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Skin blisters of pemphigus foliaceus (PF) present concomitant deposition of autoanti-
bodies and components of the complement system (CS), whose gene polymorphisms 
are associated with susceptibility to different autoimmune diseases. To investigate these 
in PF, we evaluated 992 single-nucleotide polymorphisms (SNPs) of 44 CS genes, 
genotyped through microarray hybridization in 229 PF patients and 194 controls. After 
excluding SNPs with minor allele frequency <1%, out of Hardy–Weinberg equilibrium 
in controls or in strong linkage disequilibrium (r2 ≥ 0.8), 201 SNPs remained for logistic 
regression. Polymorphisms of 11 genes were associated with PF. MASP1 encodes 
a crucial serine protease of the lectin pathway (rs13094773: OR = 0.5, p = 0.0316; 
rs850309: OR  =  0.23, p  =  0.03; rs3864098: OR  =  1.53, p  =  0.0383; rs698104: 
OR = 1.52, p = 0.0424; rs72549154: OR = 0.55, p = 0.0453). C9 (rs187875: OR = 1.46, 
p = 0.0189; rs700218: OR = 0.12, p = 0.0471) and C8A (rs11206934: OR = 4.02, 
p  =  0.0323) encode proteins of the membrane attack complex (MAC) and C5AR1 
(rs10404456: OR = 1.43, p = 0.0155), a potent anaphylatoxin-receptor. Two encode 
complement regulators: MAC-blocking CD59 (rs1047581: OR = 0.62, p = 0.0152) and 
alternative pathway-blocking CFH (rs34388368: OR = 2.57, p = 0.0195). One encodes 
opsonin: C3 (rs4807895: OR = 2.52, p = 0.0239), whereas four encode receptors for C3 
fragments: CR1 (haplotype with rs6656401: OR = 1.37, p = 0.0382), CR2 (rs2182911: 
OR = 0.23, p = 0.0263), ITGAM (CR3, rs12928810: OR = 0.66, p = 0.0435), and ITGAX 
(CR4, rs11574637: OR = 0.63, p = 0.0056). Associations reinforced former findings, 
regarding differential gene expression, serum levels, C3, and MAC deposition on lesions. 
Deregulation of previously barely noticed processes, e.g., the lectin and alternative path-
ways and opsonization-mediated phagocytosis, also modulate PF susceptibility. The 
results open new crucial avenues for understanding disease etiology and may improve 
PF treatment through additional therapeutic targets.

Keywords: pemphigus foliaceus, complement, lectin pathway, acantholysis, membrane attack complex, 
alternative pathway, opsonin, complement receptors
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iNtrODUctiON

Pemphigus are blistering autoimmune diseases causing painful 
bullous lesions, resulting from keratinocyte detachment (acan-
tholysis), through the loss of desmosomes (1). In pemphigus 
foliaceus (PF), they occur in the superficial granular layer, 
affecting the skin. Yet in pemphigus vulgaris (PV), they locate in 
suprabasal stratum, also damaging mucosa. Lesions’ localization 
correlate with tissue distribution of the main antigens: desmo-
glein 1 (DSG1) in PF and DSG3 in PV (2). Non-lesional skin may 
present blisters in the subgranular spinous layer, when submitted 
to mechanical friction (Nikolsky’s sign) (3). Epithelial PF lesions 
may be restricted to sun-exposed seborrheic trunk and head 
areas (localized form) or be ubiquitously distributed (generalized 
form) (4, 5).

