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Abstract: Cyclooxygenases (COXs), including COX-1 and -2, are enzymes essential for lipid mediator
(LMs) syntheses from arachidonic acid (AA), such as prostaglandins (PGs). Furthermore, COXs
could interplay with other enzymes such as lipoxygenases (LOXs) and cytochrome P450s (CYPs)
to regulate the signaling of LMs. In this study, to comprehensively analyze the function of COX-1
and -2 in regulating the signaling of bioactive LMs in skeletal muscle, mouse primary myoblasts and
C2C12 cells were transfected with specific COX-1 and -2 siRNAs, followed by targeted lipidomic
analysis and customized quantitative PCR gene array analysis. Knocking down COXs, particularly
COX-1, significantly reduced the release of PGs from muscle cells, especially PGE2 and PGF2α,
as well as oleoylethanolamide (OEA) and arachidonoylethanolamine (AEA). Moreover, COXs could
interplay with LOXs to regulate the signaling of hydroxyeicosatetraenoic acids (HETEs). The changes
in LMs are associated with the expression of genes, such as Itrp1 (calcium signaling) and Myh7
(myogenic differentiation), in skeletal muscle. In conclusion, both COX-1 and -2 contribute to LMs
production during myogenesis in vitro, and COXs could interact with LOXs during this process.
These interactions and the fine-tuning of the levels of these LMs are most likely important for skeletal
muscle myogenesis, and potentially, muscle repair and regeneration.
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1. Introduction

Skeletal muscle myogenesis, such as muscle regeneration after injury, is a biological process
critical for maintaining a functional musculoskeletal system. Myogenesis generally consists of several
consecutive stages, including activation of satellite cells, proliferation of myoblasts, myogenic
differentiation, and fusion into multinucleated myocytes that can later become fully mature and
long, differentiated muscle cells, sometimes referred to as muscle fibers [1]. This process is highly
coordinated, and many factors have been shown to be involved in the regulation of myogenesis [2].

Prostaglandins (PGs) are a group of lipid mediators (LMs) playing important roles in various
physiological and pharmacological processes, such as fever, inflammation, reproductive function,
tissue regeneration, and myogenesis [3–6]. In skeletal muscle, PGE2 and PGF2α, are the two most
important PGs. PGE2 has been shown to enhance myoblast proliferation and differentiation [4,7],
and PGF2α is able to promote muscle cell survival and fusion [8,9].

PGs are derived from arachidonic acid (AA) through the activities of a series of specific enzymes.
Cyclooxygenases (COXs), including COX-1 and -2, are the rate-limiting enzymes during this process.
Generally, COX-1 is constitutively expressed in most cells, while COX-2 is inducible in a variety of
pathological situations, such as inflammation and cancer development [10,11]. In skeletal muscle,
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the knowledge of COXs derives mostly from the studies of COX-2. In muscle repair or regeneration
models, COX-2 knockout mice had delayed recovery from muscle injury, suggesting that COX-2 and
the downstream PGs from this pathway could be important in regenerative myogenesis, especially
in the early inflammatory phase of muscle regeneration for activation of neutrophils, macrophages,
and satellite cells [12,13]. However, in this model, the roles of COX-1 and -2 in myogenic processes after
the inflammation phase have not been defined. Moreover, in the hind limb suspension mouse model,
the induction of COX-2 is essential for muscle recovery from the atrophy caused by unloading [14].

In addition to COXs, AA is also the substrate for lipoxygenases (LOXs) [15] and cytochromes P450
(CYPs) [16]. The metabolites via these two pathways include leukotrienes and hydroxy eicosatetraenoic
acids, which are biological activators of intracellular signaling [17,18]. To our knowledge, the interactions
between COXs, LOXs, and CYPs have not been studied in skeletal muscle. The changes in the
functionalities of COXs would cause indirect effects resulting in modified activities of LOX and/or CYPs.

In this study, we investigated the functional relevance of COX-1 and -2 in myogenesis from
myoblasts to the development of multi-nucleated myotubes in both C2C12 cells and mouse
primary myoblasts. Since selective inhibitors of COX could reduce the production of PG through
COX-independent pathways and could be unselective under certain conditions [19], in the present
studies, specific siRNAs for COX-1 and -2 were used to evaluate the effects of COX-1 and -2 on
myogenic differentiation. We employed our novel liquid chromatography-mass spectrometry/mass
spectrometry (LC-MS/MS) method and a AA-targeted lipidomics method package, which is able
to detect 87 compounds derived from AA, 18 eicosapentaenoic acid (EPA)-derived compounds,
16 docosahexaenoic acid (DHA)-derived compounds, and 11 ethanolamides for evaluating the changes
in lipid profiling after knocking down COX-1 and -2 during myogenesis. In addition, based on the
morphological changes induced by siRNA treatments, a customized skeletal muscle-targeted gene
array [4] was used to identify genetic components regulated by COXs and LMs. We further linked
these studies with functional measurements of intracellular calcium levels in myotubes, which is an
essential surrogate for a host of skeletal muscle functions. Our results demonstrate that knocking down
COXs has a significant effect on the synthesis of PGs in skeletal muscle cells. However, they function
in a complex LM network not limited to PGs and have significant impacts on the levels of other LMs,
such as oleoylethanolamide (OEA) and arachidonoylethanolamine (AEA), which are potentially new
factors released from muscle for systemic metabolic regulation. Moreover, COXs play an important role
in the regulation of gene expression of contractile apparatus and Ca2+ signaling, such as Myh7, Cacna1s,
and Itrp1, which can be reflected in the changes observed in morphological and functional tests.

