a suitable rPSC score, electrostatic
interaction values, and desolvation free energy scores for
the ligand voxel model during this process. Ligand voxeli-
zation calculates the distance between the coordinates of
an atom and each grid, before assigning a value to each
grid within the van der Waals radius of the atom. The
assignment process can be parallelized for each atom. The
rPSC score and the desolvation free energy score of a
ligand has only binary states (0 or 1), and the electrostatic
interaction value of a grid is calculated as the cumulative
sum of the values of all adjacent atoms, thus the calculation
order for each atom can be exchanged freely. Therefore, we
processed the atoms in parallel and mapped them onto a
GPU. Thus, multiple atoms were processed simultaneously
on different GPU cores in this process.

Forward and inverse FFT
We used the NVIDIA cuFFT library [22] to map the
FFT calculations onto a GPU.

Convolution
The convolution can be independent for each grid, thus
we mapped them onto a GPU.

Identifying the best solutions
In this process, the best docking pose was selected
according to the docking score. This process was also
implemented on a GPU using reduction.

Data transfer
In our implementation, the transfer of large volumes of
data from a host to a GPU occurred only once. These data
comprised the original atom coordinates of a ligand and
the Fourier transformed receptor grid information, which
were transferred first. Only trivial volumes of data transfer
were required (12 bytes for angular information and 8
bytes for the calculation results) in the loop for each ligand
rotation angle.

MIC implementation
The MIC architecture can be used in two different modes.
In the offload mode, only specific sections of the program
are executed on the MIC and the user has to add pragmas
in the code to organize the data transfer and paralleliza-
tion. In the native mode, the program is executed on the
MIC alone and there is no need to change the source code
of existing applications if the program is parallelized using
OpenMP.
We accelerated protein-protein docking calculations by

utilizing MIC in both the offload and native modes.
MEGADOCK has already been parallelized by looping the
rotational angles of the ligand protein using OpenMP and
it can be run in parallel on a multi-core CPU. Thus, the
native mode implementation parallelizes the looping of the
rotational angles, whereas the offload mode implementa-
tion is parallelized during each docking calculation process.

Offload mode
In the offload mode implementation, we mapped the
most intensive processes, i.e., from (P4) to (P8), onto the
MIC architecture in a similar manner to the GPU imple-
mentation. Processes such as ligand atom rotation, voxe-
lization, and convolution were parallelized in the same
manner as the GPU implementation with OpenMP. The
process used to identify the best solution was accelerated
with the “reduction” pragma in OpenMP. The Intel Math
Kernel Library (MKL) was used to perform the FFT cal-
culations. On MIC, the FFT calculations were parallelized
automatically and the number of threads was optimized
to the FFT size.

Native mode
In the native mode implementation, we did not change
the program, but added the compile option. In contrast

Table 1 Docking calculation time profile using a one CPU
core (PDB ID: [PDB:1JK9])

Time [sec.] Ratio [%]

P1. Initialization 0.0 0.0

P2. Receptor voxelization 0.3 0.2

P3. Forward FFT of receptor 0.1 0.0

P4. Ligand rotation & voxelization 12.9 6.9

P5. Forward FFT of ligand 69.8 37.5

P6. Convolution 27.4 14.7

P7. Inverse FFT 71.5 38.4

P8. Identifying best solutions 4.3 2.3

P9. Post processes 0.0 0.0

Total 186.4 100.0

Shimoda et al. BMC Systems Biology 2015, 9(Suppl 1):S6
http://www.biomedcentral.com/qc/1752-0509/9/S1/S6

Page 4 of 10

to the offload mode and the GPU implementation, the
native mode implementation did not require data trans-
fer from the host to the MIC. However, the serial sec-
tions in the program may have operated more slowly
compared with that when running on a CPU because
the clock of the MIC cores was slower than that of the
CPU. In addition, a problem occurred in the native
mode when the docking target was a large protein pair.
This was because the parallelization of the loop used for
rotational angles required per-thread memory. Thus, the
largest memory requirements were for the input and
output of the FFT, which were specific to each thread.
The FFT requirements were:

