
toxins

Article

Three-Finger Toxins from Brazilian Coral Snakes: From
Molecular Framework to Insights in Biological Function

Jessica Matos Kleiz-Ferreira 1,2, Nuria Cirauqui 3, Edson Araujo Trajano 1,2, Marcius da Silva Almeida 2

and Russolina Benedeta Zingali 1,*

����������
�������

Citation: Kleiz-Ferreira, J.M.;

Cirauqui, N.; Trajano, E.A.; Almeida,

M.d.S.; Zingali, R.B. Three-Finger

Toxins from Brazilian Coral Snakes:

From Molecular Framework to

Insights in Biological Function. Toxins

2021, 13, 328. https://doi.org/

10.3390/toxins13050328

Received: 9 April 2021

Accepted: 28 April 2021

Published: 30 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratório de Hemostase e Venenos—Instituto de Bioquímica Médica, Leopoldo de Meis (IBqM) and
Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb)—Universidade
Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; jessica.kleiz@bioqmed.ufrj.br (J.M.K.-F.);
edsontrajanoa@gmail.com (E.A.T.)

2 Protein Advanced Biochemistry (PAB), Instituto de Bioquímica Médica Leopoldo de Meis (IBqM) and Centro
Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de
Janeiro 21941-902, Brazil; msalmeida@cenabio.ufrj.br

3 Faculdade de Farmacia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
cirauqui@pharma.ufrj.br

* Correspondence: lzingali@bioqmed.ufrj.br

Abstract: Studies on 3FTxs around the world are showing the amazing diversity in these proteins
both in structure and function. In Brazil, we have not realized the broad variety of their amino
acid sequences and probable diversified structures and targets. In this context, this work aims to
conduct an in silico systematic study on available 3FTxs found in Micrurus species from Brazil.
We elaborated a specific guideline for this toxin family. First, we grouped them according to their
structural homologue predicted by HHPred server and further curated manually. For each group,
we selected one sequence and constructed a representative structural model. By looking at conserved
features and comparing with the information available in the literature for this toxin family, we
managed to point to potential biological functions. In parallel, the phylogenetic relationship was
estimated for our database by maximum likelihood analyses and a phylogenetic tree was constructed
including the homologous 3FTx previously characterized. Our results highlighted an astonishing
diversity inside this family of toxins, showing some groups with expected functional similarities to
known 3FTxs, and pointing out others with potential novel roles and perhaps structures. Moreover,
this classification guideline may be useful to aid future studies on these abundant toxins.

Keywords: Micrurus venoms; three-finger toxins; sequence variability; structure-function; classifica-
tion guideline

Key Contribution: Three-finger toxins possess high sequence variability and diversified function, being a
prominent pharmacological tool. We developed a new way to cluster toxins with distinguished variability
in the main primary structure. We classified 57 three-finger toxin sequences into nine groups, based on
structural features. Toxins that are structurally similar to other 3FTxs already characterized and peculiar
toxins which may present novel functions were identified. This work sheds light on the molecular and
biological properties of some 3FTxs from Brazilian Micrurus coral snakes.

1. Introduction

In Brazil, the Micrurus genera of coral snakes represents almost the totality of elapids,
counting about 34 species [1] widespread throughout the country. Just as other coral
snakes, the venoms of Brazilian Micrurus are predominant in three-finger toxins (3FTxs)
and phospholipase A2 (PLA2), along with other less abundant proteins [2–4]. They may
cause several injuries on envenomed animals such as myotoxicity, edema, nephrotoxicity,
hemorrhages, and neurotoxicity. In humans, the major harm inflicted by these venoms is

Toxins 2021, 13, 328. https://doi.org/10.3390/toxins13050328 https://www.mdpi.com/journal/toxins

https://www.mdpi.com/journal/toxins
https://www.mdpi.com
https://orcid.org/0000-0003-3156-6923
https://doi.org/10.3390/toxins13050328
https://doi.org/10.3390/toxins13050328
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/toxins13050328
https://www.mdpi.com/journal/toxins
https://www.mdpi.com/article/10.3390/toxins13050328?type=check_update&version=2


Toxins 2021, 13, 328 2 of 19

the blockage of neuromuscular junction by the action of pre and post-synaptic toxins, the
PLA2s and the 3FTxs, which may lead to an outcome of respiratory arrest [5,6].

The 3FTxs belong to a family of non-enzymatic proteins constituted by approximately
58 to 90 amino acid residues. In all members of the family characterized to date, the protein
fold is based on three loops of β-strands that resemble “fingers” extending to a globu-
lar core, stabilized by four conserved disulfide bridges [7]. These toxins present at least
eight cysteines commonly well conserved, but also may present nine, ten, or even eleven
cysteines [3,7]. This group of toxins is very exquisite and diversified in terms of primary
structure and biological roles. This diversification has been proposed to be associated with
the theory in which exonic regions in 3FTx genes have been exchanged by others. For in-
stance, it can cause a shift in segments that may alter local structures and charge surface
(accelerated segment switch in exons to alter targeting—ASSET mechanism) [8] generating
the observed sequence diversity bounded to the multi-functionality and diversified targets.
In concert, the prey–predator battlefield causes an evolutionary race, where negative and
positive selection of key amino acids may also take place [9]. A wide array of biological
roles is described for these toxins. One of the classical and well described activities is the
agonism and antagonism of cholinergic receptors [10–12]. Updates in the last decade listed
other 3FTx functions, including modulation of GABA A receptors [13–15], inhibition of
acid-sensing ion channels (ASICs) [16], modulation of adrenoreceptors [17–20], activation
of potassium channel [21], activation of voltage-gated sodium channel [22], activation of
sperm-mobility [23], induction of insulin secretion from β-cells [24,25], among many others.