2. Results

2.1. Transfection with Specific siRNAs Targeting COX-1 or -2 Significantly Reduce the Expression Levels
of COXs

Two siRNAs specific for each COX were transfected into primary myoblasts. Forty-eight hours
after transfection, the total RNA was collected for quantitative RT-PCR to determine the changes in
COX expression level. For each gene, both siRNAs efficiently decreased gene expression (Figure 1A,B).
Since the siRNA-2 of COX-1 and -2 had higher levels of knockdown efficiencies, resulting in 97.2% and
79.3% downregulation of COX-1 and -2, respectively, compared with negative control (NC), they were
used for all remaining experiments. In addition, the protein levels of COX-1 and -2 were shown around
55% reduction at 48 h post transfection with COX-1 or -2 siRNA (Figure 1C–F). Completed Western
blot images are shown in supplementary Figure S1.

After 48 h transfection with COX-1 or -2 siRNA, significant morphological changes were observed
in myotubes (Figure 1G). Quantified myogenic differentiation data showed that fusion index was
reduced from 79.6% (NC) to 49% (COX-1 siRNA) and 45.4% (COX-2 siRNA), respectively (Figure 1H).
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Figure 1. Verification of the high efficiency of COX-1 and COX-2 siRNA knockdown. (A) Knockdown 
efficiency of siRNAs targeting COX-1; (B) knockdown efficiency of siRNAs targeting COX-2; (C) 
COX-1 Western blot results after siRNA transfection for 48 h; (D) quantification of COX-1 Western 
blot results using ImageJ; (E) COX-2 Western blot results after siRNA transfection for 48 h; (F) 
quantification of COX-2 Western blot results using ImageJ; and (G) both COX-1 and COX-2 siRNA 
transfections inhibit primary myoblast myogenic differentiation. Morphological phenotypes 
observed after transfections with siRNAs. a: Negative control; b: COX-1 siRNA; and c: COX-2 siRNA. 
(H) Treatments with siRNAs significantly reduces fusion index. n = 3–4, ** p < 0.01 compared with 
NC. 

2.2. The Changes in Levels of Lipid Mediators after Knocking Down COX-1 or -2 Are not Limited to PGs 
and Thromboxane B2 (TXB2) 

To investigate the mechanisms responsible for the effect of COXs in skeletal muscle myogenesis, 
we first used our new lipidomics method to directly quantify 14 LMs selected from our preliminary 
studies, mostly AA metabolites through COX and other enzymes in cell differentiation medium 
(DM). Compared with blank medium, after differentiation for 72 h, the levels of PGE2, PGF2α, 6-keto-
PGF1α (stable metabolite of PGI2), DHA, and OEA in the medium increased significantly, suggesting 

Figure 1. Verification of the high efficiency of COX-1 and COX-2 siRNA knockdown. (A) Knockdown
efficiency of siRNAs targeting COX-1; (B) knockdown efficiency of siRNAs targeting COX-2; (C) COX-1
Western blot results after siRNA transfection for 48 h; (D) quantification of COX-1 Western blot results
using ImageJ; (E) COX-2 Western blot results after siRNA transfection for 48 h; (F) quantification of
COX-2 Western blot results using ImageJ; and (G) both COX-1 and COX-2 siRNA transfections inhibit
primary myoblast myogenic differentiation. Morphological phenotypes observed after transfections
with siRNAs. a: Negative control; b: COX-1 siRNA; and c: COX-2 siRNA. (H) Treatments with siRNAs
significantly reduces fusion index. n = 3–4, ** p < 0.01 compared with NC.
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2.2. The Changes in Levels of Lipid Mediators after Knocking Down COX-1 or -2 Are not Limited to PGs and
Thromboxane B2 (TXB2)

To investigate the mechanisms responsible for the effect of COXs in skeletal muscle myogenesis,
we first used our new lipidomics method to directly quantify 14 LMs selected from our preliminary
studies, mostly AA metabolites through COX and other enzymes in cell differentiation medium (DM).
Compared with blank medium, after differentiation for 72 h, the levels of PGE2, PGF2α, 6-keto-PGF1α

(stable metabolite of PGI2), DHA, and OEA in the medium increased significantly, suggesting that
these LMs were released from myocytes/myotubes. We then further analyzed the effect of COXs
on their production. Knocking down COX-1 using siRNA significantly reduced the levels of PGE2

and PGF2α compared with NC, but had no significant effect on the levels of 6-keto-PGF1α. At the
same time, knocking down COX-2 also showed a similar impact on PGE2 levels, but the effect was
significantly less than knocking down COX-1. In addition to changes in LMs in AA pathway, COX-1
knockdown significantly reduced the concentration of DHA and OEA in the DM after 72 h (Figure 2).
These data demonstrate that the functions of COXs are not limited to regulating the production of PGs
from AA. The whole list of LMs identified in these experiments, including LMs with lower levels after
72 h differentiation compared with blank medium (LMs could be consumed by myocytes/myotubes
during differentiation), is summarized in supplementary Figure S2.
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In addition to direct quantification for lipid mediators, lipidomic profiling of 158 lipid mediators 
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(12-HETE), a lipid mediator derived from the 12-LOX pathway, and 15-HETE, a lipid mediator 
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Figure 2. COX-1 and -2 knockdown reduces the levels of key lipid mediators released by primary
muscle cells. (A) Absolute quantification of lipid mediators (LMs) released in differentiation medium
(DM) from primary mouse myocytes/myotubes during differentiation; (B) ratio of LMs released in DM
at 72 h post-transfection comparing COX-1 siRNA or COX-2 siRNA treatment with NC transfection.
n = 3, * p < 0.05 and ** p < 0.01 compared with NC; # p < 0.05 compared with COX-1 siRNA.