PF—An epidemiological and 
etiopathological Puzzle
Pemphigus occurs sporadically around the world, with incidence 
of 0.75–5 cases/million per year (6, 7). Despite this, PF is the only 
autoimmune disease known to be endemic in certain regions, 
as South America and Tunisia (5, 8), but epidemiology is puz-
zling, exhibiting wide differences even in neighboring countries. 
Midwestern Brazilian Amerindian populations actually present 
prevalences as high as 3.04% (9, 10). There is no sexual dispro-
portion for PF in Brazil; most patients are young (10–40 years 
old) and have affected relatives. In Colombia, PF affects male 
mine workers and post-menopausal women (11), whereas young 
women are predominantly affected in Tunisia (9 female:1 male) 
(8). Endemic and non-endemic PF are indistinguishable (12), 
with the exception of higher anti-DSG1 IgM and IgE serum levels 
in endemic PF (13–15).

The epidemiological puzzle adds to the lack of understand-
ing regarding PF etiology, since postulated major causes differ 
among countries (11). Brazilian PF patients are usually rural 
low-wage workers (4), exposed to acantholysis-fostering factors 
such as UVB (16), thiol and other calcium-sequestering com-
ponents (11). Most present frequent bites of black (Simuliidae) 
and sand flies (Phlebotominae), vectors of onchocerciasis and 
leishmaniasis, respectively. Bites were suggested to increase 
up to almost five times the susceptibility to PF (17, 18), and 
components of the fly saliva may trigger a cross-reaction against 
keratinocyte surface epitopes (19). Viral or bacterial etiology was 
also suggested (5, 11). Genetic susceptibility involves differential 
gene expression (20, 21), variants in genes encoding antigen-
presenting molecules HLA-DR and HLA-DQ (22, 23) and 
their corresponding regulatory transcription factor CIITA (24). 
Several other associations with genes of the immune response 
have been reported (25–31).

Pemphigus foliaceus patients have higher serum immuno-
globulin G (IgG) levels against desmocollins 1 and 2 and all four 
desmogleins (32). Most pathogenic antibodies, able to induce 
acantholysis in vitro and in vivo (33–35), are of the IgG4 subclass 
(36–38), directed against the DSG1 N-terminal ectodomains  
(39, 40). Anti-DSG1 IgG1 are common in asymptomatic individu-
als of endemic regions, but can be the only pathogenic antibodies 
in a subset of PF patients (19). In contrast to IgG4, they initiate 

the classical pathway of the complement system (CS). This agrees 
with the frequent concomitant deposition of antibodies and CS 
components in PF lesions (41–45). Administration of corticoster-
oids is crucial to achieve disease control in the acute stage. Due 
to numerous and severe side effects, pemphigus patients are in 
desperate need of new, specifically targeted therapeutic strategies 
to substitute common therapy [reviewed in Ref. (46)].

PF and complement: A controversial 
issue
Complement includes more than 50 plasma and membrane-
bound proteins working in the forefront of host defense, killing 
pathogens and altered cells, and connecting innate to adaptive 
immune responses. Classical activation begins with the rec-
ognition of IgG or IgM, molecules on microbial and apoptotic 
cells, and C-reactive protein (CRP) by the C1 complex (C1q 
complexed with serine proteases C1r and C1s). The alternative 
activation pathway unleashes by spontaneous proteolysis of 
component C3. The lectin pathway follows recognition of sugar 
moieties or acetylated residues by colectins (as mannose-binding 
lectin—MBL) or ficolins (FCNs), respectively, complexed with 
another set of serine proteases (MASP-1 and MASP-2) (47, 48). 
All pathways converge in the formation of C3 convertase, which 
produces opsonic fragments that enhance antigen clearance 
by phagocytosis. C3b opsonin may be incorporated in the C5 
convertase, which leads to the release of C5a anaphylatoxins and 
to pores opening on target cells, by insertion of the membrane 
attack complex (C5b-9 complex or MAC). Recognition of CS 
fragments leads to phagocytosis or blockage of the cascade, which 
is constantly activated at low levels, being continuously controlled 
to avoid tissue damage. Far beyond these well-known roles, CS 
also accomplishes critical functions in regulating inflammation, 
nervous system development and maturation, coagulation and 
hemostasis (49, 50).