In the venoms from Brazilian Micrurus species, the amount of 3FTxs is very signifi-
cant, even reaching 95% of the whole venom, as in the case of the Micrurus surinamensis
species [26]. This represents a vast universe of possibilities of functions to be explored.
Even though, few studies have been published to date about these 3FTxs from Brazilian
Micrurus species. Considering the characterization of the 3FTxs in Brazilian venoms per
se, meaning the identification of their molecular biology and functions, just a few articles
were found, and these did not deepen the understanding of their function and molecular
mechanism of action [27–29].

The last years of molecular biology and pharmacological studies on 3FTxs around the
world in the frame of toxinology show all the diversity in amino acid sequence, structure,
and function of these proteins. As mentioned, in Brazil barely anything is known, leaving
a gap in the knowledge of these incredible toxins. In this way, this work aimed to conduct
a systematic study on 3FTxs from Brazilian Micrurus species, focusing on their amino
acid sequences and predicted 3D structures. By doing so, we bring insights on biological
function, and also in the phylogenetic relationship of these toxins, which may guide further
functional characterizations.

2. Results
2.1. Three-Finger Toxins Classification Based on Protein Threading

Three-dimensional protein structure undergoes evolutionary changes more ponder-
ously than the protein sequence itself. This knowledge is well exemplified in the 3FTx
family. They present a remarkably diversified primary structure, despite the overall three-
dimensional conformation of “3 fingers” being conserved in all protein-members of this
family. For this reason, we proposed a protein-classification based on a protein-threading
algorithm, which takes into account conserved structural patterns (see methods).

We used the HHPred software to select the most probable structural homologue for
each protein sequence used in the present study, by using an implemented algorithm for
hidden Markov models comparison (HMM-HMM) in HHPred. This method allows sensi-
tive detection of a structural homologue since it is based on profile-sequence comparison,
not just sequence-sequence comparison [30–33].

As a first step, we grouped 57 sequences of our dataset (Table S1) according to the
best hit with the lowest E-value suggested by HHPred, curated manually. To further verify
and refine this first classification, and to get the final structural homologue, we analyzed



Toxins 2021, 13, 328 3 of 19

conserved sequence-patterns, finger extension, and disulfide bridges in those sequences
(Table S2). For example, we observed that some sequences have a prolongation of the
middle finger, as in the case of group 8. Other examples are groups 2 and 7, in which we
found a 5th extra disulfide bond in the first finger. Thus, we verified if sequences with
distinguished structure were gathered into groups in line with HHPred results. Afterward,
some groups were merged together as subgroups, due to the proximity both in homologous
function-structure characteristics and in phylogenetic analysis. Moreover, the sequence
length did not seem to be related to group separation according to this method-analysis, as
we found a combination of sequences with different lengths grouped together.

We ended up with a total of 9 groups, group 1 being subdivided into three subgroups
(named 1-A to 1-C), group 2 subdivided into two subgroups (named 2-A and 2-B), and group 8
also subdivided into two subgroups (8-A and 8-B) (Figure 1, Figure 2 and Table S2).

Figure 1. Sequence alignment of 3FTx groups. Groups are presented with their consensus amino acids and conservation
score on a scale from 0 to 10 (10 being indicated by an asterisk as completely conserved, and + for similar amino acids).
The cysteine residues forming the disulfide bridges are linked by black lines on the top of the alignment. The extra disulfide
bridges are marked with an asterisk. The figures were prepared with the Jalview software [34] and colored using the
Clustalx scheme and conservation.
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Figure 2. Representative 3D structural models of each 3FTx group. Each group and subgroup are represented by a 3D
structure modeled from a representative sequence and identified by its database accession code. The best model was chosen
according to the lowest DOPE score (Group 1-A -3469.3; Group 1-B -4223.5; Group 1-C -3663.6; Group 2-A -3945.3; Group 2-B
-3770.5; Group 3 -4401.7; Group 4 -3720.2; Group 5 -3608.5; Group 6 -5266.9; Group 7 -5035.04; Group 8-A -3868.4; Group 8-B
-4417.3; Group 9 -4235.3). The cysteine residues that form disulfide bridges are marked yellow. The structures are presented
from the N-terminus to the C-terminus, and the fingers I, II and III are positioned from the left to the right. Colored boxes
represent each group of toxins.

2.2. Structural Representative Model

The knowledge of a protein structure is fundamental to understand its function.
Taking this into consideration, we created a 3D model of one sequence from each group
with the aim of identifying functional-structural signatures. Since the cysteine residues
are extremely conserved in this family, we checked manually their pairing to verify the
alignment trustworthiness and quality. A total of 13 representative models were created
(Figure 2). Additionally, we performed an independent prediction of secondary structure
in the JPred server, using solely the protein sequence, and comparing it with the secondary
structures observed in our structural models. For almost all proteins, JPred estimated a
β-strand conformation for fingers II and III (Figure S1). Curiously, JPred did not predict a
β-strand for the finger I for most of the proteins. This finger could be more flexible than
the others and it may experience transitory conformations.