2.3. COXs could Interact with LOXs to Regulate the Levels of Lipid Mediators

In addition to direct quantification for lipid mediators, lipidomic profiling of 158 lipid mediators
in DM also was performed. Our results indicate that the levels of 12-Hydroxyeicosatetraenoic acid
(12-HETE), a lipid mediator derived from the 12-LOX pathway, and 15-HETE, a lipid mediator derived
from the 15-LOX pathway, significantly decreased after siRNA transfection targeting both COX-1 and
-2. In contrast, the levels of 5-HETE, a lipid mediator derived from the 5-LOX pathway was not affected
(Figure 3).
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Figure 3. Knockdown of COXs reduces the levels of hydroxyeicosatetraenoic acids (HETEs) released
by primary muscle cells. The levels of 12-HETE and 15-HETE, but not 5-HETE are significantly affected
by the downregulation of gene expression of both COX-1 and COX-2. n = 3, * p < 0.05 and ** p < 0.01
compared with NC.

2.4. Supplement with LMs Improves Defective Myogenic Differentiation of Primary Myoblast Caused by
Knocking Down COX-1 or -2

Based on the results of lipidomic analysis, to confirm that the effects on myogenic differentiation
after knocking down COX-1 and -2 were through decreasing the production of LMs, three LMs,
including PGE2, 12-HETE, and 15-HETE, were selected to determine whether replenishment with
these LMs could improve defective myogenesis following transfection with siRNAs. Our results
indicated that co-treatment with PGE2 or 15-HETE, but not 12-HETE, partially recovered the inhibition
of both siRNAs used against COX-1 or -2 on myogenic differentiation. The fusion indexes increased
significantly from 49% to 56.1% and 58.3% in culture treated with COX-1 siRNA, and from 45.4% to
59.8% and 62.3% in the COX-2 siRNA treated group, respectively. However, neither PGE2 nor 15-HETE
brought the fusion index back to normal (negative control) level (Figure 4).

2.5. Results of Lipidomic Analysis of C2C12 Cells Show Similar Patterns as Primary Myoblasts

Following the studies of primary myoblasts, lipidomic analysis was performed in C2C12 cells.
Since it is relatively easy to reach cell numbers high enough for reliable lipidomic analysis in C2C12
cell culture, we performed lipidomic studies in both cell culture media and cells.

In C2C12 cell culture media, similar to the results obtained in mouse primary myoblast cultures,
PGs from the AA pathway, including PGE2, PGF2α, and 6-keto-PGF1α (PGI2), were released from cells
into media. In addition, AEA and OEA also were identified as LMs released by myocytes/myotubes
during differentiation. Knocking down COXs significantly lowered the concentrations of PGE2,
6-keto-PGF1α, AEA, and OEA in media. COX-1 was more effective in modulating the concentrations of
PGE2 and 6-keto-PGF1α, but COX-2 knockdown had more impact on the release of PGF2α. DHA was
not a lipid mediator released by C2C12 cells during differentiation (Figure 5).

In C2C12 cells, for LMs from AA pathway, downregulation of COXs significantly reduced the
levels of PGE2, but had no effect on the levels of PGF2α or 6-keto-PGF1α. Moreover, knocking down
COX-1, but not COX-2, significantly lowered the concentration of PGD2. TXB2 was not detectable in
C2C12 cells. Interestingly, knocking down COXs significantly increased the level of AEA in C2C12
cells, but had no effect on OEA levels (Figure 6). These results further confirm that the functional
change in COXs affects a more complex network of LMs than just PGs and TXA2. The whole list of
LMs identified in these studies using C2C12 cells is summarized in supplementary Figure S3 for cell
culture medium and supplementary Figure S4 for C2C12 cells.
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COX-1 or -2 knockdown. Panel A: Representative fluorescence images of morphological changes of 
myotubes after siRNA transfection and supplement with LMs. Blue: DAPI (4′,6-diamidino-2-
phenylindole) staining; green: MHC (myosin heavy chain) staining. Panel B: Pretreatment with PGE2 

and 15-HETE partially but significantly improved Fusion Index. n = 3, ** p < 0.01 compared with NC; 
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2.5. Results of Lipidomic Analysis of C2C12 Cells Show Similar Patterns as Primary Myoblasts 

Figure 4. Treatment with PGE2 or 15-HETE partially recovers the impaired myogenesis induced by
COX-1 or -2 knockdown. Panel (A): Representative fluorescence images of morphological changes
of myotubes after siRNA transfection and supplement with LMs. Blue: DAPI (4′,6-diamidino-2-
phenylindole) staining; green: MHC (myosin heavy chain) staining. Panel (B): Pretreatment with PGE2

and 15-HETE partially but significantly improved Fusion Index. n = 3, ** p < 0.01 compared with NC;
# p < 0.05 and ## p < 0.01 compared with COX-1 or -2 siRNA.
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Figure 5. COX-1 or -2 knockdown reduces the levels of key lipid mediators released by C2C12 muscle
cells. (A) Absolute quantification of LMs released in DM of C2C12; (B) ratio of LMs released in DM at
72 h post transfection comparing COX-1 siRNA or COX-2 siRNA treatment with NC transfection. n = 5,
* p < 0.05 and ** p < 0.01 compared with NC; # p < 0.05 and ## p < 0.01 compared with COX-1 siRNA.
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2.6. Changes in Gene Expression Profile after siRNA Transfection Targeting at COX-1 or -2

