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Increasing evidence has elucidated that the tumor microenvironment (TME)

shows a strong association with tumor progression and therapeutic outcome.

We comprehensively estimated the TME infiltration patterns of 111 gastric

cancer (GC) and 21 normal stomach mucosa samples based on bulk

transcriptomic profiles based on which GC could be clustered as three

subtypes, TME-Stromal, TME-Mix, and TME-Immune. The expression data of

TME-relevant genes were utilized to build a GC prognostic model—GC_Score.

Among the three GC TME subtypes, TME-Stomal displayed the worst prognosis

and the highest GC_Score, while TME-Immune had the best prognosis and the

lowest GC_Score. Connective tissue growth factor (CTGF), the highest

weighted gene in the GC_Score, was found to be overexpressed in GC. In

addition, CTGF exhibited a significant correlation with the abundance of

fibroblasts. CTGF has the potential to induce transdifferentiation of

peritumoral fibroblasts (PTFs) to cancer-associated fibroblasts (CAFs). Beyond

characterizing TME subtypes associated with clinical outcomes, we correlated

TME infiltration to molecular features and explored their functional relevance,

which helps to get a better understanding of carcinogenesis and therapeutic

response and provide novel strategies for tumor treatments.
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Introduction

Gastric cancer (GC) is responsible for over 1 million new cases

in 2020 and an estimated 0.77 million deaths, incidence ranked

fifth, and mortality ranked fourth, as proposed by WHO in 2020

(1). In addition to tumor cells, cancer tissue is also composed of

numerous distinct non-cancerous cell types. Together, these are

termed as the tumor microenvironment (TME). Increasing

evidence has elucidated a crucial role of the TME in

carcinogenesis and therapeutic response (2). Exploring

biomarkers in the scenario of the TME will provide new ideas for

predicting prognosis and developing novel therapeutic strategies.

In the past several decades, TNM staging system has been

playing an important role in the clinical practice of GC; however,

it is difficult to explain the patients with the same TNM stages

and similar treatment options but different clinical outcomes.

Some studies have explored the significance of dysregulated

signaling events in both GC cells and environment cells (3),

suggesting that the TME infiltration pattern has predictive

power for clinical outcomes and GC subtyping based on the

TME could be a complement to current staging methods.

A series of computational tools, such as CIBERSORT (4),

MCP-counter (5), TIMER (6), xCell (7), EPIC (8), and

quanTIseq (9), designed for estimating the abundance of

various cell populations based on bulk transcriptome, provide

more accessible opportunities to decipher the TME infiltration.

In a recent study (10), the CIBERSORT algorithm and

Microenvironment Cell Populations-counter method were

applied to bulk transcriptomic data of GC patients by which

the abundance of 22 types of immune cells and two types of

stromal cells was estimated, and three TME phenotypes were

eventually defined based on the landscape of the GC TME

infiltration. However, quite a number of cell types were

ignored due to the restriction of algorithms. By integrating the

advantages of gene set enrichment with deconvolution

approaches, xCell (7) accommodates the most comprehensive

cell types, a total of 64 immune and stromal cell types, including

a variety of adaptive and innate immune cells (lymphoids and

myeloid), hematopoietic progenitor cells, epithelial cells, and

extracellular matrix (ECM) cells.

In our previous work, the gene expression profiles of 111 GC

and 21 normal samples in the Chinese population were

examined (GSE54129); meanwhile, the clinical information

was collected, and follow-up was carried out for 13 years. In

this study, we comprehensively calculated the TME infiltration

patterns of 111 tumor and 21 normal samples based on bulk

transcriptomic profiles by using xCell. Based on the xCell scores,

three GC TME subtypes with distinct survival outcomes were

then obtained. We further built a GC prognostic model,

GC_Score, with the expression level of TME-relevant genes.

The higher the patient’s GC_Score, the worse the survival and

the lower the drug sensitivity as well. Fibroblasts, which were
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significantly correlated to the GC_Score, and connective tissue

growth factor (CTGF), the highest weighted gene in the

GC_Score model, were taken to the subsequent study. CTGF,

also known as cellular communication network 2 (CCN2), is a

member of the CCN (CCN1-6) family proteins (11). CTGF plays

a role in diverse biological processes including tumorigenesis

and fibrosis (12), regulates diverse cellular processes including

ECM protein synthesis, adhesion, proliferation, and apoptosis

through its diverse interacting partners, and thus affects

developmental and pathological processes ranging from

fibrosis, progenitor cell fate decisions, angiogenesis, to

inflammation and tumorigenesis (13, 14). The increased CTGF

expression was observed in GC, and a high CTGF expression

was associated with poor clinical outcomes. By examining the

marker gene expression at transcript and protein levels, CTGF

was proven to have the potential to induce transdifferentiation of

peritumoral fibroblasts (PTFs) to cancer-associated fibroblasts

(CAFs), which had been shown to actively communicate with

cancer cells and contribute to tumor progression.
Materials and methods

Data source

The gene expression profile dataset GSE54129 (tissues from

111 GC and 21 normal samples, Ruijin cohort) was from the

platform of Affymetrix HG-U133_Plus_2. All patients provided

a written informed consent (IC). Ethics committees approved

the collection of samples. The clinicopathologic information

including Gender, Age, pTNM stage, Histological type,

Borrmann classification, Tumor location, Differentiation,

Tumor invasion, Regional lymph node, and Distant metastasis

and 13 years of follow-up were collected.
Characterization of cell-type proportions
in the tumor microenvironment

xCell R package was used to calculate the proportion of cell

populations based on bulk gene expression data (7). xCell

integrates single-sample gene set enrichment analysis

(ssGSEA) and deconvolution approaches and allows the

enumeration of 64 cell types, which were divided into five cell

type clusters: Stromal, Epithelial, Lymphoid, Myeloid, and

hematopoietic stem cells (HSCs).
Construction of the GC_score model

The limma package (15) was used to identify differentially

expressed genes (DEGs) with the cutoff of |log fold change| >1.5
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and Benjamini–Hochberg-adjusted p < 0.01. In order to

investigate the prognostic significance of individual DEGs,

Kaplan–Meier survival analysis was performed, and genes with

log-rank p < 0.05 in both overall survival (OS) and disease-free

survival (DFS) were taken as independent prognostic

biomarkers to build the GC_Score model.

The samples with survival information available were

randomly divided into a training set and a test set by the ratio

of 7:3. Glmnet R package was adopted to build the GC_Score

model. The most significant prognostic markers were selected

using the penalized Cox regression model with least absolute

shrinkage and selection operator (LASSO) penalty, and the

optimal values of penalty parameter l were determined by 10-

fold cross-validations in the training set (16).