Memory requirements for FFT on one thread

=
(
input array + output array

)

× size of complex float type × N3

= 16N3 bytes

on each thread, where N is the number of 3D FFT points.
Thus, if all 240 threads were used, 240 × 16N3 bytes of
memory were required. However, the Xeon Phi 5110P,
which is a product of MIC architecture, has an onboard
memory of 8 GB. Therefore, N could be up to 127 because
N = 3

√
8 × 109 bytes/240 threads/16 = 127.7 . . . (this was

actually smaller). Thus, even if we only used 60 threads, the
FFT size would have been less than 202, because
N = 3

√
8 × 109 bytes/60 threads/16 = 202.7 Unfortu-

nately, the FFT sizes of many proteins exceed 127. Figure 2
shows the distribution of the FFT sizes of proteins that are
experimentally determined by X-ray diffraction and regis-
tered in the PDB (as of April 16, 2013). For over 46.8% of

the proteins, the current MIC specification would not uti-
lize all of the computing cores to perform docking calcula-
tions in the native mode.

Experiments
To evaluate the acceleration of protein-protein docking
application using accelerators, we measured the MEGA-
DOCK execution performance using CPUs, a GPU, and
a MIC. We also compared the performance of the MIC
offload and native modes. We used the following five
conditions in the comparisons: docking calculation
using one CPU core (“1CPU”), docking calculation using
an OpenMP implementation and the eight CPU cores
included in a CPU socket (“8CPUs”), GPU-accelerated
docking calculation using one GPU and one CPU core
(“GPU”), docking calculation accelerated by the MIC
offload mode implementation using one MIC and one
CPU core (“MICoffload”), and docking calculation exe-
cuted on a MIC using an OpenMP implementation and
the MIC native mode (“MICnative”). Table 2 shows the
difference of parallelization among each implementation.
To evaluate the time required for the calculations in

each condition, we performed docking calculations for
the same dataset using each system. We used the getti-
meofday() function to measure the calculation time.
All of the conditions were compared based on three

metrics: the performance with large-scale benchmark
dataset, the performance with protein pairs of different
sizes, and the acceleration rate of each process. For large
proteins, as mentioned earlier, it was impossible to exe-
cute docking calculations using the MIC native mode
implementation with all of the MIC cores because of the
memory limitations of the Xeon Phi coprocessor. Thus,

Figure 2 FFT size of the proteins registered in the PDB (experimentally determined by X-ray diffraction, 78,958 structures).

Shimoda et al. BMC Systems Biology 2015, 9(Suppl 1):S6
http://www.biomedcentral.com/qc/1752-0509/9/S1/S6

Page 5 of 10

the number of threads was adjusted according to the pro-
tein size when we used the MIC native mode.

Computational environment
The specifications of the computation nodes are shown
in Table 3. The CPU/MIC node was used to measure
the performance of “1CPU,” “8CPUs,” “MICoffload,” and
“MICnative,” and the performance of “GPU” was mea-
sured using the GPU node.

Performance evaluation using benchmark dataset
We retrieved 352 protein complex structures from a stan-
dard protein-protein docking benchmark set (ZLAB Bench-
mark 4.0) [23], which contained bound and unbound forms
of the protein structures. The proteins sizes were distributed
widely in the dataset (from 128 residues to 2,604 residues)
and it represented a fairly sampled subset of the current
known protein structure complexes.
Figure 3 and Table 4 show the total docking calcula-

tion time results for the dataset. MEGADOCK was par-
allelized previously using OpenMP and it provided good
acceleration with multicores, as reported in our previous
study [17]. With this dataset, it achieved a 6.3-fold
speed up using eight CPU cores. GPU and MIC also
accelerated the protein docking calculations. Using a
GPU, the docking calculations were 15.1 times faster
than the calculations with a CPU core alone. With a
GPU, the acceleration was more than double that
obtained with eight CPU cores, i.e., a CPU socket. By
contrast, the acceleration rates were increased by 3.3-
fold and 5.2-fold with the MIC offload mode and MIC
native mode, respectively, which were much lower than
the improvements obtained with the GPU. The MIC
native mode was faster than the MIC offload mode but
slower than a CPU socket.