Next, to study the genetic mechanism(s) related to the changes in lipid mediators after knocking
down COX-1 or -2, a customized quantitative RT-PCR gene array, which includes 91 genes associated
with cell myogenic differentiation, cell survival, Ca2+ signaling and homeostasis, cell metabolism,
oxidative stress, and cell growth was performed [4]. After transfection with siRNAs, genes encoding
components of contractile apparatus and Ca2+ signaling were significantly affected (Figure 7). Myh7,
Acta1, Ttn, Myh1, and Myh6 were downregulated by knocking down at least one of the COX isoforms.
In contrast, the expression of ITPR1 gene, which encodes the inositol 1,4,5-triphosphate (IP3) receptor
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1, an important regulator of intracellular calcium signaling, was increased. However, knocking down
COX-1 significantly reduced the expression levels of Cacna1c and Cacna1s, which are genes encoding
subunits of voltage-sensitive, L-type calcium channel, and Jph2. The impact of COX-2 on calcium
signaling is more complex, in addition to Itpr1, transfection with COX-2 siRNA also upregulated the
expression of Cacna1c, Ryr2, and Stim2, but downregulated the expression of Sypl2, Mtmr14, Tmem38a,
and Itpr2.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 17 
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in gene expression after treatment with 15-HETE for 48 h. Only genes with two-fold or greater changes,
which are considered as significant changes, are listed.

In addition, the changes in antioxidative genes (Sod2, Sod3, and Cat) and the upregulation of genes
of heat shock protein family (Hspd1, Hspb2, and Cryab) suggest that the cells were under stress after
transfection of the siRNAs.

The changes in gene expression after COXs downregulation could be directly related with the
decreased levels of lipid mediators. We previously reported the effect of PGE2 on gene expression
in muscle cells using our customized gene array [4]. In this study, using the same method,
the changes in gene expression in primary mouse myoblast after 48 h of treatment with 15-HETE were
determined. Genes encoding tripartite motif-containing protein 55 (Trim55), Toll-like receptor 2 (TLR2),
and CC-chemokine ligand 2 (CCL2) were significantly upregulated after treatment with 15-HETE.
Trim55 is one of genes downregulated after transfection with either COX-1 or -2 siRNA, and the gene
expression of TLR2 and CCL2 were significantly reduced by knocking down COX-1 and -2, respectively
(Figure 7). These results support, at the genetic level, the partial recovery effect of myogenesis induced
15-HETE treatments shown in Figure 4.
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2.7. Intracellular Calcium Homeostasis Measurement

Since there are significant changes in gene expression in the contractile apparatus and Ca2+

machinery, the measurement of intracellular calcium homeostasis was performed to identify functional
changes in myotubes after siRNA transfection.

Both COX-1 and -2 siRNA transfection significantly altered the profile of intracellular calcium
homeostasis in response to caffeine stimulation, but there was some difference between COX-1
and -2 knockdown. COX-1 siRNA treated myotubes demonstrated spontaneous cyclical transition
in baseline fluorescence and a weaker response to caffeine stimulation compared to the negative
control group. While COX-2 siRNA treated myotubes do not show cyclical oscillation in intracellular
Ca2+ measurement, the amplitude of their responses to caffeine stimulation were further attenuated
(Figure 8).
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Figure 8. Representative Ca2+ transient of mouse primary myotubes loaded with Fura-2/AM in response
to 20 mM caffeine (arrows). Treatment with COX-1 siRNA induced spontaneous Ca2+ oscillation with
reduced response to caffeine stimulation. While Ca2+ oscillation was not observed in myotubes treated
with COX-2 siRNA, their response to caffeine stimulation was further reduced. (A) Negative control;
(B) COX-1 siRNA knockdown; and (C) COX-2 siRNA knockdown.

3. Discussion

COX-1 and -2 are the two most important enzymes in the synthesis of PGs and TXA2 from AA.
Due to the comprehensive functions of PGs and TXA2 in physiological and pathological processes,
COX-1 and -2 have been considered as important targets for the development of new therapeutics for
disease [20,21]. In skeletal muscle, previous studies have shown that COXs, through the regulation of
their AA metabolites, play important roles in muscle development, regeneration, and diseases [13,22].

To date, most studies concerned with the role of COXs in skeletal muscle have been focused on
COX-2, the inducible form of COX. COX-2 increases during muscle regeneration after injury and during
recovery from muscle atrophy [14]. Moreover, under normal conditions, the protein levels of both
COX-1 and -2 are detectable in rat extensor digitorum longus (EDL) and soleus muscle [23]. Inhibition
of COX-2 results in attenuated muscle growth during regeneration after injuries and reduced muscle
hypertrophy in animal models [24]. At least part of the effects of COXs are thought to be mediated by
the functions of their AA metabolites, which include PGE2, PGF2α, PGI2, PGD2, and TXA2. In skeletal
muscle, due to their important functions in the regulation of myoblast proliferation and differentiation,
and the function of inflammatory cells, PGE2 and PGF2α have been considered major mediators of the
effects of COXs [7,9]. PGI2 plays an important role in regulating the migration and fusion of muscle
cells [25]. In contrast, treatment with PGD2 inhibited C2C12 myogenesis in vitro [26].