Receiver operating characteristic curve (ROC) curves were

used to assess the sensitivity and specificity for survival

prediction based on the GC_Score (17).
Drug sensitivity analysis

The pRRophetic R package (18) was used to predict clinical

drug response according to tumor gene expression data, which

was achieved with statistical models based on gene expression

and drug sensitivity data in a large panel of cancer cell lines.
Isolation and purification of
cancer-associated fibroblasts and
peritumoral fibroblasts

Human tumor tissues and their non-tumor tissues were

obtained from GC patients who underwent surgical resection

at the Ruijin Hospital (Shanghai, China). The tumor and

peritumoral tissues of GC were minced into small pieces and

digested in dulbecco's modified eagle medium (DMEM)

supplemented with 10% fetal bovine serum, 400 U/ml

collagenase IV, and 1% penicillin/streptomycin at 37°C for 1

h. After centrifuging for 15 min at 1,100 rpm, the suspension was

washed twice with DMEM. Following manufacturer’s

instructions, anti-fibroblast MicroBeads (MiltenyiBiotec) were

used to isolate fibroblasts from the cell pellet.
Cell culture

DMEM supplemented with 20% fetal bovine serum (Gibco),

1% penicillin/streptomycin (Yeasen), and 1% penicillin/

streptomycin (Yeasen) was used for resuspending the

fibroblasts. All experiments were conducted with cells from

passages 3–6. Fibroblasts were plated in 35-mm culture dishes

and cultured with DMEM containing 20% fetal bovine serum

overnight. Then, the medium of PTF dishes was added to the
Frontiers in Immunology 03
rhCTGF protein (R&D Systems) at the concentrations of 0, 50,

100, and 200 ng/ml.
Immunohistochemistry staining

A total of 101 pairs of human gastric tumor tissues and their

non-tumor tissues were collected from the Ruijin Hospital

(Shanghai, China). According to the previous description,

immunohistochemistry (IHC) was performed (19). The

staining intensity was classified into three grades: no staining

(1 point), light brown (2 points), and dark brown (3 points).

Based on the number of positive cells (percentages), four grades

were assigned.: 0%–25% (1 point), 26%–50% (2 points), 51%–

75% (3 points), and 76%–100% (4 points). Overall staining

score = intensity score × percentage score.
Real-time quantitative RT-PCR

The cell lines in the logarithmic phase were collected for RNA

extraction. Total RNA was extracted utilizing an EZ-press RNA

purification kit (EZBioscience), and cDNA synthesis was performed

by Reverse Transcription system. ThemRNA expression levels were

measured using the SYBR Green PCR Master Mix and the Applied

Biosystems 7900HT sequence detection system. Gene-specific

primers were obtained from Primer-BLAST (US National Library

of Medicine) and Primer-Bank (Massachusetts General Hospital,

The Center for Computational and Integrative Biology, and

Harvard Medical School). The primer sequences were listed in

Table S1. Glyceraldehyde-3-phosphate dehydrogenase (GADPH)

was used as an internal control.
Western blotting assay

According to the previous description (20), Western blotting

assay was performed. Total protein was extracted in radio

immunoprecipitation assay (RIPA) lysis buffer (Solarbio Life

Sciences) with proteinase inhibitors and phosphatase inhibitors.

In order to determine the protein concentration in each lysate, we

used a protein assay reagent kit (Thermo Fisher Scientific).

Transfection of the proteins onto polyvinylidene difluoride

membranes was carried out after electrophoresis (Millipore).

Then, the membranes were blocked for 1.5 h in tris-buffered

saline (TBS) with 5.0% bovine serum albumin (BSA) and probed

with the primary antibodies. After being washed three times with

tris buffered saline with tween 20 (TBST), the protein content was

incubated with Goat Anti-Rabbit IgG (H+L), Horseradish

Peroxidase (HRP) conjugate (Proteintech), or Goat Anti-Mouse

IgG (H+L), HRP conjugate. The primary antibodies used were

listed below: GAPDH (1:1,000, Proteintech), S100A4 (1:1,000,

Abcam), and fibroblast activation protein (FAP) (1:1,000, Abcam).
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Results

The landscape of the tumor
microenvironment in gastric cancer

This study’s schematic overview can be seen in Figure 1. The

TME infiltration landscapes of 111 GC and 21 normal stomach

mucosa samples (Ruijin cohort, GSE54129) were characterized

by using the xCell tool, and a total of 64 cell types were taken into

consideration (Table S2). As shown in Figures 2A, S1A, the

normal gastric mucosae were mainly composed of lymphoid and

epithelial cells (Figure S1D), while the GC samples exhibit higher

heterogeneity with more cell types involved, such as stroma and

HSC, but with less common cell types across patients compared

with normal samples.

We then checked the prognosis significance of the

abundance of individual cell types. Kaplan–Meier survival

analysis identified 12 cell types that were independently
Frontiers in Immunology 04
associated with OS with p ≤ 0.01 (Figure S2, Figures 3D–H,

noted by circles) and hereinafter referred to as survival-related

cell types. Specifically, the TME of the GC patients with poor

prognosis was abundantly infiltrated with adipocytes,

chondrocytes, fibroblasts, HSC, megakaryocytes, and neurons

(Figures 3D–H, noted by blue circles) and depleted with

epithelial cells, hepatocytes, keratinocytes, neutrophils,

sebocytes, and Th1 (Figures 3D–H, noted by green circles).

Aiming to explore potential coordination between survival-

related cell types, we calculated Spearman correlation coefficients of

cell proportion among the above 12 survival-related cell types in

normal and tumor tissues. In general, the absolute value of the

Spearman correlation coefficient between cell types turned larger

from normal to tumor [Cor normal = 0.34 (average); Cor cancer = 0.53

(average)], suggesting a closer communication among cells in

tumor (Figures 2B, C). Cell interactions with the change of

correlation coefficient between normal and tumor groups greater

than 0.5 were retained, resulting in a total of 11 pairs of cell types,
FIGURE 1

Flowchart of the study. The TME infiltration patterns of 111 GC and 21 normal stomach mucosa samples based on bulk transcriptomic profiles
were estimated in this study, and a predictive model GC_Score for prognosis and drug responses with interpretability for carcinogenesis was
developed. Furthermore, a TME-modulating gene, CTGF, was proposed to activate CAFs, thereby promoting the progression of GC.
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involving eight cell types, adipocytes, chondrocytes, epithelial cells,

fibroblasts, HSC, megakaryocytes, neurons, and Th1 cells

(Figures 2B, C; Table 1). Considering fibroblasts play an

important role in tumor invasion and metastasis (21), we
Frontiers in Immunology 05
especially examined cell communication related to fibroblasts.