Performance with proteins of different sizes
To test the relationship between the FFT size and the
speed up with the accelerators, we evaluated the perfor-
mance with three protein pairs of different sizes. Figure 4
shows images of the three protein pairs, where the orange
proteins are receptors and the green proteins are ligands.
Table 5 shows the details of each protein and the docking
calculation time required for the three protein pairs. The
FFT size depended on the size of the protein and “med-
ium” indicates a typical protein and FFT size. The FFT
size affected the computational costs directly.
For a small-sized protein pair, the acceleration rates

obtained with GPU and MIC were less than those with lar-
ger proteins. “GPU” achieved only a 6.6-fold speed up com-
pared with “1CPU” in this case. “MICnative“ was 5.0 times
faster than “1CPU” and it was faster than “8CPUs,” but
“MICoffload“ was even slower than “1CPU.” This was
because the memory offload overhead became large in this
case and small FFT calculations were inefficient in the MIC.
For a medium-sized protein pair, the GPU calculation

achieved a 17.3-fold speed up compared with the one
CPU core, which was much greater than that for a small-
sized protein. Because the processes such as FFT and
convolution, which show better speedup using accelera-
tors as shown in Table 6 account for larger part of the
calculation time in larger protein pairs. The acceleration
obtained with MIC was also greater than that with a
small-sized protein but it was smaller than “GPU”. “MIC-
native“ and “MICoffload“ yielded 7.0-fold and 2.4-fold speed
ups compared with “1CPU,” respectively. One of the rea-
sons why “MICnative“ was not effective in accelerating the
calculations was that only 171 threads were used because
of the memory limitations on the MIC.
For large-sized protein pairs, the GPU calculations

achieved 17.8-fold speed up compared with the one

Table 2 Difference of parallelization among GPU and MIC offload and native implementations (nth is number of MIC
threads)

Target of parallelization #threads used for one ligand angle Consumption of accelerator memory

GPU Each process in one ligand angle All GPU threads For only one ligand

MICoffload Each process in one ligand angle All MIC threads For only one ligand

MICnative Loop of rotational angles of ligand One MIC thread For nth ligands

Table 3 Computational environment

CPU/MIC node GPU node

CPU Intel Xeon E5-2670, 2.60 GHz (8 cores) Intel Xeon X5670, 2.93 GHz (6 cores)

Memory 54 GB 64 GB

Accelerator Intel Xeon Phi 5110P, 1.05 GHz (60 cores) NVIDIA Tesla K20X, 0.73 GHz (2,688 CUDA cores)

Accelerator memory 8 GB 6 GB

OS CentOS 6.3 SUSE LES 11 SP1

Compiler Intel C++ Compiler 13.0 Intel C++ Compiler 13.0

FFT library Intel MKL 11.0 cuFFT (CUDA 5.0)

Shimoda et al. BMC Systems Biology 2015, 9(Suppl 1):S6
http://www.biomedcentral.com/qc/1752-0509/9/S1/S6

Page 6 of 10

CPU core and the acceleration rate was almost same as
that with a medium-sized protein pair. For a large-sized
protein pair, “MICnative“ was only 3.6 times faster than
“1CPU” and it was much smaller compared with the
small-sized protein pairs. This was because only 38
threads could be used for the large-sized protein pairs
because of the MIC memory limitations. On the other
hand, “MICoffload“ was relatively fast and it achieved a
6.1-fold speed up compared with “1CPU,” which was
comparable to eight CPU cores.
Overall, GPU implementation delivered the most effi-

cient performance with various protein pair sizes. MIC
native mode implementation delivered better perfor-
mance with small- and medium-sized protein pairs, but
its performance was worse with large-sized proteins due
to the MIC memory limitations.