In a series of five 1980s articles, entitled “Complement fixation 
by pemphigus antibody,” the Jordon’s group chased the hypothesis 
that complement has an important role in PV blister formation 
(51–55). They were closely followed by others who argued the 
same for PF. Strong granular C3 deposition was repeatedly 
reported along the basement membrane zone and in intercellular 
spaces of the epidermal strata (41–45). C3 was also reported to 
colocalize with IgG1 deposits in the upper epidermis intercellular 
spaces, in intact as well as injured skin, with a trend for higher 
deposits in perilesional tissue (42, 43, 45, 56). In fact, C1q and 
C4 fragments (reported in one patient), and MAC deposits 
distinguish injured skin, since IgG4 also occurs abundantly in 
non-acantholytic tissue (42, 43). In cell culture, complement does 
not seem necessary for acantholysis, but enhances keratinocyte 
detachment (55, 57).

Serum levels of C3 and CRP (opsonins), Ba and C4d factors 
(indicative of activated alternative and classical/lectin pathways, 
respectively), are increased in PF patients with active disease 
(58–60). CD4+ T cells of PF patients present upregulated C1QA 
gene expression, compared to controls (20). Protein levels and 
C1QA expression fall with therapeutic intervention (20, 59, 60). 
By contrast, anti-DSG1 IgG levels remain high during disease 
remission (61, 62). MASP-2 levels tend to decline in PF patients, 
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but MBL serum concentrations seem unaffected (63). In PV 
biopsies, MBL and FCN2, but not C1q nor FCN3, recognize 
antigens in the basal membrane zone and intercellular spaces of 
the epidermis (64).

Nevertheless, C5-deficient mice or complement-depleted mice 
(after inoculation with cobra venom factor) develop the disease 
when injected with non-endemic PF IgG4 or its F(ab′)2 frag-
ments (65). Both models did not affect C3 upstream components 
of the classical and lectin pathways, meaning that any roles played 
by these initiator molecules in the acantholytic process were not 
appreciated. In addition, the abundant but non-pathogenic anti-
DSG1 human IgG1 does not cross-react with murine epidermis 
(66). By contrast, anti-DSG3 autoantibodies of PF patients, with 
cutaneous disease only, induce PV-like lesions in mice (67). 
Conversely, anti-DSG1 autoantibodies of PV patients without 
superficial epithelial lesions induce PF-like lesions (68). Adding 
to this picture, DSG expression pattern greatly differs between 
human and mouse (69) and differences in the genetic back-
ground of mouse models, which may deliver completely different 
outcomes for cutaneous inflammation, were not accounted for 
(70). Thus, although the mouse model reproduces acantholysis, 
it cannot reproduce the natural history of the disease itself, and 
pathological mechanisms may be quite different. For example, 
murine lesions present apoptotic cells (71), an uncommon find-
ing in human biopsies (3, 72–74), with one reported exception 
(75). These results undeniably places complement in the disease, 
but its possible roles are still an issue to be solved.

GeNetic AssOciAtiON BetWeeN 
cOMPLeMeNt GeNes AND PF

In the late 90s, the observations from experimental models 
seemed to have settled the interest on the role of complement 
in pemphigus. Nevertheless, tissue damage and inflammation, 
through over-activation and/or deficiency of complement 
components, play a key role in many dermatological diseases 
(76). These host-offensive actions may be exacerbated by genetic 
variation (77), but the extensive polymorphism of complement 
components impairs the comprehension of their overall impact 
in any given disease. In addition to the great genetic variation, the 
pleiotropic effects observed for complement genes add another 
layer of complexity.