COX-2 induction during muscle regeneration occurs in the early acute inflammatory phase, which
is involved in the recruitment of inflammatory cells, such as macrophages, activation of satellite cells,
and myoblast proliferation [13]. However, administration of COX-2 inhibitor after acute inflammatory
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phase did not affect muscle regeneration and had no noticeable effect in undamaged muscles. These data
suggest that COX-1, the constitutive isoform, may compensate for COX-2 and also plays a role in
muscle regeneration and in the maintenance of normal muscle functions. By downregulating COX-1
and -2 expression in mouse primary myoblast using siRNAs, we compared the functionalities of these
enzymes in myogenic differentiation. Our results demonstrated that knocking down both COX-1 and
-2 significantly inhibited myogenesis. However, these two enzymes may have different functions in
myogenic differentiation, based on the morphological phenotypes after the transfection of siRNAs.

To our knowledge, there is currently no systematic study comparing the functionalities of COX-1
and -2 during myogenesis in terms of the production of AA metabolites and other aspects important for
myoblast migration, proliferation, differentiation, and fusion, such as lipid profiling and intracellular
calcium homeostasis.

Our data provide evidence supporting previous findings that PGE2 and PGF2α could be two major
mediators from the AA/COX pathway in skeletal muscle. Moreover, the changes in PGs and TXB2

clearly indicate that COX-1 plays a critical role in the stages from myoblast to fusion in myogenesis.
In addition to affecting the production of PGs and TXs, reduced COXs functionalities also affected
the levels of AA metabolites through LOX pathways. 5- and 12/15 LOXs are the LOX isoforms
utilizing AA as substrate to generate 5-, 12-, and 15-HETE. Our results demonstrated that reduced
COX-1 or -2 expression significantly decreased the levels of 12- and 15-HETE, but had no effect on
5-HETE. These results suggest that COXs could interact with LOX to regulate the production of lipid
mediators from AA. 12/15 LOX shares some function with COXs, such as the regulation of inflammatory
cytokines. In animal studies, deletion of 12/15 LOX prevents the early onset of inflammation caused by
a high-fat diet [27] and denervation-induced muscle atrophy [28]. On the other hand, the same genetic
manipulation resulted in exaggerated inflammation and tissue damage in arthritis, and disruption of
the translocation of glucose transporter type 4 in cardiac and skeletal muscle. Our results suggest that
COX-1 and -2 could function indirectly on LMs by altering the metabolism of AA by LOXs. This could
be the first evidence of the interaction between COXs and LOXs in skeletal muscle.

Recently, skeletal muscle has been recognized as an endocrine tissue. Factors released from
muscles, such as β-aminoisobutyric acid (BAIBA), a muscle metabolite, can act as endocrine factors
to crosstalk with bone, adipose tissue, and other tissues or organs [29,30]. In our study, besides PGs,
OEA was also identified as a factor released by skeletal muscle, a metabolite derived from omega-9
fatty acid, oleic acid. BAIBA, via activation of peroxisome proliferator-activated receptor α (PPARα),
transient receptor potential vanilloid type-1 (TRPV1), and G protein coupled receptor GPR119 regulates
fat catabolism, food intake, and glucose homeostasis [31–33]. In soleus muscle, OEA enhanced the
oxidation of fatty acid, but had no significant effect on glucose metabolism [34]. Currently, feeding
status and enzymes directly responsible for OEA synthesis or degradation, such as N-acyl transferase
and fatty acid amide hydrolase [35], are major factors affecting the OEA level. Our results demonstrated
that COXs in skeletal muscle could be an important factor regulating the OEA level. AEA is another
candidate lipid mediator acting as a myokine, because it has important functions in metabolic regulation
and anti-inflammatory effects through activating TRPV1 and cannabinoid receptors, respectively [36],
and in our studies is regulated by the activities of COXs in skeletal muscle. These data could help to
expand the pool of myokines and provide new insight for explaining the beneficial effect of exercise.

The regulatory function of skeletal muscle on metabolism is closely related with its status,
especially functionality status. After transfection with siRNAs targeting COXs, the development of
myotubes is inhibited. Corresponding with this phenotype, genes encoding components of contractile
apparatus and cytoskeleton, including Myh2, Myh7, Acta1, Actb, and Actc1, were also significantly
affected. Appropriate cytoskeletal remodeling, which also is related to the assembly of the contractile
apparatus, is critical for migration, cell-to-cell recognition, and fusion of myoblasts/myocytes [37].
The changes in gene expression of the contractile apparatus and cellular structural components suggest
that COXs are important for assembly of contractile apparatus and cytoskeleton. Moreover, after
knocking down COX-1 or -2, functional tests using the measurement of intracellular Ca2+ homeostasis
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in myotubes was performed. Our results indicate that intracellular Ca2+ signaling was defective
after downregulation of COXs. COX-1 siRNA treated myotubes demonstrated spontaneous cyclical
transition in baseline fluorescence and a weaker response to caffeine stimulation. These phenomena
could have been resulted from the changes in gene expression of Ca2+ machinery. Cacna1c and Cacna1s
are genes encoding subunits of the voltage-sensitive, L-type Ca2+ channel, which plays a critical role in
gating intracellular Ca2+ movement [38]. Significant downregulation of these two genes after knocking
down COX-1 could lead to the dysfunction of voltage-sensitive, L-type Ca2+ channels, which could be
the major reason for the detectable spontaneous Ca2+ transients in myotubes. While COX-2 siRNA
treated myotubes did not show similar changes in intracellular Ca2+ measurement, the amplitude
of their responses to caffeine stimulation were further attenuated. Gene expression of Sypl2 (Mg29)
and Mtmr14 significantly decreased after COX-2 knockdown. Previous findings from our group have
confirmed that knocking down these genes causes defective Ca2+ signaling in skeletal muscle [39,40].
These changes, along with downregulation of Tmem38a, a gene encoding trimeric intracellular cation
channel type A, which is important for maintenance of rapid intracellular calcium release [41], could
contribute to the attenuated response upon caffeine stimulation.