Acceleration rate for each process
Table 6 shows the profile of docking calculation time
obtained with each system. The FFT calculations (P5 and
P7) were speeded up greatly by the accelerators. In parti-
cular, the speed of the FFT calculations on the GPU was
over 30 times faster than those on one CPU core. How-
ever, the FFT calculations were accelerated much less
using the MIC than the GPU, even when using the native
mode. This is one of the reasons why the GPU delivered
much better acceleration than the MIC. In addition, cur-
rent MIC systems require more time for data transfer
between the host and the accelerator compared with a

GPU. Each memory offload by the MIC incurred large
overheads and the docking calculations required 3,600
data transfers, although the data size was approximately
200 bytes and there was a small difference in the data
transfer speed with the GPU and the MIC. In addition,
both the GPU and MIC required the initialization of the
accelerators before they could be used, which may have
been a bottleneck, especially with small-sized protein
pairs.

Discussion
Effects of the different computational environments
In this study, we used different nodes to compare the per-
formance of the GPU and MIC. To test MIC, we used a
Xeon E5-2670, which was faster than Xeon X5670 used
for testing the GPU. However, “GPU” performed almost
all of the processes on the GPU so the difference in the
performance of the CPU was largely irrelevant with
respect to the calculation time. Indeed, the calculation
time with “GPU” was almost the same even when we used
six CPU cores and one GPU card (9.77 seconds for
[PDB:1JK9]). Furthermore, “GPU” achieved the best per-
formance in all of the experiments. Thus, even if X5670
had been replaced with E5-2670, the results of the com-
parison would not have changed.

Implementation costs
In addition to the computational speed, the costs of map-
ping a program onto the accelerators are also important
when evaluating the accelerators. Learning a new lan-
guage to implement a program on accelerators is a
demanding task. GPU computing requires a novel pro-
gramming technique, such as CUDA, whereas a program
is ready-to-use with MIC if it is implemented in C, C++,
and OpenMP. Thus, we considered the time and effort

Figure 3 Acceleration rate for each system based on the total docking calculation time for 352 protein complexes.

Table 4 Total docking calculation times for 352 protein
complexes

1CPU 8CPUs GPU MICoffload MICnative

Total docking time [hour] 30.8 4.9 2.0 9.4 6.0

Shimoda et al. BMC Systems Biology 2015, 9(Suppl 1):S6
http://www.biomedcentral.com/qc/1752-0509/9/S1/S6

Page 7 of 10

required to port a code onto a GPU and a MIC, including
the offload and native modes.
To map a docking calculation onto a GPU, we had to

write several CUDA kernel functions, which describe the
processes executed on the GPU, as well as adding state-
ments to facilitate data transfer between the host and the
accelerator. We had to add the code with approximately
1,000 lines to the MEGADOCK original code with
approximately 7,000 lines. Therefore, the implementation
costs were high, although we were familiar with CUDA
programming. Furthermore, the source code management
costs were increased because the code required many

branches and additional source code files for GPU
computing.
For the MIC offload mode implementation, we also had

to add several pragmas to the offload section so we could
execute them on a MIC. This was similar to the GPU
implementation but the size of the additional statements
was approximately 500 lines, which was less than that
required for the GPU implementation.
By contrast, to implement a MIC in the native mode

code, we did not need to write any additional code
because MEGADOCK had already been parallelized for
looping ligand protein rotational angles using OpenMP.

Figure 4 Images showing protein pairs of different sizes.

Table 5 Docking calculation times and acceleration rates for three proteins of different sizes

Small Medium Large

Receptor (#residues) GRB2 C-ter
SH3 domain (61)

CCS metallochaperone (249) Nitrogenase Mo-Fe protein (2026)

Ligand (#residues) Vav N-ter
SH3 domain (70)

SOD1 superoxide dismutase (153) Nitrogenase Fe protein (578)

PDB ID [PDB:1GCQ] [PDB:1JK9] [PDB:1N2C]

FFT size 80 × 80 × 80 128 × 128 × 128 216 × 216 × 216

Docking time [second] (vs. 1CPU) 1CPU 38.3 (1.0×) 186.4 (1.0×) 1105.6 (1.0×)

8CPUs 8.4 (4.6×) 38.5 (4.8×) 177.5 (6.2×)

GPU 5.8 (6.6×) 10.8 (17.3×) 62.2 (17.8×)

MICoffload 58.7 (0.7×) 77.0 (2.4×) 180.6 (6.1×)

MICnative 7.6 (5.0×) 26.8 (7.0×) 310.5 (3.6×)

The MIC native mode (MICnative) used an optimized numbers of threads, which were the largest numbers available for each protein size (small = 240 threads,
medium = 171 threads, and large = 38 threads).