Knowing that genetic associations may reveal new elements 
that play pivotal roles in disease susceptibility, we intend to 
reignite this discussion with new results of a PF case–control 
study that encompass tag polymorphisms within CS genes 
(Table S1 in Supplementary Material). We analyzed 992 single-
nucleotide polymorphisms (SNPs) distributed within 44 genes, 
out of a subset of 551,839 SNPs genotyped in 229 endemic PF 
patients and 194 controls, through microarray hybridization 
(CoreExome-24 v1.1 Illumina). Included patients presented con-
firmed clinical PF diagnosis, according to physical examination 
and immunohistochemistry results. Controls were individuals 
of the endemic region, with no diagnosis or familial history of 
autoimmune diseases and unrelated to the patients. This study 
was carried out in accordance with the recommendations of 

the guidelines of the Conselho Nacional de Ética em Pesquisa 
(CONEP) with written informed consent from all subjects. All 
subjects gave written informed consent in accordance with the 
Declaration of Helsinki. The protocol was approved by CONEP 
(number 505.988). The statistical analyses were done with 
PLINK v1.1.9 (78). After excluding those SNPs with minor allele 
frequencies >1%, genotypic distributions deviating from those 
expected by Hardy–Weinberg equilibrium in controls (p < 0.05) 
and high linkage disequilibrium (r2 ≥ 0.8), 201 SNPs remained for 
subsequent analyses. For haplotypic analysis, 35 additional SNPs 
with r2 > 0.8 were included. Association analysis was carried out 
by binary logistic regression, using two principal components 
(PCA) as covariables, which efficiently eliminates spurious asso-
ciations due to ethnical differences. Thus, significance level was 
set to p = 0.05. Rather than exhausting the debate, our purpose 
is to launch new hypotheses that could be further validated  
through functional studies, which will link the pathogenic role of 
the PF autoantibodies to CS underexplored arms.

tHe LONG KNOWN versUs tHe 
UNeXPecteD: cOMPLeMeNt iN PF

We found evidence of association with gene variants of almost 
all complement elements previously detected in the epidermis 
or with altered serum levels in PF patients (Table 1; Figure 1). 
Among them, homozygotes for the intronic rs4807895*T 
allele within the C3 gene were more susceptible to the disease 
(OR =  2.52; p =  0.0239). C3 fragments have been consistently 
reported in PF lesions (41–45, 56, 79, 80) and necessarily result 
from the activation of proteolytic cascades that converge in its 
enzymatic cleavage. Given the lack of functional evidence for 
this association, we speculate that it could be partly explained 
by increased C3 gene regulation. This would not only increase 
phagocytosis and MAC deposition, but also T cell-mediated skin 
inflammation, as reported in other autoimmune diseases (81, 82).

Among the pathways held responsible for generating C3 frag-
ments, we found association with genetic variants within genes 
of the alternative and lectin pathways, but not with the classical 
pathway. This agrees with the almost complete absence of C1q 
in human biopsies (42, 64). It also argues against the traditional 
hypothesis that activation of the classical pathway by anti-DSG1 
IgG1 would play an important role in PF (42, 52, 85). In fact, the 
most abundant pathogenic IgG subclass in pemphigus is IgG4, 
which is unable to activate complement (33, 34).

Regarding the alternative pathway, we found a surprising 
genetic association with factor H, its most important regulator. 
Homozygotes for CFH rs34388368*T, an intronic allele associ-
ated with higher CFH mRNA levels in the hypodermis (83), were 
more susceptible to PF (OR =  2.57; p =  0.0195). These results 
contradict the conception that uncontrolled complement activa-
tion would be one of the underlying causes of PF.

We also found association between PF and five MASP1 
polymorphisms, four of them associated with differential 
mRNA levels in sun-exposed skin and/or in the hypodermis 
(83). They can potentially interfere with alternative pre-mRNA 
splicing, which generates three MASP1 products—the collectin/
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tABLe 1 | Complement gene variants associated with PF.

