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Eukaryotic RNA polymerase III transcribes tRNA genes, and this requires the transcription factor TFIIIC. Promoters are within
genes, with which the B-block binding subunit of TFIIIC associates to initiate transcription. The binding subunits are more than
1000 amino acids in length in various eukaryotic species. There are four regions with conserved sequence similarities in the subunits.
The helix-turn-helix motif is included in one of these regions and has been characterized as the B-block_TFIIIC family in the Pfam
database. In the NCBI and EMBL translated protein databases, there are archaeal proteins (approximately 100 amino acids in length)
referred to as B-block binding subunits. Most of them contain a B-block_TFIIIC motif. DELTA-BLAST searches using these archaeal
proteins as queries showed significant multiple blast hits for many eukaryotic B-block binding subunits on the same proteins. This
result suggests that eukaryotic B-block binding subunits were constituted by repeating a small unit of B-block_TFIIIC over a long
evolutionary period. Bacterial proteins have also been annotated as B-block binding subunits in the databases. Here, some of them
were confirmed to have significant similarities to B-block_TFIIIC. These results may imply that part of the RNAP III transcription

machinery existed in the common ancestry of prokaryotes and eukaryotes.

1. Introduction

While bacteria and Archaea have their inherent single RNA
polymerases, eukaryotes have multiple types of RNA poly-
merase. Eukaryotic RNA polymerase III (RNAP III) is one
of them and synthesizes tRNA, 5S ribosomal RNA, and
other small RNAs (for review [1, 2]). Mammalian short
interspersed elements (SINEs), which are retrotransposons,
are also transcribed by RANP III [2]. Most RNAP III pro-
moters are inside the sequences expressed as RNAs, and these
internal promoters can be divided into three categories based
on their organization and transcription factor dependence
[3]. In the category of tRNA genes and SINEs, there are
internal promoters (type II promoters) consisting of the
A- and B-blocks of short nucleotide sequences. A- and B-
block sequences are well conserved in various eukaryotes.
These promoters are recognized directly by the transcription
initiation factor TFIIIC, which is a six-subunit protein [4,
5]. Investigations of TFIIIC assembly on DNA in yeasts
and human have demonstrated that B-block binding subunit
of TFIIIC first associates with the B-block of the internal

promoter (see also Tablel) [1]. TFIIIC bound to DNA
recruits another transcription factor TFIIIB, and then TFIIIB
assembles RNAP III at the start site of transcription.

When the ¢cDNAs for the B-block binding subunits of
the yeast, rat, and human TFIIICs were cloned in previous
studies, their amino acid sequences were compared for
similarities (Table1) [6-9]. However, these sequences are
diverse, and no homology was detected between the yeast
and mammalian subunits [7, 8]. Four conserved regions were
subsequently identified in the B-block binding subunits of
animals, plants, and fungi using the accumulated nucleotide
and amino acid sequence data of genomes: three conserved
regions are located in the N-terminal one-third regions of the
subunits and one is in the C-terminal regions (Figure 1) [10].
However, no DNA binding motifs were detected in any of the
four regions. Recently, improved programs for motif detec-
tion, such as CD-search, revealed that one of the four regions
has a helix-turn-helix (HTH) motif, which forms a typical
DNA binding structure (region II in Figure 1). This region is
shown as a family of B-block_TFIIIC (PF04182) belonging to
the clan HTH (CL0123) in the Pfam database, which is a large
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TABLE 1: B-block binding subunits of TFIIICs in yeasts and vertebrates.

Subunit name (other name) Organism Length (aa) GI number Reference
TFC3p (7138) Saccharomyces cerevisiae 1160 6319317 [6]
Sfe3p Schizosaccharomyces pombe 1339 19112919 [9]
hTFIIIC220 (TFIIC«k, GTF3Cl1) Homo sapiens 2109 101943240 (8]
rTFIIIC220 Rattus norvegicus 2148 19424204 [7]
Pfam 04182
(B-block_TFIIIC)
) I I I
Homo sapiens (GI: 101943240) B [T ] 2109 aa
Rattus norvegicus (GI: 19424204) I | 12148 aa
Drosophila melanogaster (GI: 20129503) [l T ] 1906 aa
Chironomus tentans (GI: 18073910) I [T 12043 aa
Arabidopsis thaliana (GI: 75264084) I 1] 1908 aa
Arabidopsis thaliana (G1:9665127) B W 1] 1808 aa
Arabidopsis thaliana (GI: 15218016) I W 1] 1729 aa
Schizosaccharomyces pombe (GI: 19112919) I W ] 1339 aa
Saccharomyces cerevisiae (GI: 6319317) B I T ] 1160 aa