We found an interesting exception for group 7 and subgroup 8-A, in which JPred
predicted an α-helix in the finger II (significance score of 6 to 8), while the 3D models one
β-sheet (Figure 2 and Figure S2). Until the present date, no α-helix has been reported in
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3FTxs. More studies must be conducted to understand the conformational characteristics
of finger II in these proteins.

The 3D models were also useful for the calculation of charge distribution on the protein
surface, which is helpful to find conserved motifs for interaction with other molecular
targets, for example. The surface charge distribution was calculated for each representative
structure of each group (Figure S2).

2.3. Phylogenetic Analysis

Nowadays, the phylogenetic analysis is a useful tool not just to comprehend the
relationships among species but also to make important inferences in almost every arm of
biology, including molecular biology. In the present study, besides the structural analysis,
we used the phylogenetic information to organize the groups and to compare with the
classification based on the structural data (Figure 3). As this analysis is based on nucleic
acids or amino acids alignment, and given the sequence variation in the 3FTx family,
we have been expecting low amino acid matches in the alignment positions, afterward
impacting the bootstrap of the phylogenetic tree. Indeed, we observed a very low bootstrap
in the outermost tree nodes, almost all in the root of the big branches (branch 1 to branch
5). Also, the inclusion of some known old world 3FTxs as references impacted the bootstrap
value. Interestingly, we found corroboration between the grouping by structural analysis
and by the phylogenetic analysis. For instance, all sequences of group 1 are gathered
together in the same branch. Moreover, we observed a similar classification into subgroups,
with just three exceptions (marked by grey arrows and blue text in Figure 3).
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Figure 3. Phylogenetic tree of the 3FTxs sequence groups. The evolutionary analysis was generated using the maximum
likelihood method and the Whelan and Goldman model. The tree with the highest log likelihood (−2630.25) is shown.
The 3FTxs groups are indicated with colored boxes. 3FTxs already characterized were included in this analysis. The se-
quences found in the tree inside a different group from the one suggested in Figure 1 are indicated in blue text, with a grey
arrow. The five big branches are shown here in dark blue.
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2.4. Biological Insights Annotation

3FTxs possess vast modes of action, several molecular targets, and many functions.
Alongside the conserved global 3D structure as already mentioned, these toxins evolved
to keep a range of sequence variation inside their small and tight shape, to guarantee
their biological versatility. To have insights about the molecular properties and to raise a
hypothesis about the biological roles of 3FTxs from Brazilian Micrurus venoms, we started
looking at the information of their structural homologous. We compared conserved regions
in those sequences such as amino acids directly or indirectly involved in interaction with a
functional partner, disulfide bridge patterns, local 3D conformation, and distribution of
charges on the protein surface. Additionally, we made a data collection of 3FTxs already
described in the literature and compared with our groups (Table S3).

3. Discussion
3.1. Brazilian Micrurus Potent Weapons—Molecular and Biological Insights

Since the publication of the transcriptomes of Micrurus altirostris and Micrurus coralli-
nus species [2,35] and the recent production of venom gland transcriptomes of six Brazilian
Micrurus taxa [3], the databank of toxin sequences from Brazilian Micrurus species was
hugely upgraded. The availability of these toxins represents a great step to have an idea of
the vast diversity inside the elapid venoms in Brazil. Despite the latest contributions, there
is a lack of information about structure-function, which prompted us to utilize the current
available sequences to start deepening the investigation of the molecular biology behind
the Micrurus toxins by bioinformatic analysis.

We decided to explore one of the two most abundant and relevant toxins in Micrurus
venoms, the three-finger toxins (3FTxs). As well as other 3FTxs in general, the ones from
Micrurus venoms from Brazilian species have high diversity in terms of primary structure,
conserving mainly the eight structural cysteines that anchor their globular core and the
projection of three fingers composed usually by β-strands and loops (Figure S3). In order
to separate and systematically study these proteins, we developed a guideline considering
the high variability among their amino acid sequences. To establish our method, we
assembled our database with selected sequences and sorted out the proteins initially based
on structural homology identity. Then, we looked at other important patterns such as key
functional amino acids in the primary structure, disulfide bridges, charge distribution on
protein surface, and sequence phylogenetic relationship. Gathering these analyses, we
manage to classify these toxins into groups (Figure 1).

Each proposed group will be discussed hereafter, pointing out the most important
details that we extracted from all analyses, which sheds light on the molecular properties
and possible biological roles of some 3FTxs from Brazilian Micrurus species. This guideline
can also be useful for other classes of toxins that have diversified primary structures.

3.1.1. Subgroup 1-A

One of the most important and well-conserved residues in α-neurotoxins for the
activity in nicotinic acetylcholine receptor (nAChR) is the Arg 33, located in the outermost
section of the finger II, (usually at position 33) [12,36], which is reported in the literature as
being a site for invariant functional amino acids [37]. Noteworthy, other residues have been
also pointed out in α-neurotoxins as important for activity, such as Lys 23/27, Trp 27/29,
Asp 27/31, and Lys 47/49. For example, in the α-neurotoxin III from Laticauda semifasciata
venom (LsIII), the lack of residues Asp 31 and Lys 47, along with Ser 9, was suggested to be
linked to the lower toxicity of this protein [38,39]. Furthermore, the mechanism by which α-
neurotoxins bind to their receptor (nAChR) and anchor to the membrane has been proposed
to be based on multisite interaction [37]. It means that it could require specific regions from
fingers I, II, and III for the proper interaction and activity [40–44]. For instance, the motif
NQQSSQ in N-terminus region is highly conserved among α-neurotoxins [11,38,44–47] and
it could be involved in the protein-binding to membranes. This hypothesis is exemplified
by the importance of the amino acids at N-terminus of the NTII toxin for the interaction



Toxins 2021, 13, 328 8 of 19

with membranes and activity on nAChR [44]. Furthermore, it has been suggested that the
positively charged surface and the hydrophobic residues at the interface of the binding
site in α-neurotoxins are also important to receptor recognition and binding [48], which is
evident in the representative 3D structures of subgroup 1-A and 1-C (Figure S3).