Shimoda et al. BMC Systems Biology 2015, 9(Suppl 1):S6
http://www.biomedcentral.com/qc/1752-0509/9/S1/S6

Page 8 of 10

We only added a compile option for constructing the
MIC native mode binary. Thus, the implementation cost
was lowest for the MIC native mode. To execute the
program, however, we needed to copy the binary and
libraries files, and execute them remotely on each Xeon
Phi. Therefore, the operability was more complex than
that with the other systems.

Conclusion
In this study, we compared the acceleration obtained by
applying GPU and MIC to protein-protein docking cal-
culation, which is a FFT-based real-world application.
GPU computing required considerable effort to map the
calculations but it achieved the best performance. The
MIC offload mode implementation had similar costs to
GPU but its performance was far inferior to that
obtained with the GPU. With the GPU implementation,
the protein-protein docking calculations were completed
about five times faster than the MIC offload mode
implementation. The MIC native mode implementation
had the advantage that the user did not have to write
additional code, but this was mainly because the pro-
gram code had already been parallelized using OpenMP.
However, the performance became worse with larger
protein pairs because some of the MIC computing cores
could not be used due to memory limitations. The over-
all performance was comparable to eight CPU cores, i.e.,
a CPU socket. These results suggest that a GPU is now
more suitable than a MIC to accelerate FFT-based pro-
tein-protein docking calculations.

List of abbreviations
GPU: graphics processing unit; CUDA: compute unified device architecture;
MIC: many integrated core; FFT: fast Fourier transform; IFFT: inverse fast
Fourier transform; PDB: protein data bank; MKL: math kernel library.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TS, SS and MO performed the MIC implementation of protein-protein
docking. TS performed the computational experiments and validated the
results. TI assisted with the implementation. YA supervised and directed the
entire study. TS and MO wrote the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
The authors would like to thank the TSUBAME supercomputer system at the
Global Scientific Information and Computing Center (GSIC), Tokyo Institute
of Technology.

Declarations
The publication fee of this article was funded by Tokyo Institute of
Technology. This work was supported in part by NVIDIA CUDA Center of
Excellence (CCOE), HPCI System Research Project (hp140173), a Grant-in-Aid
for JSPS Fellows (23·8750, 24·8766, 26·30002), a Grant-in-Aid for Research and
Development of The Next-Generation Integrated Simulation of Living Matter
(ISLiM) and by the Education Academy of Computational Life Sciences
(ACLS) at Tokyo Institute of Technology, all of which were from the Ministry
of Education, Culture, Sports, Science, and Technology of Japan (MEXT).
This article has been published as part of BMC Systems Biology Volume 9
Supplement 1, 2015: Selected articles from the Thirteenth Asia Pacific
Bioinformatics Conference (APBC 2015): Systems Biology. The full contents of
the supplement are available online at http://www.biomedcentral.com/
bmcsystbiol/supplements/9/S1

Authors’ details
1Department of Computer Science, Graduate of Information Science and
Engineering, Tokyo Institute of Technology, 2-12-1 W8-76, Ookayama,
Meguro-ku, 152-8550 Tokyo, Japan. 2Japan Society for the Promotion of
Science (JSPS) Research Fellow, Japan. 3Education Academy of
Computational Life Sciences (ACLS), Tokyo Institute of Technology, 2-12-1
W8-93, Ookayama, Meguro-ku, 152-8550 Tokyo, Japan.

Published: 21 January 2015

References
1. Matsuoka S, Sato H, Tatebe O, Koibuchi M, Fujiwara I, Suzuki S, Kakuta M,

Ishida T, Akiyama Y, Suzumura T, Ueno K, Kanezashi H, Miyoshi T: Extreme Big
Data (EBD): Next generation big data infrastructure technologies towards
yottabyte/year. Supercomputing Frontiers and Innovations 2014, 1:89-107.