FIGURE 1: Four regions with conserved sequence similarities in the eukaryotic B-block binding subunits. The N-terminal region (shown as
region I in the figure), near the N-terminal region (regions II and III), and near the C-terminal region (region IV) [10]. In the Pfam database,
which is a large collection of protein families, the eukaryotic B-block binding subunits are shown to contain the specific HTH motif classified
as the B-block_TFIIIC family (PF04182) (http://pfam.sanger.ac.uk/family/PF04182#tabview=tab0). The motifis in region II in most eukaryotic
subunits. GI: 101943240 and GI: 75264084 are the numbers updated from GI: 4753161 and GI: 25402830, respectively [10].

collection of protein families (http://pfam.sanger.ac.uk/):
there are currently 324 sequences from 262 species in this
family. This domain is considered to directly associate with
the B-block sequence of the internal promoter for RNAP III

RNAP III is generally known to be present in eukaryotes,
but not in prokaryotes. However, archaeal and bacterial
hypothetical proteins which have been defined or annotated
as B-block binding subunits can be found in the translated
protein databases of NCBI and EBI. Although some of the
information in these databases has not yet been reviewed
or confirmed, several proteins have been shown to be
members of the B-block_TFIIIC family in the Pfam database
(http://pfam.sanger.ac.uk/family/PF04182#tabview=tab7).
Interestingly, the promoter sequences of the A- and B-blocks
are conserved in bacterial tRNA genes, and bacterial tRNA
genes can serve as templates for eukaryotic RNAP III [11].

In this study, the amino acid sequences of the eukaryotic
B-block binding subunits and their possible prokaryotic
relatives were investigated in silico for similarities, and their
structural relationships are reported.

2. Methods

2.1. In Silico Analysis. The programs used to compare the
primary structures of proteins were as follows: DELTA-
BLAST on the NCBI website at http://blast.ncbi.nlm.nih
.gov/Blast.cgi?PROGRAM=blastp&BLAST_PROGRAMS=
deltaBlast&PAGE_TYPE=BlastSearch&LINK_LOC=
BlastHomeAd [12]; Clustal Omega [13] in the EBI website

at http://www.ebi.ac.uk/Tools/msa/clustalo/; and Pfam
sequence search in the website at http://pfam.sanger.ac.uk/
search?tab=searchProteinBlock [14]. The search set chosen
and algorithm parameters used in each of the searches have
been described in Section 3. The alignment parameters in
Clustal Omega were used at the default settings. CD-search is
the NCBI’s interface and this is used to search the Conserved
Domain Database for protein or nucleotide query sequences
(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)
[15]. DELTA-BLAST performs CD-search to construct a
position-specific score matrix (PSSM) and then searches a
sequence database using the PSSM [12]. The results of CD-
search, which were displayed together with those of DELTA-
BLAST, were used in this study. DELTA-BLAST was always
performed with one iteration. Neighbor-joining phylogenetic
tree was constructed by using the Clustal W program in
the DDBJ website of http://clustalw.ddbj.nig.ac.jp/index
.php?lang=ja and NJplot [16-18]. The alignment parameters
were used at the default settings.

The databases used were the NCBI protein database
(http://www.ncbi.nlm.nih.gov/protein) and UniProtKB/
TrEMBL (http://www.uniprot.org/).

3. Results

3.1. B-Block Binding Subunit-Like Proteins in Prokaryotes.
As described in Sectionl, several archaeal and bacterial
proteins are shown to belong to the B-block_TFIIIC family
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in the Pfam database (see http://pfam.sanger.ac.uk/family/
PF04182#tabview=tab7). To date, many archaeal sequences
have been defined or annotated as B-block binding sub-
units in the protein database of NCBI. Table 2 shows the
features of representative sequences. CD-search showed that
these archaeal proteins significantly matched B-block_TFIIIC
(Table 2). Similar results were obtained in the Pfam sequence
searches (Table 2). These results confirmed that the archaeal
proteins examined here were related to the eukaryotic B-
block binding subunit at the amino acid sequence level.
However, they were between 100 and 200 amino acids (aa)
in length, while eukaryotic subunits are more than 1000 aa in
length (Table 2; Figure 1).

Bacterial sequences are also defined or annotated as
B-block binding subunits in the NCBI protein database
(Section 1). However, much of the information on these
proteins has not yet been reviewed and CD-search frequently
did not hit B-block_TFIIIC (data not shown). In the Pfam
database of B-block_TFIIIC, there are two bacterial proteins
(http://pfam.sanger.ac.uk/family/PF04182#tabview=tab7).
The representative proteins in which B-block_TFIIIC was
detected by the CD-search or Pfam sequence search are
shown in Table 2. These searches were performed under
default conditions. The bacterial proteins were short in length
(between 100 and 200 amino acids) (Table 2). B-block_TFIIIC
was not detected in any protein by both programs, and the
E-values obtained by these searches were mostly higher
than those of archaeal proteins (Table 2). Archaeal proteins
appeared to be more similar than bacterial proteins to the
eukaryotic B-block_TFIIIC sequences. The archaeal and
bacterial proteins referred to here were predicted from
coding DNA sequences, and therefore, whether these
proteins are actually present in cells and have some functions
in vivo remains unknown.