Subgroup 1-A has an α-neurotoxin (Dendroaspis polylepis polylepis—PDB 1NTX) [49] as
structural homologue (Table S2). The sequences of this group have four disulfide bridges in
the expected conserved positions, but one sequence (Ma AED895741) has an extra cysteine
at position 55 in the C-terminus (Figure 1). Sequences from this group have the N-terminus
very homogenous, similarly to classical α-neurotoxins. Some of the key amino acids for the
activity on nAChR are present in these sequences, being Trp 27, Asp 29, Arg 31, and Lys 45,
corresponding to the conserved residues mentioned for classical α-neurotoxins (Figures 1
and 4). Moreover, they present a conserved double Lys residues pattern at positions 24 and
25 (Lys and Lys/Arg conserved similarly among groups 1 and 2), which may reflect in a
more positive protein surface (Figure 1, Figure 4 and Figure S3). In fact, we can observe
a similar charge surface distribution in this group compared to known α-neurotoxins
(Figure S3). Also, the Tyr right after the third conserved structural Cys is very conserved
among groups 1 and 2. Further, there are some sequences that outstand from others by
having even more positive amino acids. This is the case of the Ma F5CPD81 sequence,
which has Lys 24, Arg 26, Arg 28, Arg 31, Arg 34, Arg 37, Lys 43, and Lys 49, resulting in a
very positive character at one of the protein face-side (Figure 4 and Figure S3). In general,
subgroup 1-A is very homogeneous and very similar to its structural homologue, being
a great candidate to be a group of post-synaptic short chain α-neurotoxin. Additionally,
sequences from this group are grouped in a big cluster, branch 1, along with the other
subgroups of group 1, in the phylogenetic analysis (Figure 3).

Figure 4. Cont.
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Figure 4. Functional amino acid residues and important regions in the representative 3FTxs of some groups. Some
important/key amino acids discussed along the text are highlighted here in their corresponding groups. The coloring
scheme is: red for negative amino acids, blue for positive, pale orange for aromatic resides, pale pink for glycine, yellow for
cysteines, and green for the others. The grey arrows are indicating the orientation of the N and C-terminus. The fingers I, II,
and III are positioned from the left to the right.

3.1.2. Subgroup 1-B

Sequences from subgroup 1-B have the Atratoxin (PDB 1V6P) as their structural ho-
mologue (Tables S2 and S3), a short chain α-neurotoxin found in Naja naja atra (mainland
Chinese cobra) venom with post-synaptic activity on nAChR [50,51]. Looking at the se-
quences from subgroup 1-B, they all have at the tip of the finger II the Arg residue. We also
found Lys 27, Trp 29, Asp 31, and Lys 47 well conserved in almost all sequences of this
group (Figures 1 and 4). Interestingly, besides the presence of these key amino acids, the N-
terminus (5 to 12 positions) of the sequences are markedly variable, in contrast to subgroup
1-A, which seems to not be common for short chain α-neurotoxins as already approached.
Further analysis must be conducted to verify whether this relates to receptor binding speci-
ficity, or to cell membrane binding. Considering the positive charge surface as important
for α-neurotoxins activity, as so, the Atratoxin has a quite positive protein surface. On
the contrary, several negative amino acids are found in subgroup 1-B (e.g., positions 6,
15, and 26), which contribute greatly to a more negative potential at the surface of these
proteins (Figure S3). In addition, all sequences in subgroup 1-B form a cluster when sorted
out by phylogenetic analysis, with just the exception of Mp DN7425 sequence (Figure 3).
In concert, these observations indicate that sequences from subgroup 1-B have important
amino acids to exert function on nAChR as short chain α-neurotoxin, but some differences
as in the N-terminus and charge surface may influence their activity. Also, these differences
may direct these proteins to other functions, conferring the known multi-functionality
present in 3FTxs.

3.1.3. Subgroup 1-C

The structural homologue of subgroup 1-C is a toxin from Black mamba venom
identified as MT9 protein (PDB 6F21—Dendroaspis polylepis) (Table S2). Unfortunately,
this protein was not characterized and just the sequence and the crystal structure were
reported. BLAST analysis showed that the closest protein to the MT9 is the PDB 1NTX
(the homologue of subgroup 1-A), with only 52.54% of sequence identity. In summary, as
the subgroup 1-C homologue is poorly understood, we could not compare information
beyond their structure.
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Similar to subgroups 1-A and B, sequences from subgroup 1-C are short chain neu-
rotoxins. They have four conserved disulfide bridges and no extra cysteine. Comparing
with subgroup 1-A and B, we noticed few similarities, since we found a very diversified
N-terminus and finger II in subgroup 1-C. Nevertheless, we observed a similar structural
motif composed by Gly, Cys, and Pro (GCGCP), which seems to be conserved among
sequences from Group 1 and some α-neurotoxins (Figure 1). The common interaction site
for curaremimetic activity, composed of aromatic and positively charged residues, was not
clearly discerned in these sequences. However, the double Lys pattern (24 and 25 residues
in the alignment positions) is present in almost all sequences, similar to subgroup 1-A.
Noteworthy, we found an Asp 56 and a Lys 57 residues right before the last Cys conserved
in all sequences of this subgroup. Similarly, we found the Asp 56 and Lys/Arg 57 in equiv-
alent positions in almost all sequences within group 1 (Figure 1). Few aromatic residues are
found, with only Tyr 23 (in the alignment position) conserved in all sequences (Figure 1).
For the representative of the cluster (Mc Q9PUB71 sequence), its protein charge shows a
predominant positive molecular surface (Figure S3), but it is difficult to generalize due to
the considerable sequence variability. Finally, subgroup 1-C is also part of the phylogenetic
branch 1 of candidates to be post-synaptic α-neurotoxin or alike (Figure 3).