Fibroblasts and chondrocytes, both displaying high proportion in

poor-prognosis GC patients (Figures S2B, C), had a weak positive

correlation in normal (Cor = 0.26) but a strong positive correlation
B C

A

FIGURE 2

The landscape of the TME in GC. (A) Heatmap of 64 TME cells for 111 GC and 21 normal samples. pTNM, Borrmann classification, Tumor
invasion depth, Regional lymph node, Distant metastasis, Tumor location, Tumor position, Gender, Age, Tissue differentiation, Histological type,
Status, Cluster, and CellType were shown as patient annotations. (B, C) Correlation of cell proportion among the 12 survival-related cell
populations in normal and tumor groups. Red, positive correlation; green, negative correlation; black, no correlation. The width of the
connection line was correlated with the absolute value of its corresponding Spearman correlation coefficient. Note that the cell bar in panels (B)
and (C) has a different scale.
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in tumor (Cor = 0.84). Different from fibroblasts–chondrocytes

pair, fibroblasts and Th1 cells and fibroblasts and epithelial cells

appeared to have no correlations in normal (Cor Fibroblasts-Th1

cells = -0.05, Cor Fibroblasts-Epithelial cells = -0.11) while showing

strong negative correlations in tumor (Cor Fibroblasts-Th1 cells =

-0.55, Cor Fibroblasts-Epithelial cells = -0.64) (Table 1). These

observations are accordant with the reports that fibroblasts and

chondrocytes have a positive cross-talk during disease progression

in skeletal-related diseases (22, 23), that fibroblasts inhibit the

proliferation of Th1 cells in rheumatoid arthritis (24), and that

uncontrolled continued transition from epithelial cells to fibroblasts

through the epithelial–mesenchymal transition (EMT) confers

metastasis-initiating abilities (25). Also, it is consistent with our

observation that patients with a lower proportion of fibroblasts, a

higher proportion of Th1 cells, or a higher proportion of epithelial

cells, displayed better survival (Figures S2L, G).
Cell infiltration-based tumor
microenvironment subtypes of
gastric cancer

To check the association of the TME infiltration pattern with

clinical outcome, unsupervised hierarchical clustering (26) of the

111 GC and 21 normal samples was performed with their

matched xCell scores, i.e., the proportions of 64 cell types

(distance = “manhattan”, method = “ward.D”). A total of four

clusters were obtained (Figure 3A), where the normal samples

formed a separate cluster, termed “TME-Control.” The three

tumor-related clusters were taken as TME subtypes, which

showed significantly different OS (log-rank test, p = 0.03)

(Figure S3), indicating the reliability of TME-based subtyping.

Fisher’s exact test indicated that the TME subtypes were

significantly correlated with histological type (p = 0.035),

Borrmann classification (p = 0.003), and tumor location (p =

0.039) among the clinicopathologic variables (Table S3).

In order to check the difference between the TME subtypes

in their cell abundance and explore the functional relevance of

cell infiltration patterns, we defined dominant cell types in each

sample cluster (subtype). First of all, the proportion value of each

cell type was ranked among all samples within a cluster, and the

median values of the 64 cell types were retrieved. For a specific

subtype, the top 20 out of the 64 cell types were taken to

determine the dominant cell types of the subtype. In the

worst-prognosis subtype (marked in blue in Figure 3A), seven

out of the top 20 cell types were stromal cells, accounting for

50% of stromal cells, including adipocytes, chondrocytes,

endothelial cells, fibroblasts, ly endothelial cells, mv

endothelial cells, mesenchymal stem cells (MSCs) (Figure

S1B), accordant with the roles of stromal cells in tumor

invasion and metastasis. The worst-prognosis cluster was

therefore termed “TME-Stromal” (Figures 3B, C). While in the

best-prognosis subtype (marked in green in Figure 3A,
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Figures 3B, C), 11 out of the top 20 cell types were immune

cells, accounting for 32% of immune cells, including CD4+

memory T cells, CD4+ T cells, Natural killer T cell (NKT),

gamma delta T cells (Tgd cells), Th1 cells, Th2 cells, aDC,

basophils, eosinophils, macrophages, and neutrophils (Figure

S1C), consistent with the tumor inhibitory functions of immune

cells. This cluster was then termed “TME-Immune.” Figures 3B

and 2C showed the significant differences in OS (log-rank test, p

= 0.01) and DFS (log-rank test, p = 0.04) between TME-Stromal

and TME-Immune.

It was noticed that the third subtype (marked in yellow in

Figure 3A) involved even more immune cells (12 out of the top

20 cell types) and the same number of stromal cells (three out of

20) as TME-Immune but displayed worse prognosis than TME-

Immune (Figure S3). This might be attributed to the

contribution of specific cell types instead of simply calculating

the number of immune- or stromal-related cell populations. This

cluster was then termed “TME-Mix,” and the following study

was focused on TME-Stromal and TME-Immune.

As expected, all of the dominant stromal cell types for TME-

Stromal except MSCs displayed a significantly higher proportion

in TME-Stromal than in TME-Immune (Figure 3D, noted by the

red rectangular frame). Similarly, among the 11 dominant

immune cell types for TME-Immune, NKT, Tgd cells, Th1 cells,

basophils, macrophages, and neutrophils had a significantly

higher proportion in TME-Immune compared with TME-

Stromal (Figures 3E, F, noted by the red rectangular frame).

Among the 12 survival-related cell types (noted by circles in

Figures 3D–H, Figure S2), six cell types (adipocytes, chondrocytes,

fibroblasts, neurons, HSCs, megakaryocytes) had a higher

proportion in TME-Stromal compared with TME-Immune

(noted by blue circles in Figures 3D–H), and the high proportion

was associated with poor clinical outcomes (Figure S2). While the

other six cell types (Th1 cells, neutrophils, epithelial cells,

hepatocytes, keratinocytes, sebocytes) were associated with good

clinical outcomes (noted by green circles in Figures 3D–H) showed

a higher proportion in TME-Immune than in TME-Stromal.
Identification of tumor
microenvironment infiltration-dependent
differentially expressed genes

Although TME infiltration patterns have recently been

correlated to clinical features in various cancers, the linkage

between cellular interactions in the TME and the underlying

molecular events remains obscure. To address this issue, we first

identified 345 DEGs between TME-Stromal (poor prognosis)

and TME-Immune (good prognosis) by using the R package

Limma with log2 (fold change) >1.5 and adjusted p < 0.01.

Among them, 238 were upregulated in TME-Stromal and 107

were downregulated, which were regarded as relevant to tumor

progression, and named DEGs_Up and DEGs_Down,
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respectively (Figures 4A, B; Table S4). The potential functions of

these two sets of genes were then inferred with functional

enrichment analysis by using the R package clusterProfiler.

The DEGs_Up genes were enriched in matrix remodeling and

cell proliferation-related pathways, such as ECM organization,

extracellular structure organization, connective tissue

development, mesenchyme development, regulation of cellular

response to growth factor stimulus, and cell growth (Figure 4C,

Table S5). Meanwhile, the DEGs_Down genes were mainly

enriched in immunity-related pathways, such as antimicrobial

humoral response and cellular response to xenobiotic stimulus

(Figure 4D, Table S5). Taken together, these upregulated and

downregulated genes could explain the distinct prognosis of the

patients in TME-Stromal and TME-Immune.

We then carried out unsupervised hierarchical clustering on

the 111 GC and 21 normal samples based on the expression data

of the 345 DEGs. Similar to the above TME infiltration-based

clustering result, the normal samples formed a separate cluster

(DEG-Control), supporting the reliability of the TME-

dependent DEG-based clustering. Again, besides DEG-Control

cluster, three clusters were obtained and marked as DEG-

GoodP, DEG-IntermediateP, and DEG-PoorP (Figure 4E)

according to their prognosis. The three tumor subtypes

showed significant differences in OS (Figure 4F), with DEG-

PoorP corresponding to the worst prognosis and DEG-GoodP

corresponding to the best prognosis (log-rank test, p = 0.01).