2. TOP500 supercomputer sites. [http://www.top500.org].
3. National Supercomputer Center in Guangzhou. [http://www.nscc-gz.cn/].
4. Suzuki S, Ishida T, Kurokawa K, Akiyama Y: GHOSTM: a GPU-accelerated

homology search tool for metagenomics. PLOS ONE 2012, 13:e36060.
5. Liu CM, Wong T, Wu E, Luo R, Yiu SM, Li Y, Wang B, Yu C, Chu X, Zhao K,

Li R, Lam TW: SOAP3: ultra-fast GPU-based parallel alignment tool for
short reads. Bioinformatics 2012, 28:878-879.

Table 6 Docking calculation time results for the protein complex (PDB ID: [PDB:1JK9]) for each process (in seconds)

1CPU 8CPUs GPU MICoffload MICnative

P1. Initialization 0.0 0.0 0.8 4.0 0.7

P2. Receptor voxel 0.3 0.3 (1.1×) 0.3 (1.1×) 0.3 (1.1×) 4.4 (0.1×)

P3. Receptor FFT 0.1 0.1 (1.0×) 0.0 (1.7×) 1.0 (0.1×) 0.3 (0.2×)

P4. Ligand rot & voxel 12.9 3.4 (3.8×) 2.3 (5.5×) 7.4 (1.7×) 1.2 (11.1×)

P5. Ligand FFT 69.8 14.2 (4.9×) 2.2 (31.1×) 15.1 (4.6×) 7.9 (8.9×)

P6. Convolution 27.4 4.6 (5.9×) 1.1 (25.6×) 13.9 (2.0×) 3.6 (7.7×)

P7. Inverse FFT 71.5 14.1 (5.1×) 2.2 (31.8×) 15.2 (4.7×) 8.3 (8.6×)

P8. Identifying the bests 4.3 1.7 (2.5×) 1.7 (2.5×) 9.8 (0.4×) 0.3 (12.5×)

P9. Post processes 0.0 0.0 0.0 0.0 0.0

Data transfer 0.6 10.1

Total 186.4 38.5 (4.8×) 10.8 (17.3×) 77.0 (2.4×) 26.8 (7.0×)

The values shown in parentheses are the acceleration rates relative to one CPU core. MIC native used 171 threads.

Shimoda et al. BMC Systems Biology 2015, 9(Suppl 1):S6
http://www.biomedcentral.com/qc/1752-0509/9/S1/S6

Page 9 of 10

http://www.biomedcentral.com/bmcsystbiol/supplements/9/S1
http://www.biomedcentral.com/bmcsystbiol/supplements/9/S1
http://www.top500.org
http://www.nscc-gz.cn/
http://www.ncbi.nlm.nih.gov/pubmed/22574135?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22574135?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22285832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22285832?dopt=Abstract

6. van Meel JA, Arnold A, Frenkel D, Portegies Zwart SF, Belleman RG:
Harvesting graphics power for MD simulations. Mol Simul 2008,
34:259-266.

7. Mashimo T, Fukunishi Y, Kamiya N, Takano Y, Fukuda I, Nakamura H:
Molecular dynamics simulations accelerated by GPU for biological
macromolecules with a non-Ewald scheme for electrostatic interactions.
J Chem Theory Comput 2013, 9:5599-5609.

8. Ufimtsev IS, Martínez TJ: Quantum chemistry on graphical processor
units. 1. Strategies for two-electron integral evaluation. J Chem Theory
Comput 2008, 4:222-231.

9. Hagiwara Y, Ohno K, Orita M, Koga R, Endo T, Akiyama Y, Sekijima M:
Accelerating quantum chemistry calculations with graphical processing
units - toward in high-density (HD) silico drug discovery. Curr Comput
Aided Drug Des 2013, 9:396-401.

10. Wu Q, Yang C, Tang T, Xiao L: MIC Acceleration of Short-Range Molecular
Dynamics Simulations. Proc of the First International Workshop on Code
OptimiSation for MultI and many Cores (COSMIC 2013) 2013, 2:1-8.