3.1.4. Subgroup 2-A

Subgroup 2-A is a small group composed of only two long chain sequences of 65
amino acids. Both sequences are distinguished by the presence of an extra disulfide bridge
in finger I, different from other reported long chains where this extra bridge is present in
finger II (Figures 1 and 2). Its structural homologue is the γ-bungarotoxin (PDB 1MR6—
Bungarus multicinctus) (Tables S2 and S3), an RGD-containing protein with weak activity in
inhibiting platelet aggregation [52]. Subgroup 2-A sequences do not have the Arg, Gly, and
Asp residues (RGD motif) in the respective alignment position, having instead Arg, Gly,
and Leu residues. Various positive and some hydrophobic residues are distributed along
with the sequences, some of which may be related to interaction with nAChR (Figure 1).
Regions with concentrations of positive and negative charges are present in the predicted
protein electrostatic surface (Figure S3).

The already described 3FTxs with an extra disulfide bridge specifically in finger
I, as well as the sequences from subgroup 2-A, are grouped in a class reported in the
literature as “Weak neurotoxins”. Lately, this class has been recognized as non-conventional
toxins. Toxins from this group typically have lower toxicity than other long chains. Non-
conventional toxins may present their toxicity about LD50 of 5–80 mg/kg, in opposition to
prototype α-neurotoxins, which may present LD50 of 0.04–0.3 mg/kg [53]. Exceptions to
this knowledge exist, and this is why the term “Weak neurotoxin” is falling into disuse.
For example, the γ-bungarotoxin, structurally similar to “Weak neurotoxins”, has an
LD50 of 0.15 mg/kg, which is more related to α-neurotoxins activity [52,54]. Despite the
reported common lower toxicity of the non-conventional toxins, they could present variable
activities that are poorly explored to date [53]. Additionally, in a mutagenesis study of a
weak neurotoxin from Naja kaothia, the content of arginine in finger II was demonstrated to
be essential for interaction on M1, M2, and M3 muscarinic AChR (mAChR) [55]. Those
Arg residues are also observed in sequences from subgroup 2-A and B (Figures 1 and 4).
In the phylogenetic analysis, both sequences from subgroup 2-A are settled together in the
same big branch as group 1 (Figure 3).

3.1.5. Subgroup 2-B

The subgroup 2-B structural homologue is the 3FTx called Candoxin (PDB 1JGK)
(Tables S2 and S3), from Bungarus candidus venom. This toxin was considered a novel
long chain 3FTx, because of its reversible antagonistic effect on muscle-type and weaker
but also on neuronal α7 nAChR. In other similar toxins, the activity is commonly almost
or totally irreversible [56]. As in the subgroup 2-A, sequences from subgroup 2-B are
differentiated by the presence of a fifth extra disulfide bridge located in the finger I, as
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found in Candoxin. These sequences are long chains with smaller C-terminus tails, similar
to Candoxin but different from almost all other long chain neurotoxins. As in group 1, they
have some of the key amino acids for the activity on nAChR. We found Lys/Arg 27, Trp 29,
and Glu/Asp 31 conserved in all sequences. The notorious Arg 33 is present only in one
sequence (Mf P864231), while the others have instead a His, Gln, or Asn. Additionally, Gly
34 and Glu 38, critical for erabutoxin-a [57] and found in Candoxin, are also present in most
of the members of subgroup 2-B (Figures 1 and 4). Some of those residues are common
in some neurotoxins and are pointed out as important both for activity on muscle and on
neuronal nAChR. Moreover, the structural homologue of subgroup 2-B, Candoxin, lacks
the helix-like conformation at the tip of the finger II, which is present in the α-cobratoxin
and is related to high affinity to α7 receptor [58]. Altogether, this could suggest that the
sequences from subgroup 2-B can compose a new class of 3FTxs along with Candoxin.
In the phylogenetic analysis, this group is also part of branch 1 (Figure 3).

3.1.6. Group 3

Group 3 has Bucain (PDB 2H8U) as structural homologue (Tables S2 and S3), a
3FTx from the Malayan Krait Bungarus candidus characterized as a potent neurotoxin and
structurally similar with α-neurotoxins, with a positively charged AChR-binding site [48].
Even sharing the Bucain as structural homologue, sequences in this group present some
important differences. Some of these are the changes of the amino acids Asp/Leu 4,
Asp/Ile 5, Arg/Glu 12, -/Lys 26, Val or Ile/Trp 28, Tyr/Gly 35, and Glu/Lys 36 in the
alignment positions of group 3 and Bucain, respectively (Figure 1). Some of these involve
drastic changes as in aromatic, positive, and negative amino acids, certainly driving
these proteins to different activities or affinity to receptors. The electrostatic prediction
demonstrated the homogeneous distribution of positive and negative charges on the protein
surface (Figure S3). Further, the sequences of this group were gathered in branch 3 in the
phylogenetic tree (Figure 3).