3.2. Structural Relationship between the Eukaryotic B-Block
Binding Subunit and Archaeal Protein. As described above,
archaeal B-block binding subunits are approximately 100-
200 aa in length, while eukaryotic subunits are more than
1000 aa in length. Region II in the eukaryotic subunit,
which is approximately 100 aa in length, contains the B-
block_TFIIIC motif (Figure 1; Section 1). DELTA-BLAST was
used to examine sequence similarities between eukaryotic
and archaeal B-block binding subunits. Searches were con-
ducted on the nonredundant protein sequences of eukaryotes
(taxid: 2759) using the archaeal proteins shown in Table 2
as queries and the phrase “B-block binding” as an Entrez
query. This Entrez query was used to restrict the search to
a subset of proteins referred to as “B-block binding” in the
database. Other conditions were set as default. Authentic
B-block_TFIIIC regions in most of organisms, which are
annotated in the NCBI protein database, were primar-
ily identified with the lowest E-values (data not shown).
However, there were several cases in which the archaeal
sequence did not hit the B-block_TFIIIC regions annotated
in the NCBI database but showed significant hits for other
regions in the same eukaryotic B-block binding subunits. For
example, when the Metallosphaera yellowstonensis sequence

(GI: 496365863 in Table2) was used as a query, in the
sequences of Pediculus humanus corporis (GI: 242025343),
Drosophila willistoni (GI: 195434252), Anopheles gambiae
(GI: 347968303), and Oryzias latipes (GI: 432847756), the
regions of aa positions 375-466, 429-516, 374-429, and
381-475 had significant E-values of 2e™°, 3e™®, 3¢, and
5¢7*, respectively (Figure2). On the other hand, the B-
block_TFIIIC regions of the four proteins, which are anno-
tated in the NCBI protein database (aa positions 173-
242, 176-249, 166-242, and 178-252), were not detected
(Figure 2). CD-search was performed and confirmed that
the annotations of the four proteins are correct (data not
shown). These results are shown in Figure 2 and Supplemen-
tary Figure 1 (see Supplementary Material available online
at http://dx.doi.org/10.1155/2014/609865): a combination of
the Pyrolobus fumarii sequence (GI: 347523111 in Table 2)
and the Anopheles gambiae sequences (GI: 347968303) or
Drosophila ananassae sequence (GI: 194765831); a com-
bination of the Methanoplanus petrolearius sequence (GI:
307353829 in Table 2) and the D. willistoni sequence (GI:
195434252) or Nasonia vitripennis sequence (GI: 345495267);
a combination of the Methanosalsum zhilinae sequence (GI:
335930125 in Table 2) and the Drosophila yakuba sequence
(GI: 195472611) or Drosophila melanogaster sequence (GI:
20129503); a combination of the Methanofollis liminatans
sequence (GI: 490137988) and A. gambiae sequence (GI:
347968303); a combination of the Methanoregula formici-
cum sequence (GI: 432331009 in Table 2) and the Pediculus
humanus corporis sequence (GI: 242025343) or A. gambiae
sequence (GI: 347968303).

As described above, the authentic B-block_TFIIIC region
of the A. gambiae sequence (GI: 347968303) was not detected
in DELTA-BLAST searches using M. yellowstonensis, P.
fumarii, M. liminatans, and M. formicicum sequences as
queries. However, in the search using the Methanocella
conradii sequence (GI: 383320206 in Table 2) as a query,
the authentic region in the A. gambiae sequence was hit at
a significant E-value (7e7%) (Figure 2). There was another
significant hit (E-value of 5¢°) in this case and the mosquito
hit region mostly overlapped with regions that were detected
with the M. yellowstonensis, P. fumarii, M. liminatans, and
M. formicicum sequences (Figure 2; Supplementary Figure 1).
Similar results were obtained, for example, with respect to
the D. melanogaster and D. yakuba sequences (GI: 20129503
and GI: 195472611) when DELTA-BLAST searches were
performed using the M. zhilinae and M. conradii sequences
as queries (Figure 2; Supplementary Figure 1). Not a few
eukaryotic B-block binding subunits showed significant blast
hits for both of their authentic B-block_TFIIICs regions and
one or more regions different from the authentic region
in the same sequences (Figure 2; Supplementary Figure 1):
for example, the M. yellowstonensis sequence hit the fungal
Punctularia strigosozonata sequence (GI: 390604017) in four
regions, and the P. fumarii sequence hit the yeast Candida
tropicalis sequence (GI: 255729444) in two regions.