Gene sNP eQtL Direction MAF (%) Model contr Pat Or 95 % ci p

ib contr Pat

C3 rs4807895 – – 30.8 25.26 29.04 add 98/290 133/325 1.26 [0.93–1.72] 0.1377
19p13.3 t>C rec 9/185 23/206 2.52 [1.13–5.62] 0.0239

Intron 11 dom 89/105 110/119 1.14 [0.77–1.67] 0.5177

C5AR1 rs10404456 3.2 × 10–5*a Down 25.2 31.87 40.67 add 123/263 183/267 1.43 [1.07–1.90] 0.0155
19q13.32 c>T rec 20/173 38/187 1.67 [0.93–3.00] 0.0836

5′ UTR dom 103/90 145/80 1.55 [1.04–2.30] 0.0299

C8A rs11206934 – – 22 17.62 19.38 add 68/318 88/366 1.15 [0.81–1.63] 0.4228
1p32.2 T>c rec 3/190 13/214 4.02 [1.12–14.3] 0.0323

Intron 10 dom 65/128 75/152 1.00 [0.66–1.51] 0.993

C9 rs700218 – – 0.9 2.10 0.21 add 8/380 1/457 0.12 [0.01–0.97] 0.0471
5p13.1 G>t rec 0/194 0/229 – – –

Intron 1 dom 8/186 1/228 0.12 [0.01–0.97] 0.0471

rs187875 6.5 × 10−6b Up 31.8 23.26 30 add 87/287 132/308 1.46 [1.06–2.01] 0.0189
C>t rec 10/177 23/197 2.13 [0.98–4.64] 0.0556
Intron 6 dom 77/110 109/111 1.49 [1.00–2.23] 0.0509

CD59 rs1047581 7.3 × 10−9a Down 40.2 31.19 23.8 add 121/267 109/349 0.72 [0.52–0.98] 0.0373
11p13 A>g rec 16/178 15/214 0.87 [0.41–1.83] 0.7166

3′ UTR dom 105/89 94/135 0.62 [0.42–0.91] 0.0152

CFH rs34388368 7.1 × 10−7b Up 22.4 27.13 29.68 add 102/274 130/308 1.11 [0.81–1.50] 0.5185
1q31.3 G>t rec 9/179 25/194 2.57 [1.16–5.66] 0.0195

Intron 1 add 93/95 105/114 0.90 [0.61–1.34] 0.6075

CR2 rs2182911 – – 18.2 19.85 18.72 add 77/311 85/369 0.93 [0.65–1.32] 0.6813
1q32.2 c>T rec 11/183 3/224 0.23 [0.06–0.84] 0.0263

Intron 19 dom 66/128 82/145 1.09 [0.73–1.64] 0.6644

ITGAM rs12928810 – – 25.9 23.7 19.56 add 91/293 88/362 0.74 [0.53–1.03] 0.0735
16p11.2 G>a rec 76/150 12/213 0.84 [0.36–1.98] 0.693

Intron 14 dom 80/112 76/149 0.66 [0.44–0.99] 0.0435

ITGAX rs11574637 – – 22.9 28.09 20 add 109/279 90/360 0.63 [0.45–0.87] 0.0056
16p11.2 T>c rec 14/180 10/215 0.55 [0.23–-1.29] 0.1698

Exon 4 dom 95/99 80/145 0.57 [0.39–0.85] 0.0058

MASP1 rs13094773 4.6 × 10−8a Down 35 34.9 30.22 add 134/250 136/314 0.82 [0.61–1.09] 0.1747
3q27.3 A>g rec 28/164 18/207 0.50 [0.27–0.94] 0.0316