More importantly, the TME-dependent transcriptomic subtypes

were basically consistent with the TME subtypes, which

confirmed the linkage between the TME cell infiltration

pattern and gene expression pattern, and indicated the

functional relevance of the DEGs used in the clustering

process in explaining the TME subtypes. As shown in the

alluvial diagram (Figure S4, Table S6), the matching rates of

the TME subtypes and the TME-dependent transcriptomic

subtypes for TME-Immune vs. DEG-GoodP, TME-Stromal vs.

DEG-PoorP, TME-Mix vs. DEG-IntermediateP, and TME-

Control vs. DEG-Control were 85.71%, 68.42%, 18.18%, and

100%, respectively.
The gastric cancer prognostic model-
GC_score

Among the above 345 DEGs between TME-Stromal and

TME-Immune, 94 genes were proven to be significantly

associated with OS and DFS by Kaplan–Meier survival analysis

(Table S7). Based on the 94 prognostic genes, we built a

GC_Score model with LASSO Cox regression (Figure 5A)

using the following formula: GC_Score = (0.21* CTGF) +

(0.08 * EFEMP1) - (0.17 * PI3) - (0.16 * SLC3A1), which

involved four genes (see Table S8 for their functional

annotation, relation with cell types, survival relevance, and so

on). The prognostic accuracy of the GC_Score model was
Frontiers in Immunology 07
investigated with time-dependent ROC analysis. The average

Area Under Curve (AUC) values of 2-, 3-, and 5-year prognosis

predictions in the training set reached 0.74, 0.72, and 0.84, and

the average AUC values of survival predictions in the test set

were 0.78, 0.82, and 0.87 (Figures 5B, C), respectively. The mean

GC_Score of the DEG-PoorP group was higher than that of the

DEG-GoodP group (Figure 5D). Similarly, the mean GC_Score

of TME-Stromal was higher than that of TME-Immune

(Figure S5A).

The samples were then classified into GC_Score_High and

GC_Score_Low groups according to the median value. As

expected, Kaplan–Meier survival analyses (Figures 5E, F)

showed that the GC_Score_High group had a poorer OS and

DFS compared with the GC_Score_Low group (Figure S5G).

Moreover, whether in the early or late stages of pTNM, the

GC_Score can accurately discriminate the survival of GC

patients within the same TNM stages (Figure S5B, C).

Furthermore, we predicted the 111 GC patients’ clinical

outcomes of chemotherapy based on the tumor gene

expression data in GSE54129 by using R packages

pRRopheticin that adopted gene expression and drug

sensitivity data in a large panel of cancer cell lines (18). It was

found that for several commonly used chemotherapeutics in GC

like axitinib, RDEA119, methotrexate, trametinib, and

vorinostat, the GC_Score_Low group had a lower IC50 value,

or higher drug sensitivity, than that of the GC_Score_High

group, suggesting that the GC_Score model is also capable of

predicting the chemotherapeutic response of patients

(Figures 5G–K).

To test whether the GC_Score model has robust prognostic

value across different populations, the performance of the

GC_Score was assessed on three GC cohorts, including two

independent Gene Expression Omnibus (GEO) datasets (ACRG,

N = 300; GSE15459, N = 191, Singapore) and TCGA-STAD

dataset (N = 417). For the three validation cohorts, the

GC_Score_High group consistently had a worse OS than that

of the GC_Score_Low group (Figures S5D–F, log-rank p-values:

ACRG = 0.01, GSE15459 = 0.003, TCGA-STAD = 0.03).

Collectively, the GC_Score can be used as a robust prognostic

signature for GC.
Connective tissue growth factor
has the potential to induce
peritumoral fibroblasts to become
cancer-associated fibroblasts

To elucidate the biological relevance of our GC_Score from

the viewpoint of TME infiltration, we further calculated the

correlations between the GC_Score and each of the 64 TME cell

types based on the GSE54129 dataset, and chondrocytes,

fibroblasts, and ly endothelial cells held the top 3 (Figure S6A).

Again, given the important roles of fibroblasts in tumor invasion
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and metastasis (21), we set out to focus on fibroblasts (Figure 6A,

r = 0.76, p = 2.8e-26). Considering that CTGF occupied the

highest weight among the four genes involved in the GC_Score

model, we specifically calculated the Pearson correlation

coefficient between fibroblasts and CTGF. It was revealed that

the expression of CTGF was strongly positively correlated with

the proportion of fibroblasts (Figure 6B, r = 0.65, p = 1.99e-17).

In the GSE54129 cohort , CTGF expression was

significantly increased in GC (Figure 6C), and the high

expression of CTGF was associated with poor OS (Figure 6D,

log-rank p = 0.01), also in TCGA-STAD (Figures S6B, C). We

then examined CTGF protein expression in 101 other
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independent pairs of GC and adjacent non-tumor tissues by

IHC (Figure 6E). It was found that the positive rate of CTGF

was about 66% in GC tissues, while it was approximately 31%

in adjacent non-tumor tissues (Figure 6F), indicating increased

expression of CTGF protein in GC (Figure 6G). Furthermore,

Kaplan–Meier analysis showed that CTGF expression was

inversely correlated to OS in the 101 GC samples

(Figure 6H). Gene set enrichment analysis (GSEA) was then

performed on CTGF-High and CTGF-Low groups (grouped by

median) in GSE54129 cohort by using R packages GSVA and

clusterProfiler. Based on C2: Kyoto Encyclopedia of Genes and

Genomes (KEGG), the differential expression was found to be
B C

D E

F G

H

A

FIGURE 3

The characteristics of TME subtypes. (A) Unsupervised clustering of GSE54129 cohort with matched xCell scores; the samples named in black
font was the normal group. (B, C) Kaplan–Meier curves for overall survival (OS) and disease-free survival (DFS) of GC patients with the TME
subtypes (log-rank test). (D–H) The distribution of five cell types included 64 TME cells in TME-Stromal and TME-Immune subtypes. TME-
Stromal and TME-Immune were shown in blue and green, respectively. The cell types associated with poor clinical outcomes were circled in
blue, while the cell types associated with good clinical outcomes were circled in green. The dominant cell types displayed a significant
difference proportion in TME-Stromal and TME-Immune noted by the red rectangular frame. The thick line represented the median value. The
bottom and top of the boxes were the 25th and 75th percentiles (interquartile range). The dotted line showed the average score of each cell
type. The cells enclosed by the circle were significant for OS. The statistical difference was compared through the t-test. * p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001.
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associated with the EMT, metastasis stroma, gastric cancer

early up, lung fibrosis, and so on (Figure 6I; Table S9).

It was noticed that CTGF was a marker gene for mesangial

cells (Table S8) (7), while the proportions of mesangial cells

were not significantly different between TME-Stromal and

TME-Immune [TME-Immune = 0.047 (median), TME-

Stromal = 0.041(median), Table S2]. We, therefore,

speculated that the elevated CTGF expression mainly

originated from cancer cells.