The changes in gene expression after COX-1 and -2 siRNA transfection could be modulated through
decreasing levels of 15-HETE. Treatment with 15-HETE significantly increased the expression of Trim55,
TLR2, and CCL2. Trim55, also called muscle-specific RING finger protein 2 (MuRF2), was downregulated
after knocking down COX-1 or -2. This gene has been shown to be important for the organization of
cytoskeleton and contractile machinery in muscle. A reduced Trim55 expression level led to delayed
myoblast fusion, defective contractile function, and deformation of Z- and M-bands, suggesting that
Trim55 is an adaptor for tubulin, titin, and myosin, which has an important impact on structural and
functional aspects in muscle [42,43]. TLR2 and CCL2 were genes downregulated by knocking down
COX-1 and -2, respectively. They are important components in inflammatory responses, which play
essential roles in immune responses, muscle regeneration after injuries and muscle atrophy [44,45].
During endurance training, TLR2 signaling mediates the activation of mitogen-activated protein
kinase (MAPK) and nuclear factor κB (NF-κB) induced by extracellular nonesterified fatty acids [46].
One the other hand, muscle atrophy after immobilization is closely related with oxidative stress and
inflammation through the activation of TLR2 [47]. CCL2 might be one of the targets of TLR2 signaling in
skeletal muscles. Peptidoglycan, an agonist of TLR1 and TLR2, significantly induced CCL2 expression
in C2C12 myotubes [48]. Polymorphisms of CCL2 are associated with muscle adaption and muscle
damage response caused by exercise [49,50]. Research concerned with TLR2 and CCL2 in muscle has
been focused on their functions in recruiting immune cells, such as monocytes, during muscle recovery
from injury, which involves cell migration and cell adhesion [51,52]. Myoblast migration and adhesion
are important steps for differentiation and fusion. Our results imply that COXs-15-HETE signaling
could be important for pre-fusion events in myogenesis. Another interesting finding is that transfection
with COX-2 siRNA significantly increased the expression of interleukin-6 (IL-6), which was reversed
when myoblasts were treated with 15-HETE. IL-6 is a multi-functional factor in skeletal muscle. It can
stimulate satellite cell proliferation [53], but chronic exposure to IL-6 led to muscle atrophy [54], which
is supported by the previous report that inhibition of IL-6 signaling attenuated muscle atrophy in tail
suspension model through the downregulation of atrophy-related genes, such as atrogin-1 [55].

Collectively, these studies provide new insights into the regulation of LMs in skeletal muscle and
their crucial function for muscle cell homeostasis.

4. Materials and Methods

4.1. Cell Culture

4.1.1. Myoblast Isolation and Culture

Isolation of primary myoblasts was performed as previously described [7]. Primary myoblasts
were isolated from hind limb muscles of 5 months old C57BL/6 mice. Collected muscles were minced
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and digested using 0.1% pronase (EMD Millipore, Temecula, CA, USA). Isolated cells (fibroblasts
and myoblasts) were maintained and expanded in collagen-I (Corning, Corning, NY, USA) coated
T-75 flask in growth medium (GM) consisted of Ham’s F-10 (Corning), 20% fetal bovine serum (FBS,
Atlanta Biologicals, Flowery Branch, GA, USA), 5 ng/mL basic recombinant human fibroblast growth
factor (Promega, Fitchburg, WI, USA), 100 µg/mL streptomycin (Thermo Scientific, Rockford, IL,
USA), and 100 U/mL penicillin G (Thermo Fisher Scientific, Waltham, MA, USA) for 3 to 4 weeks for
purification. For differentiation, purified myoblasts were plated on E-C-L (Millipore)-coated 6-well
plates at ~200,000 cells/well and differentiated in DM for 48 or 72 h.

4.1.2. C2C12 Cells

C2C12 cells were cultured as previously described [56]. Briefly, cells [American Type Culture
Collection (ATCC), Manassas, VA, USA] were cultured in complete growth medium [CGM, high-glucose
Dulbecco’s Modified Eagle Medium (DMEM, Corning) with 10% fetal bovine serum, plus 100 U/mL
penicillin and 100 µg/mL streptomycin (Thermo Fisher Scientific)], at 37 ◦C and 5% CO2. C2C12
myoblasts were maintained at 70–80% confluence and passaged one or two times before being used
in experiments.

To initiate differentiation, CGM was replaced by differentiation medium (DM) containing
high-glucose DMEM, 2.5% horse serum (Hyclone Laboratories Inc, Logan, UT, USA), 100 U/mL
penicillin, and 100 µg/mL streptomycin.

4.2. siRNA Transfection

For primary mouse myoblasts, cells were seeded at ~200,000 cells/well in 6-well plates in primary
GM, then differentiated overnight before being transfected with 10nM siRNAs, including negative
control siRNA and siRNAs targeting COX-1 or -2 [Integrated DNA Technologies (IDT), Coralville, IA,
USA]. Lipofectamine RNAiMAX (Thermo Fisher Scientific) was used as a transfectant following the
instructions from the manufacturer.

For recovery experiments with LM supplements, including PGE2, 12-HETE, and 15-HETE, primary
myoblasts were treated with 50 nM of each LM for 2 h in fresh DM before being transfected with siRNAs.