These results showed that many B-block binding sub-
units from yeasts to vertebrates have one or more B-
block_TFIIIC-like regions in addition to the authentic
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FIGURE 2: Eukaryotic B-block binding subunits showing similarities in regions different from their authentic B-block_TFIIIC sites to archaeal
B-block binding subunits. DELTA-BLAST searches were performed in the eukaryotic database (taxid: 2759) using the M. yellowstonensis, P.
fumarii, M. conradii, and M. limicola sequences shown in Table 2 as queries and the phrase “B-block binding” as an Entrez query. The other
conditions were set as the default. All of the displayed blast-hit alignments were examined by eye to identify proteins in which regions different
from the authentic B-block_TFIIIC sites were detected. Eukaryotic subunits that had such alignments with E-values lower than 0.05 are shown.
The numbers in parentheses are GI numbers. The horizontal lines represent eukaryotic proteins, and the aa lengths are shown to the right.
Small filled boxes represent the alignments between authentic B-block_TFIIIC sites. Small empty boxes are alignments in regions different
from the authentic B-block_TFIIIC sites of eukaryotic proteins. Small grey boxes show authentic B-block_TFIIIC sites that were not detected by
archaeal proteins. The aa positions of alignments in eukaryotic and archaeal sequences are shown below and above the boxes, respectively. E-
values of alignments are shown just above the boxes. E-values are colored magenta when regions different from the authentic B-block_TFIIIC
sites were detected at lower E-values than the alignments of authentic regions in the same eukaryotic proteins. Because of limited space,
the maximum number of proteins shown in each column of the eukaryotic groups against each query is four. More than four proteins were
detected in some cases, and fewer or no proteins were detected in other cases. Although the proteins were principally picked up from the
displayed alignments in order from the lowest to the higher E-values, some disorders were taken for intelligible presentation in the text.

B-block_TFIIIC regions in their entire sequences. Although
the B-block_TFIIIC-like regions were repeated near the
authentic B-block_TFIIIC regions in many cases, they also
existed in the C-terminal regions and in the middle regions
of the subunits (Figure 3).

3.3. Comparison of the Primary Structures of Archaeal B-
Block Binding Subunits with Those of the Regions Conserved
in Eukaryotic B-Block Binding Subunits. The archaeal B-
block binding subunits shown in Table 2 commonly con-
tain a B-block_TFIIIC motif which is mainly in the N-
terminal halves of the sequences (Figure 4(a)). In DELTA-
BLAST searches in Section 3.2 these motif regions always
hit the eukaryotic subunit sequences (Figure2; Supple-
mentary Figure 1). The amino acid residues conserved in

these archaeal sequences (see Figure 4(a)) corresponded
well to those conserved in the B-block_TFIIIC family (see
http://pfam.sanger.ac.uk/family/PF04182#tabview=tab3). As
described in Section 1, the eukaryotic B-block binding sub-
units contain four regions with conserved sequence simi-
larities [10], with one of these regions (region II) being the
authentic B-block_TFIIIC (Figure 1). However, the archaeal
sequences frequently hit regions different from the authentic
B-block_TFIIIC sites in the eukaryotic subunits (Section 3.2).
Therefore, it was examined whether the other conserved
regions (regions I, III, and IV in Figure 1) have sequence
similarities to the archaeal proteins.

The Arabidopsis thaliana sequence of GI: 15218016 and
D. melanogaster sequence of GI: 20129503 were previ-
ously used in Clustal W alignments of regions II and


http://pfam.sanger.ac.uk/family/PF04182{%}23tabview=tab3

Authentic
B-block_TFIIIC

v
Eukaryote @I ]
Archaea P ) e =) =)

FIGURE 3: Highly schematized cartoon showing distribution of
the archaeal B-block binding subunit sequence in the eukaryotic
subunit. Colored regions in the eukaryotic subunit correspond to
those in Figure 1. Based on all of the results shown in Figure 2 and
Supplementary Figure 1, the archaeal subunits (shown as arrows)
are placed below the eukaryotic subunit. Arrows are colored more
intensely where BLAST hits were frequently detected with lower E-
values.

III [10]. In this study, these two sequences were hit
with DELTA-BLAST using the M. conradii sequence (GI:
383320206) as a query: two regions were detected in each
of these proteins (A. thaliana aa positions 105-179 and
318-393 and D. melanogaster aa positions 180-244 and
371-431) (Figure 2). When the amino acid sequences of
the detected regions were searched in the previous align-
ments shown in Figure 3 of Matsutani [10] by eye, the
former sequence corresponded to regions II and the lat-
ter corresponded to region III in each of the proteins.
The combined alignment of regions II and III in the A.
thaliana and D. melanogaster sequences via the M. conradii
sequence is shown at the top of Figure 4(b): the amino acid
residues that are conserved well in the B-block_TFIIIC fam-
ily (http://pfam.sanger.ac.uk/family/PF04182#tabview=tab3)
were conserved in this alignment. They were also conserved
in regions II and III alignments of Figures 3B and 3C in [10].
These results suggest that the B-block_TFIIIC-like sequence
commonly exists as region III in eukaryotic B-block binding
subunits (Figure 3).