Intron 1 dom 106/86 118/107 0.91 [0.62–1.35] 0.6479

rs3864098 3.5 × 10−8a Up 15 17.53 22.22 add 68/320 102/356 1.34 [0.94–1.92] 0.1066
T>c rec 7/187 6/223 0.68 [0.22–2.09] 0.5043
Intron 2 dom 61/133 96/133 1.53 [1.02–2.29] 0.0383

rs698104 2.2 × 10−10a Up 14 20.62 26.86 add 80/308 123/335 1.36 [0.96–1.90] 0.0787
t>C rec 9/185 13/216 1.08 [0.44–2.62] 0.8698
Intron 2 dom 71/123 110/119 1.52 [1.01–2.26] 0.0424

rs850309 1.1 × 10−18b Up 19.2 20.68 21.78 add 79/303 98/352 1.06 [0.74–1.50] 0.7596
A>g rec 10/181 3/222 0.23 [0.06–0.87] 0.03
Intron 3 dom 69/122 95/130 1.27 [0.85–1.90] 0.2357

rs72549154 – – 2.8 7.51 4.64 add 29/357 21/431 0.55 [0.31–0.99] 0.0453
G>t rec 3/190 0/226 – – –
Exon 12 dom 26/167 21/205 0.60 [0.32–1.12] 0.1119

Logistic regression association tests were done with allele frequencies (“add”), frequency of homozygotes for the minor allele (“rec”—recessive model), and summed frequency of 
heterozygotes and homozygotes for the minor allele (“dom”—dominant model). The minor allele is given in lowercase.
In bold: significant results; SNP, single-nucleotide polymorphism; eQTL, expression quantitative trait loci (83).
aIn skin.
bIn hypodermis, direction: increase or decrease of RNA expression in relation the MAF.
MAF, minor allele frequency; Ib, Iberian population (84); Contr, controls; Pat, patients, Model, association tests; OR, odds ratio; CI, confidence interval; PF, pemphigus foliaceus.
ENSEMBL 2018 http://www.ensembl.org/index.html, GTEx portal—https://www.gtexportal.org/home/.
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ficolin-associated serine proteases 1 and 3 (MASP-1 and MASP-3)  
and the truncated non-catalytic MAp44 (also called MAp1, 
only expressed in cardiac tissue). These products play important 

roles in competitive activation and blockage of the lectin and 
alternative pathways, intracellular signaling, coagulation, and 
bradykinin/kinin systems (86). In our setting, homozygotes for 

http://www.ensembl.org/index.html
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FiGUre 1 | Complement in non-lesioned and acantholytic PF lesions. (A) IgG1 and IgG4 autoantibodies binding to desmosomes causes shrinkage of 
keratinocytes, increasing intercellular spaces. This process is fostered by activation of the p38 MAPK signaling cascade, which may be unleashed by MASP-1, the 
serine protease associated with initiating molecules of the lectin pathway. (B) This is further accompanied by the release of antigens, most probably recognized by 
MBL or ficolins, leading to granular deposition of C3 fragments in the basal lamina. These deposits, as well as deposits of C3 fragments in the intercellular spaces, 
may also be caused by activation of the alternative pathway, inhibited by CFH. (c) Complement receptors recognize C3 fragments, leading to phagocytosis of 
autoantigens and increasing antigen presentation to T lymphocytes, thus feedbacking and diversifying autoantibody production. (D) Acantholytic lesions present 
formation of the membrane attack complex (blocked by CD59 expression), which may protect cells against apoptosis, if present in sublytic amounts. Active disease 
is also followed by increased C5a release, the latter recognized by C5A receptors in dendritic cells. MBL, mannose-binding lectin; MASP-1, mannose-binding lectin 
serine protease 1; MASP-2, mannose-binding lectin serine protease 2; MAC, membrane attack complex; IgG4, immunoglobulin 4; IgG1, immunoglobulin 1; DSM 
(DSG1), desmosome (desmoglein 1); C3, complement component 3; CR1, complement receptor type 1; CR2, complement receptor type 2; CR3, complement 
receptor type 3; CR4, complement receptor type 4; CFH, complement factor H; DC, dendritic cell; LC, Langerhans cell; PF, pemphigus foliaceus. Source: the 
author (2018).
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rs13094773*G and rs850309*G (within an intronic region recog-
nized by multiple regulatory proteins) (87) were more protected 
against PF (OR = 0.5; p = 0.0316 and OR = 0.23; p = 0.03, respec-
tively). Yet individuals with intronic rs3864098*C (OR  =  1.53; 
p =  0.0383) or rs698104*T (OR =  1.52; p =  0.0424) presented 
increased susceptibility to the disease. Of note, the rs3864098*C 
allele occurs in linkage disequilibrium with rs710469*C, an allele 
associated with lower MASP-3 levels in pre-admission critically 
ill children (88) (Table S2 in Supplementary Material). Finally, 
we found a protective association (OR = 0.55; p = 0.0453) with a 
missense variant affecting exclusively the serine protease domain 
of MASP-3 (rs72549154*T in exon 12, encoding p.Arg576Met). 
Heterozygotes for rs72549154*T present proportionally increased 
MASP-3 and decreased MASP-1 serum levels (89). Co-occurring 
MASP1 alleles increase susceptibility to PF (not necessarily within 
the same haplotype): rs13094773*A combined with rs3864098*C 
(OR = 2.51 [95% CI = 1.26–4.97], p = 0.0063), rs13094773*A, 
and rs698104*T (OR = 2.37 [95% CI = 1.22–4.59], p = 0.0074) 
and between rs3864098*C and rs698104*T (OR  =  1.67 [95% 
CI = 1.09–2.55], p = 0.0141). All the three variants are associated 
with higher MASP1 levels (83). Thus, it is conceivable that higher 
MASP-1 levels contribute to PF, while higher MASP-3 levels are 