For C2C12 cells, cells grew in CGM until 80–90% confluence in 6-well plates, then differentiated
overnight before being treated with siRNAs, as described in primary myoblast experiments.

4.3. Quantitative Real-Time PCR (qRT-PCR)

Total RNA was extracted from primary myoblasts using Direct-zol RNA MiniPrep (Zymo Research,
Irvine, CA, USA) according to the manufacturer’s instruction, and was quantified in a Nanodrop
1000 spectrophotometer (Thermo Fisher Scientific). An aliquot of RNA sample (0.5–1 µg) with the
A260/280 nm absorbance ratio of 1.8 or above was reverse transcribed in a 20 µL reaction volume using
a protoscript II first strand cDNA synthesis kit (New England Biolabs, Ipswich, MA, USA).

The RT-PCR reaction mixture contained 2 µL cDNA, 12.5 µL of the RT2 SYBR Green/Rox PCR
master mix (Qiagen, Germantown, MD, USA), 0.4 µL of primer pairs (10 µM) and 10.1 µL of RNase free
water to a complete reaction volume of 25µL. qRT-PCR was performed using Step-One Plus TM RT-PCR
System (Thermo Fisher Scientific), and results were normalized to the reference gene GAPDH. Primers
used in the experiments include: 1) COX-1: Forward: 5′-TGCCCATGGAGACCAGAAGAAGTT-3′;
Reverse: 5′-ATGGGTGTGGAGAAATGGCTCAGT-3′; 2) COX-2: Forward: 5′-ATGACTGGCTGGT
GCATCTCATCT-3′; Reverse: 5′-ACTTGCCCTCACGGACAATGTAGT-3′; 3) GAPDH: Forward: 5′-T
GCGATGGGTGTGAACCACGAGAA-3′; Reverse: 5′- GAGCCCTTCCACAATGCCAAAGTT-3′.

The customized gene array was previously developed by our laboratory in collaboration with
Qiagen and is now commercially available from Qiagen (Item No.: CAPM09345C, Germantown, MD,
USA) [4]. Experiments were performed according to the instructions from the manufacturer. Data were
uploaded and analyzed by specific software from Qiagen. Changes in gene expression were considered
significant when change was two-fold or greater.
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4.4. Protein Sample Preparation and Western Blotting

Muscle cells cultured in 6-well plates were washed 3 times with ice-cold Dulbecco’s phosphate
buffered saline (PBS) before being lysed by RIPA buffer [1× Tris-buffered saline (TBS), 1% Nonidet
P-40, 0.5% sodium deoxycholate, 0.1% SDS, 0.004% sodium azide] (Sigma-Aldrich, St. Louis, MO,
USA) with 1% cocktail of proteinase and phosphatase inhibitors (Sigma-Aldrich). Lysates were then
collected and incubated in ice for 30 min, followed by centrifugation at 16,000× g for 20 min at 4 ◦C.
Supernatants were collected for protein assay.

Protein assay was performed using Micro BCA Protein Assay Kit (Thermo Fisher Scientific)
according to the manufacturer’s instructions. Protein samples then were mixed with 4×Western blot
loading buffer (Bio-Rad, Plano, TX, USA) and denatured at 100 ◦C for 5 min.

For Western blots, ~30 µg of total proteins were fractionated by 4–15% Mini Protean TGX gels
(Bio-Rad) and transferred to polyvinylidene difluoride (PVDF) membranes (Bio-Rad). Membranes
were blocked in 5% non-fat dry milk in 1× TBS with 0.1% Tween 20 (TBST) for 1 h at room temperature
(RT), followed by incubation with antibodies COX-1 (1:1000, Cell Signaling Technology, Inc, Danvers,
MA, USA) and β-tubulin (1:1000, Cell Signaling Technology, Inc, Danvers, MA, USA) in 5% bovine
serum in TBST or COX-2 antibody (1 µg/mL, R&D systems, Minneapolis, MN, USA) in 5% non-fat
dry milk at 4 ◦C overnight. HRP-conjugated goat anti-rabbit (For COX-1 and β-tubulin, 1:10,000,
Jackson ImmunoResearch, West Grove, PA, USA) or HRP-conjugated rabbit anti-goat (For COX-2,
1:5000, Thermo Fisher Scientific) secondary antibodies were then applied to membranes for 1 h at RT.
After five 5-min washes in TBST, Clarity Max ECL Western blotting substrates (Bio-Rad) or Super
Signal West Femto substrate (Thermo Fisher Scientific) were used to detect the signal by ChemiDoc
MP imaging system (Bio-Rad).

4.5. Immunohistochemistry

After differentiation, cells in 6-well plates were fixed in 10% neutral buffered formalin solution
(NBF, Sigma-Aldrich) for 15 min. After removal of NBF, cells were washed 4 times with PBS, followed
by permeabilization with 0.1% Triton X-100 in PBS for 15 min. Cells were then incubated with myosin
heavy chain (MHC) fluorescein-conjugated antibody (1:100, R&D Systems) overnight at 4 ◦C. After
3 washes with PBS, DAPI (1:1000, Sigma-Aldrich) was added for 10 min incubation at room temperature.
Images were taken with Olympus IX50 system using software cellSens Dimension 1.15 (Olympus
Corp., New Orleans, LA, USA).