The C-terminal regions of several fungal B-block binding
subunits were hit with E-values lower than threshold in
DELTA-BLAST searches using the archaeal sequences as
queries (Figure 2): when the M. yellowstonensis sequence
(GI: 496365863) was used as a query, in the sequences of
Fibroporia radiculosa (GI: 403413618, 2083 aa), Stereum hirsu-
tum (GI: 389742219, 2162 aa), Punctularia strigosozonata (GI:
390604017, 2353 aa), and Trametes versicolor (GI: 392571338,
2227 aa), the regions of aa positions 2013-2053, 2091-2133,
2284-2321, and 2154-2191 had significant E-values of 4e™*,
0.002, 0.002, and 0.001, respectively. When the P. fumarii
sequence (GI: 347523111) was used as a query, the C-terminal
region (aa positions 2285-2322) of the P strigosozonata
sequence (GIL: 390604017, 2353 aa) was hit at an E-value
of 0.002 (Figure 2). These fungal C-terminal regions were
aligned with the M. yellowstonensis and P. fumarii sequences
using Clustal Omega. The alignments are shown in the
middle of Figure 4(b): the amino acid residues conserved in
the archaeal sequences and regions II and III were conserved
in these fungal C-terminal regions, which corresponded to
the latter half of region IV alignment in Figure 3C of [10].

There were no hits in the N-terminal regions of the
eukaryotic B-block binding subunits at E-values lower than
threshold in DELTA-BLAST searches using the archaeal
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sequences as queries. The N-terminal regions in sev-
eral subunits, were hit at E-values higher than threshold
together with the authentic B-block_TFIIIC regions showing
significant E-values. For example, aa positions 1-36 of the
M. yellowstonensis sequence (GI: 496365863) were similar
to aa positions 1-33 of the Exophiala dermatitidis sequence
(GI: 378726632) (E-value of 0.65), and aa positions 1-27 of
the M. conradii sequence (GI: 383320206) were similar to
aa positions 7-33 of the Kluyveromyces lactis sequence (GI:
50302891) (E-value of 0.27). All such N-terminal regions
are shown in the lower part of Figure 4(b) as alignments
with their relevant archaeal sequences. The amino acid
residues conserved in the archaeal sequences and regions
II, 1II, and IV in the eukaryotic B-block binding subunits
were conserved in these alignments, although their lengths
were short (Figure 4(b)). Furthermore, these alignments were
compared with the region I alignment shown in Figure 3A of
[10]. These alignments appeared to correspond to the former
half of the region I alignment (see the bottom of Figure 4(b)).
Sequences similar to the archaeal B-block binding sub-
units were sometimes detected out of the four conserved
regions in the eukaryotic B-block binding subunits (Figure 2;
Supplementary Figure 1): for example, aa positions 16-63 of
the M. yellowstonensis sequence (GI: 496365863) were similar
to aa positions 1539-1584 of the Selaginella moellendorffii
sequence (GI: 302788556, 1772 aa) (E-value of 7e), and
aa positions 3-86 of the P. fumarii sequence (GI: 347523111)
were similar to aa positions 934-1019 of the Batrachochytrium
dendrobatidis sequence (GI: 328768215, 2346 aa) (E-value
of 0.010). All these results suggest that the eukaryotic B-
block binding subunit was mainly constructed by repeated
duplication of the B-block_TFIIIC sequence (Figure 3).