protective. From the physiological point of view, altered MASP-1 
levels would affect activation of the lectin pathway, which relies 
entirely on MASP-1 autoactivation (90). Additionally, MASP-1 
activates MASP-3, which cleaves pro-factor D and launches 
the alternative complement cascade under non-inflammatory 
conditions (91). It further activates the p38 MAPK pathway in 
endothelial cells, which leads to IL-8 secretion and neutrophil 
recruitment (92, 93), both reported to occur in different forms 
of pemphigus (94–96). Most importantly, activation of the p38 
MAPK signaling cascade causes acantholysis in keratinocytes 
and may be initiated by MASP-1 as well (97, 98).

Genetic variants of MAC components were also associated with 
PF. Homozygotes for the less common C8A allele rs11206934*C 
(OR = 4.02; p = 0.0323) in intron 10 and individuals with a C9 
haplotype harboring intronic variants consistently associated 
with increased gene expression in hypodermis and mucosa—
rs187875*T (which disrupts a methylated CpG) (87) presented 
higher susceptibility to PF (Table S2 in Supplementary Material). 
By contrast, individuals with rs700218*A (intron 1 of C9) were 
more protected (OR = 0.12; p = 0.0471). We found no associa-
tion with C5 polymorphisms, as reported by others (who inves-
tigated only one SNP) (99). Nevertheless, individuals with the 
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rs10404456*C allele (located in the 5′ UTR of the C5AR1 gene and 
associated with decreased mRNA levels in sun-exposed skin) (83) 
presented increased susceptibility to PF (OR = 1.43 p = 0.0155). 
This gene encodes the major receptor for C5a anaphylatoxin (49) 
and its deficiency has been rather associated with protection 
against several immune complex-mediated diseases, including 
epidermolysis bullosa acquisita (70, 100).

Keratinocytes may keep MAC formation at sublytic levels, 
eliciting pro-survival signal transduction, hence inhibiting apop-
tosis—instead of promoting cell destruction (101). This may be 
achieved by expressing low CD59 levels, MAC’s most important 
inhibitor. In fact, rs1047581*G in the 3′UTR region of the CD59 
gene, associated with reduced mRNA levels in sun-exposed skin 
(83), protected against PF (OR = 0.62; p = 0.0152). This result 
agrees with a recent study of our group, where the alternative 
allele of this same polymorphism occurs within a haplotype 
increasing CD59 mRNA expression and PF susceptibility (32).