Increasing evidence in the past few years has demonstrated

that CAFs promote carcinogenesis by maintaining a tumor-

supportive and immunosuppressive TME (27). Considering the

strong positive correlation between fibroblast abundance and

CTGF expression in cancer cells and the inverse correlation

between CTGF expression and survival, we conceived the

hypothesis that CTGF may have the potential to induce

transdifferentiation of PTFs (resting fibroblasts) to CAFs and,

in turn, promote cancer progression. We added recombinant

CTGF protein (rhCTGF) to the culture medium of PTFs and

measured the changes of marker genes/proteins of PTFs. It has

been well established that fibroblast-specific protein (FSP) and

fibroblast activation protein (FAP) are widely expressed in

fibroblasts (28, 29), while PTFs hold the higher expression of

FSP and lower expression of FAP, and CAFs display the opposite

features (30). As shown in Figures 6J–L, after PTFs were treated

with rhCTGF (50–200 ng/ml), FSP expression was

downregulated and FAP expression was upregulated both in

mRNA and protein levels basically in a concentration-

dependent way compared with the untreated PTFs.

Specifically, although there was no significant difference in

FAP transcription level between PTF incubated with or

without 50 ng/ml rhCTGF, when the concentration reached

100 and 200 ng/ml of rhCTGF, the mRNA expression of FAP

was upregulated, even higher than that in CAFs (Figure 6J).

Taken together, CTGF seems to have the potential to induce

PTFs to be CAFs.
Frontiers in Immunology 09
Discussion

GC is highly heterogeneous in terms of clinical

manifestations, therapeutic outcomes, histological morphology,

and TME infiltration (31). The TME that refers to the internal

and external environment of tumor cells, including not only the

structure, function, and metabolism of tumor tissues but also the

internal environment of tumor cells themselves, has been proven

to have important clinical and pathological significance in

predicting prognosis and curative effects (25, 32). Exploring

the composition of the TME, the functional relevance of cellular

interactions, and the underlying molecular events is critical to

understand tumor heterogeneity and develop novel therapeutic

treatments (33).

The single-cell RNA sequencing (scRNA-seq) technology is

becoming widely used to systematically delineate cellular and

molecular heterogeneity in tumors. A recent study (34) reported

a single-cell transcriptional atlas of GC from nine tumors and

three non-tumor samples (>20,000 cells) and obtained

differentiation degree-related subtypes that corresponded well

to prognosis and histopathological features of Lauren’s subtypes.

Kumar etal. (35) described a more comprehensive single-cell

atlas of GC from 31 patients (>200,000 cells) and identified 34

distinct cell-lineage states, some of which exhibited distinct

cancer-associated expression profiles. Another very recent

study (36) profiled 36,897 cells from eight patients with GC

using scRNA-seq, aimed to study the heterogeneity of TME cells

in GC. They mainly discussed CAFs in GC TME and revealed

the unique roles of CAFs in regulating different aspects of the

biology of the TME, including immune modulation, invasion,

migration, and angiogenesis. However, considering the

discrepancy in single-cell dissociation efficiency, high

dropouts, high cost, and naturally low coverage of inter-tumor

heterogeneity, scRNA-seq still has obstacles in practical

application (37, 38), while large cohorts with bulk

transcriptomic data and clinical phenotype information
TABLE 1 Correlation coefficients between cell types with the change between normal and tumor. greater than 0.5.

Cell_1 Cell_2 Cor (normal) Cor (tumor) Abs [Cor (normal) – Cor (tumor)]

Fibroblasts Chondrocytes 0.26 0.84 0.58

Neurons Chondrocytes 0.19 0.76 0.57

HSC Chondrocytes 0.27 0.79 0.51

Megakaryocytes Chondrocytes 0.17 0.68 0.51

Fibroblasts Th1 cells -0.05 -0.55 0.5

Th1 cells HSC -0.15 -0.66 0.51

Fibroblasts Epithelial cells -0.11 -0.64 0.52

HSC Epithelial cells -0.07 -0.59 0.52

Megakaryocytes Epithelial cells 0.09 -0.45 0.54

Epithelial cells Adipocytes 0.03 -0.52 0.55

Th1 cells Adipocytes 0.08 -0.59 0.67
Cell type pairs related to fibroblasts were labeled in bold.
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through a long-term follow-up provide valuable and more

accessible opportunities to decipher TME infiltration with the

assistance of tools designed for estimating the abundance of

various cell types based on bulk transcriptome.
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In the present study, we applied xCell (7) that integrates

ssGSEA and deconvolution approaches to the bulk

transcriptomic profile (GSE54129) of 111 GC and 21 normal

stomach mucosa samples with matched clinical information and
B C D

E F

A

FIGURE 4

Investigation of the TME infiltration-dependent expression change. (A) Heatmap of the 345 differentially expressed genes (DEGs) between TME-
Stromal and TME-Immune. (B) Volcano plot of the 345 DEGs. (C, D) GO enrichment analysis of the 345 DEGs: DEGs_Up and DEGs_Down. (E)
Unsupervised hierarchical clustering of the 345 DEGs based on expression data to classify patients into four groups: DEG-Control, DEG-GoodP,
DEG-IntermediateP, and DEG-PoorP. (F) Kaplan–Meier curves for overall survival (OS) of GC patients with the TME-dependent transcriptomic
subtypes (log-rank test).
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calculated the proportion of 64 types of cell populations in the

TME (Table S2). Among them, 12 cell types were identified as

associated with survival (Figure S2, Figures 3D–H, noted by

circles). Given the significant role of fibroblasts in tumor

invasion and metastasis (21), we put a particular focus on

fibroblasts and the cell types that had differential correlations

between normal and cancer. It was found that fibroblasts had a

weak positive correlation with chondrocytes in normal (Cor =

0.26), which turned strongly positive in tumor (Cor = 0.84);

meanwhile, fibroblasts had no correlations with Th1 cells and
Frontiers in Immunology 11
epithelial cells in normal (Cor Fibroblasts-Th1 cells = -0.05, Cor

Fibroblasts-Epithelial cells = -0.11), while fibroblasts became strongly

negatively correlated with them in tumor (Cor Fibroblasts-Th1 cells =

-0.55, Cor Fibroblasts-Epithelial cells = -0.64) (Figures 2B, C; Table 1).