3.4. Investigation of the Primary Structures of the Bacterial B-
Block Binding Subunits. As already described and shown in
Table 2, the NCBI and EBI protein databases include bacterial
proteins defined or annotated as B-block binding subunits.
Similarities between the bacterial proteins shown in Table 2
and the B-block TFIIIC motif seemed to be unclear, because
the E-values were mostly higher than those of archaeal
subunits to the B-block TFIIIC motif, and both of the
CD-search and Pfam search did not detect a B-block TFIIIC
motif for each of the queries (Table 2). Therefore, possible
similarities were investigated using Clustal Omega. The
six bacterial B-block binding subunits in Table 2 were first
aligned with themselves. The six bacterial proteins were then
aligned with the B-block_TFIIIC cdd sequence (conserved
domain’s consensus sequence) which was shown in CD-
search. As shown in Figure 5(a), the amino acid residues
conserved in the alignment consisting only of bacterial
proteins corresponded well to those conserved in the
alignment of the bacterial proteins and the B-block_TFIIIC
sequence. CD-search of the bacterial proteins showed that
they have similarities also to other HTH motifs such as MarR,
MarR_2, and HTH27, and the E-values were frequently lower
than those of B-block_TFIIIC (Table 2 and Figure 5(b)). Like
B-block_TFIIIC, MarR (PF01047), MarR_2 (PF12802), and
HTH_27 (PF13463) are members of the clan HTH (CL0123)
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Schizosaccharomyces pombe 19112919 WLNGKCELTEMIWMNTEQSIVYQLLRKPGTLRSQLTNLLFPGLEPREFNEVLDYFTAAGA 1262-1321
Punctularia strigosozonata 390604017 WLDLGGSVVKEAWTAALRALVGY TVFRPGISQAELRWRVRSVYDRQE INQVLCFLEGEGY 2257-2316  _|
% : B . : : E-value
R (worast)
M. yellowstonensis 496365863 METKISTNEELVHRK [ AESGDEGT SQQELARKLGIST 1-40
Exophiala dermatitidis 378726632 MAKGLDDLIQYLLEETALSGNEGVTINDVAAFT 1-33(0.65)
Pediculus humanus corporis 242025343 ILDETALEGLDGITIEALWKRLSVRP 15-40 (8.5)
Dkko ko kDD :
Voo
P. fumarii 347523111 KALET TKSRGKEGI YQHELWKLLGIDSREGSRLALRLYKK 17-56
Scheffersomyces stipitis 150864891 TLDKLSFSGQNGLTL TELWDYM-~TSKLQFNVLDDFQKQ 14-50 (6.6)
Metarhizium anisopliae 322706032 HLLITISCAGEEGCAVSDIVKET 11-33 (1.2)
Debaryomyces hansenii 294655946 HILETLAFSGQHGISLFEMWEKV 13-35 (7.3)
Volvox carteri 302833026 AVEETALEGQEGCTAEELWTLLGARLPVGSIT 8-39 (5.3)
Daphnia pulex 321466105 TLDETALEGLEGVTISTLWIRL-TKRKSFSLALD 11-43 (9.5)
Pediculus humanus corporis 242025343 DILDEIALEGLDGITIEALWKRLSVRP 14-40 (0.8)
* i ’ Region |
M. conradii 383320206 MSEDGLEEKALET TKS—RPNGVLQSDLI 1-27
Kluyveromyces lactis 50302891 LSPDELVQKVIDETSF-RKGRISLNELW 7-33 (0.27)
Dkok ok Dk DDk, * : L ookk
N N Z
M. petrolearius 307353829 TDTEEEALKL IQS-NPEGVLQSELWKLLN 5.32
Ashbya gossypii 302308582 DEIVQRLCEETAY-NKGRISFKGLWELAN 6-33 (3.8)
Kluyveromyces lactis 50302891 DELVQKVIDEISF-RKGRISLNELWD 10-34  (3.1)
N N Lok . N LRk,
N
Homo sapiens 101943240 MDALESLLDEVALEGLDGLCLPALWSRLETRVP~~PFPLPLEPCTQEFLWRALATHPGISF  1-59
Arabidopsis thaliana 15218016 MDSTISTALDEICSQGNTGIPLVTLWSRLS-~~——-==--] PLSSSTKTHVWRNLLTIPQLQF ~ 1-52
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FIGURE 4: Comparison of the primary structures of the archaeal B-block binding proteins with the regions conserved in the eukaryotic B-block
binding subunits. Each of the scientific names is followed by the GI number, aa sequence, and aa positions. The B-block_TFIIIC regions in the
archaeal proteins are colored in blue (see Table 2). Green arrows indicate common residues both in Archaea and eukaryotic conserved regions.
Green dotted arrows mean no conservation between the two alignments just above and just below the arrows. (a) Clustal Omega alignment of
archaeal proteins defined or annotated as B-block binding subunits in the NCBI protein database. Amino acid residues of the N-terminal and
C-terminal ends which were not conserved in the nine protein sequences were cropped in this alignment. (b) Clustal Omega alignments of the
archaeal sequences with each of regions I, IL, III, and IV in the eukaryotic B-block binding subunits. Regions II and III of the A. thaliana and
D. melanogaster proteins (GI: 15218016 and GI: 20129503) were used for comparison with archaeal proteins. This is because these sequences
are used in the previous alignments of regions II and III (Figure 3 in [10]) and were detected in DELTA-BLAST searches using the M. conradii
sequence as a query in this study (Figure 2). These two proteins could precisely link the previous regions IT and IIT alignments to the present
alignment with the archaeal sequence. The alignments of regions II and III are shown in a combined form via the M. conradii sequence for
clarity. Amino acid residues shown in magenta were conserved also in the alignments of Figures 3B and 3C in [10]. For comparison of the
archaeal sequences with region IV, the C-terminal regions of the fungal proteins which were detected at significant E-values in Figure 2 were
aligned with their related archaeal sequences. Just below the alignment, the C-terminal regions of several eukaryotic B-block binding subunits
(region IV) were aligned (see also Figure 3D in [10]). To examine whether the archaeal proteins are related to region I, the N-terminal regions
of the eukaryotic B-block binding subunits which were simultaneously detected with the authentic B-block_TFIIIC regions were visually
searched for from the results of DELTA-BLAST. Clustal Omega was then performed. E-values of the matches to the N-terminal regions in
DELTA-BLAST were higher than threshold (shown in parentheses next to the aa positions of the Clustal alignments). An alignment of the
N-terminal regions of several eukaryotic B-block binding subunits (region I) is shown at the bottom of the Figure (see also Figure 3A in [10]).
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FIGURE 5: Comparison of the primary structures of the bacterial B-block binding proteins with the B-block_TFIIIC motif and other HTH
motifs. (a) Clustal Omega alignment of the six bacterial proteins provided in Table 2. The relevant region of the alignment is only shown.
Amino acid residues conserved in the alignment are indicated by asterisks, colons, and dots. Clustal Omega was performed also using the
six bacterial proteins and each cdd sequence of the B-block_TFIIIC (PF04182), MarR (PF01047), MarR_2 (PF12802), and HTH_27 (PF13463)
families. The alignments were reviewed by eye, and motif sequences with marks showing amino acid conservation were placed beneath
the alignment constructed first from the bacterial proteins only. The cdd sequences were obtained from the CD-search results. Each of the
bacterial names is followed by the GI number (or entry name), aa sequence, and aa positions. HTH motifs are also similarly represented.
The B-block_TFIIIC regions are colored in blue (see Table 2). (b) E-values of the alignments of bacterial B-block binding proteins with MarR,