3.1.7. Group 4

Group 4 (homologue PDB 3HH7, from Ophiophagus hannah venom) (Tables S2 and S3),
stands out from the other groups by having an astonishing content of positive amino
acids among its sequences. This characteristic caught our attention as it could suggest
direct interactions with membranes, perhaps as cardiotoxin/cytotoxins. We can observe at
least 12 positive residues highly conserved among the group 4 sequences, almost all being
lysines concentrated in fingers II and III (Figures 1 and 4). This reflects in a distinguished
positively charged protein surface, as predicted for the representative sequence, and that
can be extended for the others (Figure S3).

The group 4 structural homologue is named Haditoxin. This protein was described
as a novel neurotoxin because of its pharmacological activity, an antagonism towards
both muscle and neuronal nAChR. It was reported as the first dimeric short chain α-
neurotoxin with activity on α7 nAChR and also as the first homodimeric 3FTx with activity
on muscle-type nAChR [59]. Notably, group 4 has important differences mainly regarding
the presence of the lysines in important positions, when compared to Haditoxin. This
probably directs these proteins to other functions, and our analyses suggest that this group
may be closely related to cardiotoxin/cytotoxin. In the phylogenetic analysis, group 4 is in
branch 2, grouped with Bucain, the structural homologue of group 3 (Figure 3).

3.1.8. Group 5

Group 5 (homologue PDB 2LA1, from Dendroaspis jamesoni kaimosae) (Table S2 and
S3) is a small group with only two sequences. This group has a very low sequence
identity, which reflects in a difficulty to predict a three-dimensional structure, even having
a structural homologue (Figure 1). As shown in Figure 2, the representative 3D model
seems very flexible in each finger, with predominance of random like-loop conformation.
The prediction of secondary structure by JPred server proposed a β-stranded pattern in
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fingers II and III, not corroborating with our structural model (Figure S2). We observed
only 14 amino acids conserved in the alignment, which includes the cysteines. Due to the
low identity, we could not identify key residues in those sequences to have clues about
their function. Moreover, we can not expect a good accuracy for the structural prediction
in this group. This group is peculiar and probably has different activities, perhaps never
identified in other 3FTxs around the world. Dendroaspin, the homologous protein of group
5, is a 3FTx containing a PRGDMP motif with potent activity on inhibiting integrins [60].
Sequences from group 5 do not have this motif and neither the RGD. Not surprisingly, the
phylogenetic analysis placed each sequence from group 5 in two different branches (4 and
5) (Figure 3).

3.1.9. Group 6

Group 6 has considerable sequence homogeneity. Even though, comparing this
group with its homologue, a 3FTx called Ringhalexin (PDB 4ZQY—from Hemachatus
haemachatus) (Tables S2 and S3), we can observe low sequence identity mainly in finger
I and II (Figure 1). One interesting characteristic observed in these sequences is a great
content of aromatic residues in the N-terminal portion (Tyr 4, Tyr 6, Tyr 7, Phe 10, Trp 11),
not fully conserved in the homologous nor in the sequences of the other groups studied
here (Figure 1). The presence of aromatic amino acids at the protein surface is frequently
related to protein–protein interaction such as in dimerization interfaces [61,62].

Regarding the structural homologue, Ringhalexin, in addition to its weak and irre-
versible neurotoxicity, it shows potent anticoagulant property through the inhibition of
extrinsic tenase complex, which comprises the tissue factor—factor VIIa (TF-FVIIa) [63].
In a docking study performed with this toxin and two other 3FTxs with high identity and
similarity to Ringhalexin, there were proposed twelve amino acids that may contribute to
the specificity of these proteins towards the TF-FVIIa, being the Tyr 7, Lys 9, Glu 12, Lys 26,
Arg 34, Leu 35, Arg 40, Val 55, Asp 56, Cys 57, Cys 58, and Arg 65 [64]. Looking at group
6, we found Tyr 7, Lys 26, Arg 40, Val/Leu 55, Glu 56 instead of Asp, Cys 57, and Cys 58
amino acids (Figure 1). In the phylogenetic tree, all sequences were grouped well in branch
2 (Figure 3).

3.1.10. Group 7

Group 7 is one of the most homogenous groups of toxins from this study with high
sequence identity (Figure 1). The structural homologue is the Bucandin (PDB 1F94—
from Bungarus candidus species) (Tables S2 and S3), a 3FTx with a unique property of
enhancing the release of acetylcholine, acting pre-synaptically [65]. To the best of our
knowledge, this is the only 3FTx described to date with pre-synaptic activity. Just like
group 2, sequences from group 7 have an extra disulfide bond in finger I, which sets
these sequences as non-conventional according to the literature. In Bucandin, the extra
fifth bond causes an unusual kink in finger I that twists this region away from the rest
of the protein. It was speculated that this structure could be a useful way to isolate this
region to prevent charge interference or to rigidify the molecule to lead to some specific
interaction with a target [65,66]. Considering the high sequence identity of group 7 with
Bucandin, especially in the first finger, we believe that this structure may also occur in
this group. In the 3D model, we could observe a similar structure also in the first finger,
which seems to be directed also by the extra disulfide bond (Figure 2). Curiously, the
JPred software predicted two α-helices in finger II, whereas in our model a β-sheet is
found instead (Figure 2 and Figure S2). To note, no 3FTx with the structure already
determined, including the Bucandin, present α-helices. Moreover, there is more positive
charge distributed throughout the protein than negative, according to the prediction of
electrostatic surface (Figure S3). In Bucandin we can observe two distinct charged faces,
conferring an amphipathic character to the molecule [65,66]. In respect to the phylogenetic
analysis, group 7 sequences and Bucandin are clustered together in branch 4, reinforcing
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the great proximity in the perspective of both structure and phylogenetic relationship
(Figure 3).