11. Sluga D, Curk T, Zupan B, Lotric U: Heterogeneous computing
architecture for fast detection of SNP-SNP interactions. BMC Bioinform
2014, 15:216.

12. Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA:
Molecular surface recognition: determination of geometric fit between
proteins and their ligands by correlation techniques. Proc Natl Acad Sci
USA 1992, 89:2195-2199.

13. Mintseris J, Pierce B, Wiehe K, Anderson R, Chen R, Weng Z: Integrating
statistical pair potentials into protein complex prediction. Proteins 2007,
69:511-520.

14. Kozakov D, Brenke R, Comeau SR, Vajda S: PIPER: an FFT-based protein
docking program with pairwise potentials. Proteins 2006, 65:392-406.

15. Ohue M, Matsuzaki Y, Uchikoga N, Ishida T, Akiyama Y: MEGADOCK: an all-
to-all protein-protein interaction prediction system using tertiary
structure data. Protein Pept Lett 2014, 21:776-788.

16. Ohue M, Shimoda T, Suzuki S, Matsuzaki Y, Ishida T, Akiyama Y: MEGADOCK
4.0: an ultra-high-performance protein-protein docking software for
heterogeneous supercomputers. Bioinformatics 2014, 30:3281-3283.

17. Matsuzaki Y, Uchikoga N, Ohue M, Shimoda T, Sato T, Ishida T, Akiyama Y:
MEGADOCK 3.0: A high-performance protein-protein interaction
prediction software using hybrid parallel computing for petascale
supercomputing environments. Source Code Biol Med 2013, 8:18.

18. Gabb HA, Jackson RM, Sternberg MJE: Modelling protein docking using
shape complementarity, electrostatics and biochemical information.
J Mol Biol 1997, 272:106-120.

19. Ohue M, Matsuzaki Y, Ishida Y, Akiyama Y: Improvement of the protein-
protein docking prediction by introducing a simple hydrophobic
interaction model: an application to interaction pathway analysis. Lect
Notes Comput Sci 2012, 7632:178-187.

20. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN: The Protein Data Bank. Nucleic Acids Res 2000, 28:235-242.

21. Shimoda T, Ishida T, Suzuki S, Ohue M, Akiyama Y: MEGADOCK-GPU:
acceleration of protein-protein docking calculation on GPUs. Proc of the
ACM Conference on Bioinformatics, Computational Biology and Biomedicine
2013 (ACM-BCB ‘13) 2013, 884-890.

22. CUFFT - NVIDIA developer zone. [http://developer.nvidia.com/cufft/].
23. Hwang H, Vreven T, Janin J, Weng Z: Protein-protein docking benchmark

version 4.0. Proteins 2010, 78:3111-3114.

doi:10.1186/1752-0509-9-S1-S6
Cite this article as: Shimoda et al.: Protein-protein docking on hardware
accelerators: comparison of GPU and MIC architectures. BMC Systems
Biology 2015 9(Suppl 1):S6.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Shimoda et al. BMC Systems Biology 2015, 9(Suppl 1):S6
http://www.biomedcentral.com/qc/1752-0509/9/S1/S6

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/24010935?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24010935?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24964802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24964802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1549581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1549581?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17623839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17623839?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16933295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16933295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23855673?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23855673?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/23855673?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25100686?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25100686?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/25100686?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24004986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24004986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/24004986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9299341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9299341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592235?dopt=Abstract
http://developer.nvidia.com/cufft/
http://www.ncbi.nlm.nih.gov/pubmed/20806234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20806234?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Introduction
	MEGADOCK
	GPU implementation
	Rotation of the ligand
	Ligand voxelization
	Forward and inverse FFT
	Convolution
	Identifying the best solutions
	Data transfer

	MIC implementation
	Offload mode
	Native mode

	Experiments
	Computational environment
	Performance evaluation using benchmark dataset
	Performance with proteins of different sizes
	Acceleration rate for each process

	Discussion
	Effects of the different computational environments
	Implementation costs

	Conclusion
	List of abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

