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Abstract

Genome assemblies from next-generation sequencing technologies are now an integral part of biological research, but many

sequencing and assembly processes are still error-prone. Unfortunately, these errors can propagate to downstream analyses and

wreak havoc on results and conclusions. Although such errors are recognized when dealing with diploid genotype data, modern

reference assemblies (which are represented as haploid sequences) lack any type of succinct quality assessment for every position.

Here we present Referee, a program that uses diploid genotype quality information in order to annotate a haploid assembly with a

quality score for every position. Referee aims to provide an assembly with concise quality information on a Phred-like scale in FASTQ

format for easy filtering of low-quality sites. Referee also provides output of quality scores in BED format that can be easily visualized

as tracks on most genome browsers. Referee is freely available at https://gwct.github.io/referee/.
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Introduction

Reference assemblies are haploid representations of the ge-

nome sequence of a species. Their use is ubiquitous in modern

genetic and evolutionary research, especially in comparative

genomics studies. Such studies range from questions about

phylogenetic relationships to analyses searching for targets of

adaptive natural selection. The conclusions of all analyses de-

pend on the accuracy of the reference sequence; however,

both genome assembly methods and the underlying sequenc-

ing technologies are error-prone (Hubisz et al. 2011). This

inevitably leads to errors in downstream analyses and conclu-

sions (e.g., Mallick et al. 2009; Schneider et al. 2009;

Prosdocimi et al. 2012).

Many technologies provide a measure of base accuracy for

every position in a sequencing read in the form of the quality

score. This score represents the log-scaled value of the prob-

ability that the called base is incorrect. However, when assem-

bling reads from genomes, transcriptomes, or other reduced-

representation sequencing approaches (e.g., Baird et al. 2008)

this quality information is lost. Here we present Referee, a

program that provides a measure of the underlying quality

for an assembled reference sequence. Referee uses genotype

likelihoods, which are standard in resequencing studies (e.g.,

Li et al. 2008), to calculate a haploid reference quality score.

The quality score, QR, ranges between 0 and 90 and repre-

sents the confidence we have that the called base at that

position is correct. For positions where we have no confidence

in the called base, Referee can suggest an alternate, better-

scoring base. While tools do exist that examine assembly qual-

ity at a per-base level (Hunt et al. 2013), Referee aims to

produce an easily interpretable quality score for any type of

assembly, using any sequencing technology. These scores can

then be used to inform any downstream analysis.

Materials and Methods

Referee uses the genotype likelihoods of all ten possible dip-

loid genotypes at a site to calculate the quality score, QR, of

the single base in the reference sequence. Referee summa-

rizes the diploid genotype likelihoods for the haploid repre-

sentation of the assembly by taking the sum of the likelihoods

of the genotypes that contain the called base Lmatchð Þ and the

sum of those that do not contain the called base Lmismatchð Þ.
For instance, if the called base is A, then Lmatch ¼ L AAð Þþ L

ATð Þ þ L ACð Þ þ LðAGÞ and Lmismatch ¼ L TTð Þ þ L TCð Þþ
L TGð Þ þ L CCð Þ þ L CGð Þ þ LðGGÞ.
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Taking the log-scaled ratio of these two sums gives us a

quality score:

QR ¼ log
Lmatch

Lmismatch

� �
:

This scoring has the desirable behavior of being positive when

we think the called reference base is correct and negative when

we think it is incorrect due to lack of support; scores close to 0

indicate uncertainty in the called base. For sites that show more

support for an alternate base call (i.e., sites with QR � 0),

Referee can calculate QR for each of the three alternate bases

and suggest the highest scoring base for that position.

Genotype Likelihoods

Referee’s quality score requires genotype likelihoods from the

reference individual. Such likelihoods are calculated by map-

ping the reads used in generating the assembly back to the

reference assembly. Referee can calculate genotype likeli-

hoods if given a pileup file as input. For this calculation we

have implemented the Bayesian model of genotype likelihood

developed by McKenna et al. (2010), with the additional con-

sideration of mapping quality.

Referee also accepts genotype log-likelihoods as input

from any method provided that they are formatted correctly.

For example, the program ANGSD (Korneliussen et al. 2014)

has the capability to output all ten genotype log-likelihoods in

a format readily acceptable by Referee. Note that although

ANGSD scales log-likelihoods by subtracting the highest score

from all scores, this has no effect on Referee’s calculations.