3.1.11. Group 8

Group 8, which comprises subgroups 8-A and 8-B, represents one of the most variable
groups, with low sequence identity among their ten members. The principal reason why
these two groups were gathered is a structural characteristic, an extension of finger II in
relation to the other fingers observed only in this group. Interestingly, subgroup 8-A has
the Mambalgin (from Dendroaspis polylepis, PDB 5DO6) as structural homologue, while
8-B has the Fulditoxin (from Micrurus fulvius, PDB 4RUD) (Tables S2 and S3), two differ-
ent toxins having distinct functional roles. Even though, the similarity among these 3D
structures is notable, with few differences mainly in the outermost section of fingers I
and II. Mambalgin interacts with acid sensing ion channel causing an effect of abolishing
pain [16,67]. In contrast, Fulditoxin is a new short-chain α-neurotoxin that forms a homod-
imer by hydrophobic contacts and also is the first 3FTx ever described that binds metal and
has the ability to assemble tetrameric complexes. Its activity is a reversible post-synaptic
neuromuscular blockade through the nAChR [68]. Even if some of the key functional
amino acids described for the homologous could be found in some of the sequences of
group 8, its sequence variability suggests novel roles that should be further studied. In the
phylogenetic analyses, subgroups 8-A and B are clustered in branch 5 (Figure 3).

3.1.12. Group 9

The group 9 structural homologue is a cardiotoxin from Naja atra venom called CTX
A5 (PDB 1KXI) [69] (Tables S2 and S3). Even with important differences in the primary
structure (Figure 1), both sequences from group 9 are disposed in the same cluster (branch
5) one next to the other in the phylogenetic tree (Figure 3). Comparing group 9 with its
homologue, we could not predict beyond the overall 3D structure (Figure 2).

3.2. Undiscovered Biotechnological Potential of 3FTxs

In the past years, the interest as well as the knowledge concerning the 3FTxs found in
Elapid venoms throughout the world have been growing. In fact, this is happening also because
of a trend in toxinology to study, in particular, small toxins present in venoms of many different
types of animals (e.g., sea anemones, cone snails, scorpions, spiders, snakes), which are capable
of specifically interfering with a range of channels/receptors in animal organisms [70–72].
In the case of 3FTxs, the mentioned trend was probably amplified by the discoveries of new
functions in the last decade, as the Mambalgin activity, for example [16,73]. Naturally, several
very interesting functions for these toxins contribute and are still raising interest in the field
of biodiscovery, biotechnology, and pharmacology. In general, the growing knowledge of the
animal-toxins biotechnological potential is causing a far-reaching interest among researchers
inside and outside of the toxinology community.

Due to their small size and multi-functionality convened in a diversified primary
structure, the 3FTx family is also of biotechnology interest. In Brazil, the knowledge
regarding the 3FTxs from Elapid species is still poor and underestimated. Part of this is
caused due to the interpretation of the toxin’s activity, based mostly on general clinical
patterns of the envenomation. However, as we know, lots of different activities can coexist
in the same toxin family and even in the same particular 3FTx. Although, one specific
activity may be masked by the presence of the most abundant proteins in the venom, which
warrants studies like this that may lead to the identification of novel activities. Another
important factor that contributes to the lack of knowledge is the difficulty in obtaining a
reasonable amount of venom to study. In this way, the tracking of new molecules must
be undertaken to amplify the comprehension of these toxins in Brazil and to increase the
availability of proteins with biotechnological potential.
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4. Conclusions

In this work, we presented some 3FTxs from Brazilian Micrurus species and classified
them mostly based on structural features. We are showing a new way to cluster toxins with
distinguished variability in primary structure using the developed guideline. Comparing
the 3FTx groups with their homologous proteins, we were able to point important/key
amino acids and structural characteristics related to the activity. Moreover, we found some
sequences with very low identity with any other characterized 3FTx, suggesting novel
roles for those toxins.

Since the most described functions of 3FTxs from Micrurus venoms are on cholinergic
receptors, in this study we could give more insights related to this activity. For all other
activities described for the 3FTx family, more studies must be undertaken to find frequent
regions related to the activity for those infrequent and particular functions. As so, taking
into consideration the well-recognized diversity inside the 3FTx family and the vast uni-
verse of unexplored structures and functions, in this work we approached just the tip of the
possibilities behind this unique group of toxins. We hope that the present work enriches
discussions and instigates research about the 3FTxs from Micrurus venoms and for other
groups of toxins.