MarR_2, or HTH_27 in CD-search.

(http://pfam.sanger.ac.uk/clan/CL0123#tabview=tab0).
Proteins with the MarR and MarR_2 motifs are involved in
resistance to multiple antibiotics. They repress the expression
of mar operons consisting of antibiotic-resistant genes.
HTH_27 is a family of the winged helix-turn-helix motif.
Each of the cdd sequences of MarR, MarR_2, and HTH 27
obtained as representatives from CD-search was aligned with
the six bacterial B-block binding subunits (Figure 5(a)). The
amino acid residues conserved in the alignment consisting
only of bacterial proteins corresponded to those conserved
in the alignments of the bacterial proteins and the MarR,
MarR_2, and HTH_27 sequences, except in the left central
regions of the alignments (Figure 5(a)). As shown in the
boxed region in Figure 5(a), the two columns with amino
acid preferences were common in both of the alignment
consisting only of the bacterial proteins and that constructed
with the bacterial proteins plus B-block_TFIIIC. These amino
acid preferences are shown in the B-block_TFIIIC family (see
http://pfam.sanger.ac.uk/family/PF04182#tabview=tab3).
On the other hand, comparably low amino acid preferences
are found in the left central regions of the MarR,

MarR2, and HTH 27 families (http://pfam.sanger.ac
.uk/family/PF01047#tabview=tab4,  http://pfam.sanger.ac
.uk/family/PF12802#tabview=tab4, and http://pfam.sanger
.ac.uk/family/PF13463#tabview=tab4). Actually, the corres-
ponding region in the alignment of the bacterial
proteins and the cdd sequence of MarR, MarR_2, or
HTH_27 did not show such similarities (boxed region
in Figure5(a)). Note that the 15th R residue of the
cdd sequence of HTH_27 is not conserved in the motif
(http://pfam.sanger.ac.uk/family/PF13463#tabview=tab4).
These results confirmed that the bacterial proteins shown in
Table 2 are related to the eukaryotic B-block binding subunit.

4. Discussion

Here, the B-block_TFIIIC motif sequences of several archaeal
short proteins were shown to be repeated in the longer
B-block binding subunits of various eukaryotes. This find-
ing suggests that the eukaryotic B-block binding subunit
has been constructed by repeating duplication of the B-
block_TFIIIC region in long evolutionary time. Repetition of
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FIGURE 6: Phylogenetic tree for the alignment of B-block_TFIIIC family. The neighbor-joining method was used and bootstrap values are
shown in the tree [16-18]. The aa positions of sequences used for Clustal W are indicated next to the subunit GI numbers.