Fibroblasts were reported to promote the transdifferentiation of

chondrocytes in skeletal-related diseases that could, in turn,

stimulate fibroblasts to release proangiogenic factors (22, 23). In

rheumatoid arthritis, fibroblasts suppressed the proliferation of

Th1 cells by tryptophan metabolism and therefore decreased the

secretion of Interferon g (IFN-g) in a cell contact-independent
B C

D E F

G H I

J K

A

FIGURE 5

The GC_Score model and its prognostic significance. (A) Several cell types were involved in the LASSO model. (B, C) The GC_Score was
measured by time-dependent receiver operating characteristic (ROC) curves in the training set and the test set. (D) The boxplot of GC_Score in
DEG-GoodP and DEG-PoorP subtypes. The thick line represented the median value. The bottom and top of the boxes were the 25th and 75th
percentiles (interquartile range). (E, F) Survival impact of the GC_Score, Kaplan–Meier curves for overall survival (OS) and disease-free survival
(DFS) in the GSE54129 cohort. (G–K) The boxplot of drug sensitivity in the GC_Score_Low and the GC_Score_High group. (G) Axitinib, (H)
methotrexate, (I) RDEA119, (J) trametinib, (K) vorinostat.
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manner (24). In the process of EMT, epithelial cells undergo a

phenotypic switch through acquiring fibroblast-like properties

to exhibit reduced cell–cell adhesion and increased motility,

which has been regarded as a driving event in the pathogenesis

of cancer, including GC (25, 39). Obviously, the detailed

mechanisms underlying the coordination between fibroblasts

and chondrocytes, the inhibition of Th1 cells by fibroblasts, and

the transition from epithelial cells to fibroblasts during gastric

carcinogenesis are worthy of further investigation. It has been

well established that fibroblasts synthesize the ECM proteins to
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maintain the structural integrity of most tissues (40). In line with

this, CAFs maintain a tumor-supportive microenvironment by

producing components of the ECM, matrix remodeling

enzymes, and protumor and proangiogenic cytokines (27).

Moreover, CAFs could modulate the immune system, yielding

an immunosuppressive TME (21). Clinical and epidemiological

studies have demonstrated a strong association between CAFs

and poor prognosis in GC (41). The very recent single-cell

transcriptional atlas of GC also reported the accrual of CAF

subpopulations (35). In our previous work, CAFs can promote
B C

D E F

G H

J K

A

L

FIGURE 6

CTGF has the potential to induce PTFs to be CAFs. (A, B) Correlations between GC_Score and fibroblasts/CTGF and fibroblasts. The regression
lines and confidence interval shadows were calculated by single-variable regression. (C) The boxplot of the CTGF expression in normal and
cancer samples. The thick line represented the median value. The bottom and top of the boxes were the 25th and 75th percentiles (interquartile
range). (D) Survival impact of the CTGF expression, Kaplan–Meier curves for overall survival (OS) in the GSE54129 cohort. (E) Representative IHC
staining with CTGF antibody in GC and paired adjacent non-tumor tissues. Magnification ×200 and ×400. (F) The pie graph of IHC Score of
CTGF in GC tissues and corresponding non-tumor tissues, Positive: IHC ≥8, Negative: IHC <8. (G) The boxplot of IHC Score of CTGF in normal
and cancer samples. The thick line represented the median value. The bottom and top of the boxes were the 25th and 75th percentiles
(interquartile range). (H) Survival impact of IHC Score of CTGF, Kaplan–Meier curves for OS. (I) Gene set enrichment analysis (GSEA) of CTGF. (J)
qRT-PCR detection of FSP and FAP mRNA levels in PTFs, CAFs, and PTFs treated with different concentrations of rhCTGF protein for 50, 100,
and 200 ng/ml. (K, L) Protein levels of FSP and FAP in PTFs, CAFs, and PTFs treated with different concentrations of rhCTGF protein were
analyzed by Western blotting. These data were presented as the mean ± SD; n = 3 independent experiments.
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EMT and metastasis of GC by secreting hepatocyte growth

factor (HGF) (42), Interleukin (IL)-6 (43), and IL-33 (44).

As described above, although the TME landscapes of the 111

GC and 21 normal samples involved a total of 64 cell types, the

subsequent analyses were limited to12 survival-related cell types

and further focused on fibroblasts. We also obtained the

abundance of the other more than 50 cell types. Since NK cells

are the first line of defense against transformed and infected

cells, we take NK cells as an example. It is well known that the

function of NK cells is finely regulated by a balance between

signals received through stimulatory and inhibitory receptors

(45). Compared with TME-Immune, the inhibitory ligands of

NK cells such as CD48, HLA-E, and CLEC2D were highly

expressed in TME-Stromal (Figures S7A–C). Specially, the

correlation between CLEC2D and its receptor KLRB1 (46) was

lower in TME-Immune (cor = 0.38, p = 0.02) than in TME-

Stromal (cor = 0.6, p = 3.09e-07) (Figures S7D, E). It is indicated

that the overexpression of inhibitory ligands of NK cells may

cause immunosuppression and lead to worse outcomes in

GC patients.

As shown in Figures 3B, C and Figure S3, the three GC TME

subtypes based on the proportions of 64 cell types displayed

distinct survival outcomes. A GC prognostic model was then

built based on the DEGs between TME-Stromal (poor

prognosis) and TME-Immune (good prognosis) (Figure 5A).

Quite encouragingly, the GC_Score could accurately

discriminate the survival of patients within the same TNM

stages (Figures S5B, C); moreover, the GC_Score model is

capable of predicting the chemotherapeutic response of

patients to several common chemotherapeutic drugs for GC

(Figures 5G–K). As the clinical translation of molecular targets

of GC has been disappointing, our study aimed to discover novel

genes correlated with drug response in GC, which may be a hint

for further investigation on therapeutic mechanisms of these

drugs. We also found some studies that supported our results.

Sun etal. (47) reported that CTGF increased the sensitivity of

rapidly accelerated fibrosarcoma isoform B inhibitor (BRAFi)-

resistant cells to vemurafenib (BRAF inhibitor). It is

acknowledged that MEK is the downstream molecule of

BRAF/mitogen-activated extracellular signal-regulated kinase

(MEK)/extracellular signal regulatedkinase (ERK) pathway,

and RDEA119 is the MEK inhibitor. So CTGF might

participate in GC sensitivity of RDEA119 via the BRAF/MEK/

ERK pathway. Also, Hua etal. (48) found that HDAC7

participated in CTGF production and cell fibrosis. As CTGF is

the downstream target of Histone Deacetylase 7 (HDAC), it

might participate in GC response to HDAC inhibitor

methotrexate. As expected, fibroblasts held almost top

correlation to GC_Score among the 64 cell types (Figure 6A,

Figure S6, r = 0.76, p = 2.8e-26). We believe that a combination of

our GC_Score and the conventional clinicopathological

characteristics will allow better prediction of prognosis and

drug responses.
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Beyond identifying transcriptome features of certain

subtypes as scRNA-seq studies always did, we explored

molecular events underlying fibroblast infiltration during

carcinogenesis. First, we analyzed the correlation between

fibroblasts and CTGF (Figure 6B), the highest-weighted gene

in our GC_Score model. Interestingly, in the RNA single cell-

type data of THE HUMAN PROTEIN ATLAS database, we also

see that CTGF has a high correlation with fibroblasts. By

examining marker gene expression at RNA and protein levels,

we have proven that CTGF has the potential to induce

transdifferentiation of PTFs to CAFs (Figures 6J–L). It has

been established that contact between cancer cells and

fibroblasts can promote the CAF phenotype in cancer through

a variety of signaling pathways, such as Notch signaling,

inflammatory signaling, Janus kinase-signal transducer and

activator of transcription (JAK-STAT) signaling, and Yes-

associated protein/Transcriptional enhanced associate domain

(YAP1/TEAD) signaling (21). Particularly, CTGF was reported

to be among the genes associated with CAFs (21). However, the

tissue-specific and context-specific mechanisms remain to be

demonstrated. The in vitro experimental data (Figures 6J–L), in

combination with our computational results, indicated that

highly expressed CTGF from GC cells is capable of promoting

the transdifferentiation of PTFs to CAFs. In this sense, CTGF

could be regarded as a TME-modulating gene in GC and thus a

potential therapeutic target for CAF-targeted therapy. It is worth

noting that compared with Transforming growth factor-b (TGF-
b) (49), which is an inducer of CTGF expression, CTGF