Among complement main roles, the removal of immune 
complexes and cellular debris is of critical importance for 
autoimmunity prevention (70). Within the context of the other 
associations, we suggest that protection may be explained 
by higher scavenging efficiency of acantholytic cell debris. 
Furthermore, we found associations with four opsonin-binding 
complement receptors (CR1-4, encoded by CR1, CR2, ITGAM, 
and ITGAX). Interestingly, we found a susceptibility association 
with a CR1 haplotype that includes the major rs6656401*G 
allele (Table S2 in Supplementary Material), also associated 
with protection against Alzheimer’s disease (102). The binding 
of CR2 to iC3b, C3dg, and C3d lowers the threshold for B cell 
activation (103) and homozygotes for rs2182911*C of the CR2 
gene were more protected against the disease (OR  =  0.23; 
p = 0.0263). The products of ITGAM (CR3) and ITGAX (CR4) 
genes recognize iC3b (48). Individuals with the rs12928810*A 
(disrupts a CpG in intron 14 of ITGAM) or rs11574637*C  
(a missense variant—p.Phe180Leu—in exon 4 of ITGAX) were 
more resistant against PF (OR = 0.66; p = 0.0435 and OR = 0.63; 
p  =  0.0056, respectively). Remarkably, the same ITGAX allele 
was associated with higher susceptibility to IgA nephropathy 
and systemic lupus erythematosus (104, 105). The rs11574637*C 
(ITGAX) and rs4807895*T (C3) combined are protective against 
PF (OR  =  0.55 [95% CI  =  0.32–0.95], p  =  0.0276). The same 
occurs with the rs11574637*C (ITGAX) and the rs12928810*A 
(ITGAM) (OR  =  0.59 [95% CI  =  0.38–0.90], p  =  0.0115). By 
contrast, individuals presenting both the rs10404456*C (C5AR1) 
and rs12928810*G/G (ITGAM) are more susceptible to PF 
(OR =  2.33 [95% CI =  1.27–4.28], p =  0.0035), as were those 
with rs10404456*C (C5AR1) and rs11574637*T/T (ITGAX) 
(OR  =  2.64 [95% CI  =  1.49–4.66], p  =  0.0006). In a previous 
study of our group, the mRNA expression levels of ITGAM 
were increased in CD4+ T cells of PF patients with generalized 
lesions, whereas ITGAX mRNA expression decreased after 
treatment (20).

PersPectives

Complement gene associations reinforced the findings of for-
mer studies, regarding the alternative pathway, C3 and MAC 

deposition on epidermal cells. Our results shed light on previ-
ously barely noticed processes, notably CS-mediated signaling, 
especially by MASP-1, and removal of opsonized elements, 
through complement receptors. The role of antigen-presenting 
phagocytes bearing CR1, CR2, CR3, and CR4, as dendritic and 
Langerhans cells, should be deeper investigated, since they prob-
ably exert crucial roles in the events preceding B cell activation 
and autoantibody production. Furthermore, lectin and alterna-
tive pathways, activated at low levels, are probably important to 
prevent the disease. Taken together, the results on these pathways 
lead us to suggest caution on the possible use of the two available 
complement-inhibiting drugs, able to prevent classical/lectin 
pathway initiation (C1INH) and MAC generation (Eculizumab), 
since complement activation appears desirable to PF prevention. 
Strong evidence for MASP1 association, but not for MASP2 or 
other genes of the lectin pathway, favor a pathogenic role carried 
out by MASP-1 in eliciting p38MAPK signaling and consequent 
DSG1 clustering on the keratinocyte cell membrane. Functional 
validation of the pathogenic roles exerted by this wide-reaching 
network of complement components will open new windows to 
understand PF etiology and development, hopefully improving 
therapeutic interventions.
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