B-block_TFIIIC sequence was common in various eukaryotic
B-block binding subunits. Therefore, the B-block_TFIIIC
sequence had possibly begun to be repeated in the first
primitive eukaryotes. Alternatively, the sequence might have
been originally repeated in the ancient B-block binding
subunit. It may be imagined that the repetition was lost
in the evolutionary process from the ancient organisms to
prokaryotes to leave single copies on the subunits. However,
this is opposite to the established view that DNA duplications
have contributed to the evolution of organisms [19, 20].
Archaea, eubacteria, and eukaryotes have been thought
to possess the transcription machinery specific to each of
them [21]. Although only one RNA polymerase in Archaea
corresponds to the eukaryotic RNAP II, orthologs of the
eukaryotic RNAP III subunit Rpc34 are present there [22].
Rpc34, which is a specific and essential subunit of RNAP III,
interacts with the transcription factor TFIIIB to participate in
RNAP IIT recruitment [23]. It is suggested that the functional
separation of RNAP predates the origin of eukaryotes [22].
Rpc34 contains two domains, which are the N-terminal HTH
and the C-terminal Zn-finger domains [22]. Interestingly,
HTH regions in several of the archaeal Rpc34s showed
the significant similarity to the B-block_TFIIIC motif in
CD-searches (data not shown). Additionally, the M. yel-
lowstonensis sequence (GI: 496365863) used in this study

showed similarity to Rpc34: when CD-search was performed,
its HTH region was aligned with the HTH region of the
Rpc34 motif (PF05158) at an E-value of 0.03 (data not
shown), although the value was much higher than that of the
alignment with B-block_TFIIIC (Table 2).

Molecular phylogenetic studies using small subunit rRNA
and the proteins like actin and a-tubulin place fungi as
more closely related to animals than either is to plants [24,
25]. However, it is reported that with respect to the B-
block binding subunits of TFIIICs, animals appear to be
evolutionarily closer to plants than to fungi [10]. This was
shown by the results of PSI-BLAST searches using B-block
binding subunits as queries. The Pfam website provides a
phylogenetic tree of the family of B-block_TFIIIC, also where
animals are more closely related to plants than to fungi
(http://pfam.sanger.ac.uk/family/PF04182#tabview=tab5). In
this tree, prokaryotic B-block_TFIIIC sequences are not
contained. Therefore, the phylogenetic tree was constructed
together with the prokaryotic B-block_TFIIIC sequences. The
tree also indicated that animals are evolutionarily closer to
plants than to fungi (Figure 6). Although Archaea was placed
as more closely related to animals and plants than to fungi
(Figure 6), this result seems to be less reliable. When DELTA-
BLAST searches were performed in the eukaryotic protein
database using archaeal B-block binding subunit sequences as
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queries and the phrase “B-block binding” as an Entrez query,
many fungal B-block binding subunits were hit with lower E-
values than those of animals and plants (data not shown).

Some bacterial proteins in databases were confirmed
to contain a B-block_TFIIIC motif in this study. The host
species belong only to four genera although whole genome
sequencing has been completed in many bacterial genera.
Why is the B-block binding subunit absent in the other
bacteria? Three possibilities are there. The first one is that
in the other bacteria genes encoding the B-block binding
subunit proteins had been lost. The protein might have been
nonessential for bacterial survival. The second possibility
is that the B-block binding subunit had highly diverged
in the other bacteria, and those protein sequences cannot
be detected with the similarity search programs that are
currently used. This possibility is extensively discussed in the
following paragraph. The third possibility is that horizontal
gene transfers between bacteria and Archaea or eukaryotes. A
few cases of horizontal gene transfer from Archaea to bacteria
have been reported [26]. However, this possibility seems less
plausible than the other two possibilities because A- and
B-block sequences of the internal promoter are generally
conserved in bacterial tRNA genes.

Bacterial IS1 is a mobile DNA (for review, [27]) and
appears to possess the RNAP III promoter sequence in the
internal region, like bacterial tRNA genes [28]. The RNAP
II promoter-like sequence in IS1 acts as a cis-element to
stimulate RNA synthesis from promoters located upstream of
the cis-element [28, 29]. The RNAP III promoter sequence of
Alu, which is a human SINE, also stimulates RNA synthesis
in E. coli [28]. The product of the E. coli artA gene is shown to
bind to the internal region of IS1 and stimulate transcription
[29, 30]. Although the primary structure of the bacterial ArtA
protein was compared with those of the prokaryotic B-block
binding subunits in this study, clear similarities were not
found. More improved programs to analyze protein structure
may clarify these points in the future. When the structures
of the eukaryotic B-block binding subunits were previously
investigated in silico, the HTH motif was not detected in any
program [10].

The relatives of the RNAP III transcription machinery
may have existed in the common ancestry of eukaryotes
and prokaryotes due to the presence of the B-block_TFIIIC
motif in archaeal and bacterial proteins and type II promoter
sequences in prokaryotic genomes.
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