mediates fibrosis and protumor effects but does not participate

in anti-inflammatory and antitumor effects (50) and therefore

might be more promising for antitumor drug development than

TGF-b. So far, there is a line of CTGF-targeted drugs in clinical

trials (51, 52), most of which are designed for treating fibrosis-

related diseases, while ocaperidone and pamrevlumab also

include pancreatic cancer as their indications (53). Here we

propose that CTGF-targeted drugs might be repositioned to

control gastric carcinogenesis.
Conclusion

The present work characterizes a comprehensive TME

landscape of GC involving 64 cell populations and develops a

predictive model GC_Score for prognosis and drug responses

with interpretability for carcinogenesis. Furthermore, a TME-

modulating gene, CTGF, was proposed to activate CAFs, thereby

promoting the progression of GC. This work provides a feasible

framework for exploring molecular events underlying TME cell

infiltration based on bulk-sequencing data, which makes a

complement to scRNA-seq based methodologies. By linking

TME cell infiltration and molecular features, it proved useful

to interpret carcinogenesis and proposes novel strategies for

GC treatment.
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SUPPLEMENTARY FIGURE 1

Cell types in TME (A-C) The boxplot of 64 cell types in TME-Control, TME-
Stomal, and TME-Immune subtypes. (D) The boxplot of five Types in 21

normal samples.

SUPPLEMENTARY FIGURE 2

Survival impact of the 12 genes significant for survival, Kaplan-Meier
curves for overall survival (OS) in the GSE54129 cohort.

SUPPLEMENTARY FIGURE 3

Kaplan-Meier curves for overall survival (OS) of GC patients with the TME

subtypes (log-rank test).

SUPPLEMENTARY FIGURE 4

Alluvial diagram showing differences among patients by TME subtypes,

TME-dependent t ranscr ip tomic subtypes , CG_Score , and
Survival outcome.

SUPPLEMENTARY FIGURE 5

The GC_Score model and its prognostic significance. (A) The boxplot of

GC_Score in TME-Stomal and TME-Immune subtypes. The thick line
represented the median value. The bottom and top of the boxes were

the 25th and 75th percentiles (interquartile range). (B, C) Survival impact of
the GC_Score, Kaplan-Meier curves for overall survival (OS) and disease-

free survival (DFS) in the GSE54129 cohort. (D–F) Survival impact of the

GC_Score, Kaplan-Meier curves for overall survival (OS) in the ACRG,
GSE15459, and TCGA-STAD cohorts. (G) Forest plot of hazard ratios from

multivariable Cox proportional hazard regression mode.

SUPPLEMENTARY FIGURE 6

(A) Histogram of correlation between 64 cell types and the GC_Score. (B)
The boxplot of CTGF in TCGA-STAD cohort. (C) Survival impact of CTGF,

Kaplan-Meier curves for overall survival (OS) in the TCGA-STAD cohort.

SUPPLEMENTARY FIGURE 7

The inhibitory receptors of NK cells (A-C) The boxplot of inhibitory

receptors of NK cells. (D, E) Histogram of correlation between inhibitory
receptors and ligands of NK cells in TME-Stomal and TME-

Immune subtypes.
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J, et al. The fibroblast surface markers FAP, anti-fibroblast, and FSP are expressed
by cells of epithelial origin and may be altered during epithelial-to-mesenchymal
transition. Cytom A (2018) 93:941–51. doi: 10.1002/cyto.a.23101

30. Ham IH, Lee D, Hur H. Role of cancer-associated fibroblast in gastric cancer
progression and resistance to treatments. J Oncol (2019) 2019:6270784.
doi: 10.1155/2019/6270784

31. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric
cancer. Lancet (2020) 396:635–48. doi: 10.1016/s0140-6736(20)31288-5

32. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression
and metastasis. Nat Med (2013) 19:1423–37. doi: 10.1038/nm.3394

33. Li F, Kitajima S, Kohno S, Yoshida A, Tange S, Sasaki S, et al.
Retinoblastoma inactivation induces a protumoral microenvironment via
enhanced CCL2 secretion. Cancer Res (2019) 79:3903–15. doi: 10.1158/0008-
5472.Can-18-3604

34. Zhang M, Hu S, Min M, Ni Y, Lu Z, Sun X, et al. Dissecting transcriptional
heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing.
Gut (2021) 70:464–75. doi: 10.1136/gutjnl-2019-320368

35. Kumar V, Ramnarayanan K, Sundar R, Padmanbahan N, Srivastava S,
Koiwa M, et al. Single-cell atlas of lineage states, tumor microenvironment and
subtype-specific expression programs in gastric cancer. Cancer Discov (2021) 12
(3):670–91. doi: 10.1158/2159-8290.Cd-21-0683

36. Li X, Sun Z, Peng G, Xiao Y, Guo J, Wu B, et al. Single-cell RNA sequencing
reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor
clinical outcomes in patients with gastric cancer. Theranostics (2022) 12:620–38.
doi: 10.7150/thno.60540

37. Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, et al.
Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med
(2018) 24:1277–89. doi: 10.1038/s41591-018-0096-5

38. Sun D, Guan X, Moran AE, Wu LY, Qian DZ, Schedin P, et al. Identifying
phenotype-associated subpopulations by integrating bulk and single-cell
sequencing data. Nat Biotechnol (2021) 40(4):527–38. doi: 10.1038/s41587-021-
01091-3

39. Yue B, Song C, Yang L, Cui R, Cheng X, Zhang Z, et al. METTL3-mediated
N6-methyladenosine modification is critical for epithelial-mesenchymal transition
and metastasis of gastric cancer. Mol Cancer (2019) 18:142. doi: 10.1186/s12943-
019-1065-4

40. Lynch MD, Watt FM. Fibroblast heterogeneity: implications for human
disease. J Clin Invest (2018) 128:26–35. doi: 10.1172/jci93555

41. Grunberg N, Pevsner-Fischer M, Goshen-Lago T, Diment J, Stein Y, Lavon
H, et al. Cancer-associated fibroblasts promote aggressive gastric cancer
phenotypes via heat shock factor 1-mediated secretion of extracellular vesicles.
Cancer Res (2021) 81:1639–53. doi: 10.1158/0008-5472.Can-20-2756

42. Wu X, Chen X, Zhou Q, Li P, Yu B, Li J, et al. Hepatocyte growth factor
activates tumor stromal fibroblasts to promote tumorigenesis in gastric cancer.
Cancer Lett (2013) 335:128–35. doi: 10.1016/j.canlet.2013.02.002