Referee’s Scoring System

Because the quality score calculated by Referee is a ratio of

probabilities, theoretically any score from negative to positive

infinity is possible. In practice, scores tend to be limited to a

range of �300 to þ300 and have a strong correlation with

read-depth (supplementary fig. S1, Supplementary Material

online). For practical reasons, Referee’s standard output limits

the scores to a range of 0–90. This means that any negative

score is converted to a score of 0, and any score above 90 is

converted to 90. This makes the scores easily interpretable on

a Phred-like scale and allows for conversion to ASCII charac-

ters for condensed FASTQ output.

There are several scenarios in which it is not possible to

calculate a quality score (table 1): In cases of very high read-

depth, with all or most reads supporting the called base, it is

possible that the sum of likelihoods for genotypes that do not

contain the reference base (Lmismatch) will be 0. In these cases

we are confident that the reference base is correct and assign

a score of 91. If the reference base is an N or if no reads have

mapped to the site we have no way of calculating QR; so we

assign scores of �1 and �2, respectively, to indicate our un-

certainty. In order to accommodate the �1 and �2 scores,

quality scores are output as ASCII characters corresponding to

QR þ 35 (note that this scaling differs slightly from the stan-

dard Phred conversion).

Results

Referee is implemented entirely in Python, compatible with

versions 2.7 and above and is freely available (https://gwct.

github.io/referee/). Referee takes as input a single reference

FASTA file representing the reference assembly and either pre-

calculated genotype log-likelihoods or a pileup file from which

it can calculate genotype likelihoods. Referee will output quality

scores for every position in the input FASTA in either a simple

tab delimited format (akin to the pileup) or in FASTQ format,

with quality scores being converted to ASCII characters. Referee

can also output quality scores in BED format, which can be

used for visualizing tracks of scores in most genome browsers.

Figure 1 shows a 100-kb stretch of Referee quality scores on

chromosome 19 of the baboon genome (papAnu v2.0) in the

UCSC Genome Browser (Kent et al. 2002).

Referee is intended for use on assemblies of any size, and

from any technology that provides reads with base quality

Table 1

Referee Score Special Cases

Scenario QR Score

Lmismatch ¼ 0 91

Reference base called as N �1

No reads mapped to site �2

FIG. 1—Reference quality scores visualized for a 100,000bp stretch of chromosome 19 in the baboon genome (Papio anubis v2.0) on the UCSC

Genome Browser (http://genome.ucsc.edu).
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scores (e.g., Illumina or Oxford Nanopore). To make it scalable

with even the largest of today’s sequenced genomes, Referee

is designed to use multiple processes without a large memory

footprint. We tested the performance of Referee on two data

sets: a transcriptome assembly from Jaltomata sinuosa (Wu

et al. 2018) using Illumina RNA-seq reads (SRA accession

SRX2676125) and a genome assembly from the baboon,

Papio anubis (GCF_000264685.2) using only the Illumina

paired-end reads that were used in the assembly process

(SRA accessions: SRR927653, SRR927654, SRR927655,

SRR927656, SRR927657, SRR927658, SRR927659). Test

runs were done on Indiana University’s Carbonate computer

cluster (Red Hat Enterprise 7.x with 256 GB of RAM and two

12-core Intel Xeon E5-2680 v3 CPUs). For J. sinuosa the reads

were assembled with Trinity (Grabherr et al. 2011) and for

both species reads were mapped back to their respective as-

semblies with BWA (Li and Durbin 2009). We find that for the

J. sinuosa transcriptome, even when utilizing only one pro-

cess, Referee completes in 20 min with precalculated geno-

type likelihoods. Unsurprisingly, calculating the likelihoods is

detrimental to run time, raising it to 2.73 h, but allocating

additional processes more than makes up for this time loss

(fig. 2A). For the much larger baboon genome data set we

observe a run time of 18 h when using precalculated geno-

type likelihoods. Again this is drastically reduced to 1.6 h

when using multiple processes (fig. 2A). Memory usage never

exceeds 1 GB (fig. 2B). This makes Referee widely usable re-

gardless of operating system.

Conclusions

The wide-ranging applicability of genome assemblies in

modern biological research means their accuracy is of ut-

most importance in order to reach unambiguous conclu-

sions. Evolutionary inferences into species relationships and

the targets of positive selection depend on this accuracy.

Referee adds a simple step between the assembly and anal-

ysis of a genome to improve the assembly for all purposes.

By accounting for the underlying base quality in the reads

and the diploid nature of most genome assemblies,

Referee’s scores can be used to inform researchers of sites

to filter from their analyses or of better scoring alternate

bases. This is accomplished through a fast and easy to use

software package: https://gwct.github.io/referee/.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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