5. Methods
5.1. Sequence Database

In a first step, a non-curated dataset was constructed by joining 3FTxs sequences
published in Aird et al., 2017 [3] and sequences from GenBank (NCBI), all described as
from Micrurus species from Brazil. After manually removing truncated sequences (e.g.,
presenting less than eight cysteines), and those with 100% identity (redundant), the final
curated dataset comprises 57 3FTxs sequences, being 28 sequences of 3FTxs published in
Aird et al., 2017 [3] and 29 sequences retrieved from GenBank (NCBI) (see Table S1).

5.2. Toxin Classification Based on Homology Predictions

Due to the low sequence identity in this toxin family (Figure S1), structural-homologous
proteins were searched by an algorithm based on profile hidden Markov models (HMMs),
which is especially useful for remote protein homology detection [30,31]. As our objective
was to perform afterwards a structural prediction and analysis of those sequences, the HH-
Pred server [32,33], available online in Bioinformatics Toolkit (https://toolkit.tuebingen.
mpg.de/tools, accessed on 29 April 2021), was selected to identify the best structural
homologous template by using HMM-HMM comparison. The sequences in our database
were first classified based on the best hit (lowest E-value) given by HHPred for each of
them. In the cases when HHPred was giving similar or identical E-value for several PDB
(Protein Data Bank) entries belonging to different proteins, all of them were inspected
manually and, afterward, other analyses (e.g., disulfide bond pattern, primary structure
signatures) were considered to choose the best homologue (see Table S2).

5.3. Homology Model Building

As we grouped proteins that had the same predicted structural homologue, we ex-
pected them to present a similar fold, and we selected therefore just one protein from each
group as a representative for model building. To build a three-dimensional model, we used,
as template, the PDB entry suggested by HHPred software and also the sequence alignment
between target and template given by the server. An exception was group 5 (homologous
PDB 2LA1), in which the sequence alignment proposed by HHPred did not pair one of the
conserved cysteines and it was manually modified to adjust to the same position as in the
structural homologous. The Modeller software [74] (9.20 version, University of California
San Francisco, San Francisco, CA, USA) was used to build 100 models per sequence. We
selected as the most probable structural model the one with the lowest DOPE (discrete
optimized protein energy) score [75]. The models were visualized in PyMOL Molecular
Graphics System, version 2.2 Schrödinger, LLC, Cambridge, UK. Additionally, the sec-

https://toolkit.tuebingen.mpg.de/tools
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ondary structure of the representative protein of each group was predicted with the JPred
server. This server is based on the Jnet algorithm, a two-level neural network algorithm
trained using the aligned sequences of 480 proteins. Also, it calculates solvent accessibility
and coiled-coil regions using the Lupas method [76]. This independent analysis was useful
to check whether or not those predictions matched with the secondary structure proposed
by our three-dimensional models constructed by the Modeller software.

5.4. Analysis of Primary Structure and Sequence Alignment

Sequence alignment was performed using the MUSCLE algorithm [77] in the Molec-
ular Evolutionary Genetics Analysis (MEGA) software [78]. The given alignments were
visualized with the Jalview software [34] version 2.10.5, open source bioinformatics soft-
ware, Dundee, Scotland, UK.

5.5. Electrostatic Surface Potential Calculation

The calculation of the electrostatic surface potential of both the three-dimensional
models and their PDB templates was performed with the Adaptive Poisson-Boltzmann
Solver (APBS) tool, implemented as a plugin in the PyMol software. The default parameter
setting was used for the analysis and the results were expressed in kT unit (Boltzmann
constant/temperature).

5.6. Phylogenic Analysis

The evolutionary relationship was inferred by using the maximum likelihood analysis
performed by the Molecular Evolutionary Genetics Analysis (MEGA) software. In order to
find the best matrix of substitution, we tested automatically 56 different models. We chose
the Whelan And Goldman (WAG) and the Gamma distributed with Invariant sites (G+I)
as substitution model and as the evolutionary rate differences among sites, respectively,
based on the lower value of the BIC score provided by MEGA software. To construct the
initial tree for the heuristic search, we automatically applied the Neighbour-Join and BioNJ
algorithms to a matrix of pairwise distances estimated by using the JTT model. The tree
nodes were supported by 1000 bootstrapping replicates. The tree topology with superior
log likelihood value was selected. 80 sequences were used for this analysis, being: 57
sequences of our dataset of 3FTx from Micrurus from Brazil (Table S1), 13 sequences from
the structural homologues used in the present work, and 10 sequences of other 3FTxs
already characterized in the literature. All positions containing gaps and missing data
were eliminated.

5.7. Group Refinement and Biological Insights Annotation

The group’s refinement and a hypothesis about the biological activity and the molecu-
lar properties of each cluster of toxins were suggested based on (1) the biological activity
and structure of their proposed structural homologue, if known; (2) sequence analysis of
conserved regions and disulfide bridges pattern; (3) phylogenetic relationship; (4) calcu-
lated charge distribution on the protein surface. Using this analysis, some of our primary
groups were further banded together and proposed as subgroups (e.g., group 1). With this
information in hand, we managed to propose a structure-function classification of 3FTxs
into 9 main groups (Figure 1).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/toxins13050328/s1, Figure S1: Secondary structure prediction for each representative model
for each 3FTx groups; Figure S2: APBS electrostatic potential surface for each representative structure
for each group; Figure S3: Three-finger toxin sequences from Brazilian Micrurus species; Table S1:
Sequence Identifier; Table S2: Selected structural homologues suggested by the HHPred server and
curated manually; Table S3 Survey of some members of the 3FT family already characterized.
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