43. Wu X, Tao P, Zhou Q, Li J, Yu Z, Wang X, et al. IL-6 secreted by cancer-
associated fibroblasts promotes epithelial-mesenchymal transition and metastasis
of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget (2017) 8:20741–
50. doi: 10.18632/oncotarget.15119

44. Zhou Q, Wu X, Wang X, Yu Z, Pan T, Li Z, et al. The reciprocal interaction
between tumor cells and activated fibroblasts mediated by TNF-a/IL-33/ST2L
signaling promotes gastric cancer metastasis. Oncogene (2020) 39:1414–28.
doi: 10.1038/s41388-019-1078-x

45. Mathew SO, Chaudhary P, Powers SB, Vishwanatha JK, Mathew PA.
Overexpression of LLT1 (OCIL, CLEC2D) on prostate cancer cells inhibits NK
cell-mediated killing through LLT1-NKRP1A (CD161) interaction. Oncotarget
(2016) 7:68650–61. doi: 10.18632/oncotarget.11896

46. Buller CW, Mathew PA, Mathew SO. Roles of NK cell receptors 2B4
(CD244), CS1 (CD319), and LLT1 (CLEC2D) in cancer. Cancers (Basel) (2020)
12:1–15. doi: 10.3390/cancers12071755

47. Sun Q, Novak D, Hüser L, Poelchen J, Wu H, Granados K, et al. FOXD1
promotes dedifferentiation and targeted therapy resistance in melanoma by
regulating the expression of connective tissue growth factor. Int J Cancer (2021)
149:657–74. doi: 10.1002/ijc.33591

48. Hua HS, Wen HC, Weng CM, Lee HS, Chen BC, Lin CH. Histone
deacetylase 7 mediates endothelin-1-induced connective tissue growth
frontiersin.org

https://doi.org/10.1016/j.ebiom.2018.04.020
https://doi.org/10.1002/cam4.3505
https://doi.org/10.1002/cam4.3505
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1028-7
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.7554/eLife.26476
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1158/2326-6066.Cir-18-0436
https://doi.org/10.5483/BMBRep.2018.51.10.192
https://doi.org/10.1152/ajpcell.00028.2020
https://doi.org/10.1016/j.kint.2017.04.042
https://doi.org/10.1007/s12079-021-00650-2
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.1111/j.0006-341x.2000.00337.x
https://doi.org/10.1111/j.0006-341x.2000.00337.x
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1016/j.redox.2021.102076
https://doi.org/10.1016/j.ebiom.2021.103436
https://doi.org/10.1038/s41568-019-0238-1
https://doi.org/10.1016/j.gene.2020.144939
https://doi.org/10.1016/j.oooo.2020.08.020
https://doi.org/10.4049/jimmunol.1600600
https://doi.org/10.4049/jimmunol.1600600
https://doi.org/10.1038/s41580-020-0237-9
https://doi.org/10.1111/biom.12647
https://doi.org/10.1186/s12943-019-0994-2
https://doi.org/10.1038/nrc.2016.73
https://doi.org/10.1002/cyto.a.23101
https://doi.org/10.1155/2019/6270784
https://doi.org/10.1016/s0140-6736(20)31288-5
https://doi.org/10.1038/nm.3394
https://doi.org/10.1158/0008-5472.Can-18-3604
https://doi.org/10.1158/0008-5472.Can-18-3604
https://doi.org/10.1136/gutjnl-2019-320368
https://doi.org/10.1158/2159-8290.Cd-21-0683
https://doi.org/10.7150/thno.60540
https://doi.org/10.1038/s41591-018-0096-5
https://doi.org/10.1038/s41587-021-01091-3
https://doi.org/10.1038/s41587-021-01091-3
https://doi.org/10.1186/s12943-019-1065-4
https://doi.org/10.1186/s12943-019-1065-4
https://doi.org/10.1172/jci93555
https://doi.org/10.1158/0008-5472.Can-20-2756
https://doi.org/10.1016/j.canlet.2013.02.002
https://doi.org/10.18632/oncotarget.15119
https://doi.org/10.1038/s41388-019-1078-x
https://doi.org/10.18632/oncotarget.11896
https://doi.org/10.3390/cancers12071755
https://doi.org/10.1002/ijc.33591
https://doi.org/10.3389/fimmu.2022.983632
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sang et al. 10.3389/fimmu.2022.983632
factor expression in human lung fibroblasts through p300 and activator
protein-1 activation. J BioMed Sci (2021) 28:38. doi: 10.1186/s12929-021-
00735-5

49. Connolly EC, Freimuth J, Akhurst RJ. Complexities of TGF-b targeted
cancer therapy. Int J Biol Sci (2012) 8:964–78. doi: 10.7150/ijbs.4564

50. Grotendorst GR. Connective tissue growth factor: a mediator of TGF-beta
action on fibroblasts. Cytokine Growth Factor Rev (1997) 8:171–9. doi: 10.1016/
s1359-6101(97)00010-5
Frontiers in Immunology 16
51. Wells AU. Pamrevlumab in idiopathic pulmonary fibrosis. Lancet Respir
Med (2020) 8:2–3. doi: 10.1016/s2213-2600(19)30339-x

52. Shen YW, Zhou YD, Chen HZ, Luan X, Zhang WD. Targeting CTGF in
cancer: An emerging therapeutic opportunity. Trends Cancer (2021) 7:511–24.
doi: 10.1016/j.trecan.2020.12.001

53. Nevala-Plagemann C, Hidalgo M, Garrido-Laguna I. From state-of-the-art
treatments to novel therapies for advanced-stage pancreatic cancer. Nat Rev Clin
Oncol (2020) 17:108–23. doi: 10.1038/s41571-019-0281-6
frontiersin.org

https://doi.org/10.1186/s12929-021-00735-5
https://doi.org/10.1186/s12929-021-00735-5
https://doi.org/10.7150/ijbs.4564
https://doi.org/10.1016/s1359-6101(97)00010-5
https://doi.org/10.1016/s1359-6101(97)00010-5
https://doi.org/10.1016/s2213-2600(19)30339-x
https://doi.org/10.1016/j.trecan.2020.12.001
https://doi.org/10.1038/s41571-019-0281-6
https://doi.org/10.3389/fimmu.2022.983632
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Identification of prognostic gene expression signatures based on the tumor microenvironment characterization of gastric cancer
	Introduction
	Materials and methods
	Data source
	Characterization of cell-type proportions in the tumor microenvironment
	Construction of the GC_score model
	Drug sensitivity analysis
	Isolation and purification of cancer-associated fibroblasts and peritumoral fibroblasts
	Cell culture
	Immunohistochemistry staining
	Real-time quantitative RT-PCR
	Western blotting assay

	Results
	The landscape of the tumor microenvironment in gastric cancer
	Cell infiltration-based tumor microenvironment subtypes of gastric cancer
	Identification of tumor microenvironment infiltration-dependent differentially expressed genes
	The gastric cancer prognostic model-GC_score
	Connective tissue growth factor has the potential to induce peritumoral fibroblasts to become cancer-associated fibroblasts

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