4.6. LC-MS/MS

4.6.1. Sample Preparation for Lipidomics Analysis

Briefly, cells from four wells of 6-well plates were harvested after experiments and transferred
into 1.0 mL of ice-cold 80% methanol in water (v/v) to perform homogenization using the TissueLyser II
homogenizer (Qiagen) at the frequency of 30/sec, in 6 × 30 s bursts, and 20 s in between to avoid high
temperature. An aliquot (20 µL) of cell homogenates was saved separately for future protein content
measurement by BCA (bicinchoninic acid) assay (Thermo Scientific, Rockford, IL, USA). The remaining
homogenate from each cell sample was added to 10 µL of IS mixture stock solution (5 µg/mL for AA-d8,
2 µg/mL for DHA-d5 and EPA-d5, and 0.5 µg/mL), then agitated on ice in the dark for 1–2 h. For cell
culture media, 1 mL of culture media sample was mixed with 1.5 mL of ice-cold methanol and 10 µL of
IS mixture stock solution, then agitated on ice in dark for 15 min. After incubating the homogenate or
culture media sample on ice, samples were centrifuged at 6000× g at 4 ◦C for 10 min to remove any
precipitated proteins. All LM standards and isotope-labelled LM internal standards were purchased
from Cayman Chemical Co (Ann Arbor, MI, USA). Formic acid (reagent grade, ≥95%) was obtained
from Sigma-Aldrich. HPLC-MS grade acetonitrile, water, methanol, and ethanol were purchased from
J.T. Baker (Phillipsburg, NY, USA).
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Both cell and culture media samples were cleaned and concentrated by Solid Phase Extraction
(SPE) before being injected into the LCMS. Before loading samples to the preconditioned SPE cartridges
(Strata-X 33 µm polymeric reversed phase, Phenomenex, Torrance, CA, USA), 4 or 6 mL of ice-cold
0.1% formic acid was added in the supernatant from cell or medium sample, respectively, to fully
protonate the LM species. Once the sample had been totally loaded, cartridges were washed with 1 mL
of 0.1% formic acid followed by 1 mL of 15% (v/v) ethanol in water to remove excess salts. Then the
LMs from the SPE sorbent bed were eluted by methanol. Solvents were removed using an Eppendorf®

5301 concentrator centrifugal evaporator (Eppendorf, Hauppauge, NY, USA), and the dried extracts
stored at −80 ◦C for future LC-MS/MS analysis.

4.6.2. LC-MS/MS Conditions

All components of LC-MS/MS system are from Shimadzu Scientific Instruments, Inc. (Columbia,
MD, USA). LC system was equipped with four pumps (Pump A/B: LC-30AD, Pump C/D: LC-20AD XR),
a SIL-30AC autosampler (AS), and a CTO-30A column oven containing a 2-channel six-port switching
valve. The LC separation was conducted on a C8 column (Ultra C8, 150 × 2.1 mm, 3 µm, RESTEK,
Manchaca, TX, USA) along with a Halo guard column (Optimize Technologies, Oregon City, OR, USA).
The MS/MS analysis was performed on Shimadzu LCMS-8050 triple quadrupole mass spectrometer.
The instrument was operated and optimized under both positive and negative electrospray and
multiple reaction monitoring modes (+/− ESI MRM). The settings of flow rate and gradient program
for the LC system as well as MS/MS conditions are recommended by a software method package for
158 lipid mediators (Shimadzu Scientific Instruments, Inc., Columbia, MD, USA) and further optimized
following our previously published quantification method [57]. Briefly, the optimized conditions are
as follows: Interface voltage, 4.0 kV; interface temperature, 275 ◦C; DL temperature, 275 ◦C; heating
block temperature, 400 ◦C; drying gas (N2), 10 L/min; nebulizing gas (N2), 3 L/min; heating gas
(Air), and 10 L/min; CID gas (Ar), 230 kPa. The acquisition was divided into multiple segments.
The m/z transitions and their tuning voltages were selected based on the best MRM responses from
the instrumental method optimization software. All analyses and data processing were completed on
Shimadzu LabSolutions V5.91 software (Shimadzu Scientific Instruments, Inc., Columbia, MD, USA).

4.7. Intracellular Ca2+ Measurements

Intracellular Ca2+ measurements were performed as previously described [58]. A Photon
Technology International (PTI) imaging system was used to measure intracellular Ca2+ homeostasis.
Myotubes imaged were loaded with 2 µM Fura-2 AM (Thermo Fisher Scientific) for 30 min at 37 ◦C,
followed by RT de-esterification for 15 min. Only cells that had an initial ratio below 1.0, indicating
healthy and not Ca2+-overloaded myotubes, were selected for application of 20 mM caffeine (Thermo
Fisher Scientific) with a perfusion system (Bioscience Tools, San Diego, CA, USA). Ratiometric analysis
(350/375 nm excitation ratio; 510 nm emission) was performed using software PTI EasyRatioPro 2
(HORIBA, Edison, NJ, USA). These experiments were repeated 5 times and at least 6 myotubes were
tested on each experiment.

4.8. Statistical Analysis

Three to five independent replicates were performed for each experiment, except for the customized
gene array study. One-way ANOVA with post hoc Tukey’s test was performed for data analysis.
Results were expressed as mean ± SD. Differences were considered significant at p < 0.05.

5. Conclusions

In conclusion, by using lipidomic analysis, our data have provided new insights regarding the
functions of COXs in skeletal muscle. COX-1 may play a major role in the step from myoblast to fusion
in myogenic differentiation. Its effect could also be related with the alteration in AA/LOX pathway.
Further studies on the lipid mediators from AA/COX pathway, and the interactions between COXs
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and LOXs will advance the knowledge of COX and related lipid signaling in skeletal muscle and other
tissues, which could benefit the development of new treatments for inflammation related diseases in
skeletal muscle and other tissues.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/18/
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