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Abstract

In ruminants, Interferon tau (IFNT) is the pregnancy recognition protein produced by the

mononuclear trophectoderm of the conceptus, and is secreted into the uterine lumen during

the peri-attachment period. In our previous study, the high-throughput RNA sequencing

(RNA-seq) data obtained from bovine conceptuses during the peri-attachment period identi-

fied two IFNT mRNAs, IFNT2 and IFNTc1. However, how each of these IFNT variants regu-

lates endometrial gene expression has not been characterized. Using RNA-seq analysis,

we evaluated how IFNT2 and IFNTc1 affected transcript expression in primary bovine endo-

metrial epithelial cells (EECs). IFNT treatment induced 348 differentially expressed genes

(DEGs); however, there are few DEGs in IFNT2 or IFNTc1 treated EECs, indicating that

IFNT2-induced DEGs were similar to those induced by IFNTc1 treatment. In in silico analy-

sis, we identified four IFNT2- and IFNTc1-induced pathways: 1) type II interferon signaling,

2) proteasome degradation, 3) type III interferon signaling, and 4) DNA damage response.

We further demonstrated that IFNT2 and IFNTc1 up-regulated several transcription factors,

among which forkhead box S1 (FOXS1) was identified as the most highly expressed gene.

Furthermore, the knockdown of FOXS1 in IFNT2- or IFNTc1-treated EECs similarly down-

regulated 9 genes including IRF3 and IRF9, and up-regulated 9 genes including STAT1,

STAT2, and IRF8. These represent the first demonstration that effects of each IFNT on

EECs were studied, and suggest that endometrial response as well as signaling mecha-

nisms were similar between two IFNT variants existed in utero.

Introduction

Interferon tau (IFNT), classified as a type I IFN along with IFN alpha, IFN beta and IFN

omega, is the pregnancy recognition protein in all ruminants [1]. IFNT, produced by the

mononuclear trophectoderm of the conceptus, is secreted into the uterine lumen during the

peri-attachment period [1, 2], although a few studies indicate that IFNT is detected in uterine

vein serum [3, 4]. IFNT down-regulates the expression of endometrial oxytocin receptors and
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then maintains the corpus luteum function via inhibition of the luteolytic pulse of endometrial

prostaglandin F2α [5–7]. Bovine IFNT increases on day 15 of pregnancy (day 0 = day of

estrus), peaks on days 19–20 (conceptus attachment to endometrium begins on days 19–19.5),

and is decreased soon after the initiation of conceptus attachment to the uterine epithelium

[8–11].

To determine the number of IFNT genes expressed in the bovine uterus, several studies

with the use of PCR have previously been executed [12, 13]. We also utilized the high-through-

put RNA sequencing (RNA-seq) analysis, identifying two IFNT transcripts, IFNT2 and

IFNTc1, in RNAs obtained from pregnant days 17, 20, and 22 bovine conceptuses [9, 14]. In

addition, we showed that IFNT2 expression in utero was five-fold higher than that of IFNTc1
[9]. Over the past decade, various global analyses were performed to study the expression of

transcripts in bovine endometrium [15–20]. These observations found changes in dynamic

gene expression in pregnant and cyclic endometria, and identified optimal transcript and/or

protein expression in utero for maintaining pregnancy at several stages in early pregnancy. In

addition, those studies demonstrated the effects of IFNT and/or progesterone on differentially

expressed genes in bovine endometrium. In the previous studies [12, 13], IFNT variants identi-

fied were subjected to assays of antiviral or anti-luteolytic activity; however, how each of those

IFNT variants affects endometrial gene expression has not been characterized.

Our previous studies showed that the upstream region of IFNTc1 gene did not possess the

JUN-binding site found in the IFNT2 gene, and TEAD2 increased transcriptional activity of

IFNT2 only, resulting in the differential expression between IFNT2 and IFNTc1 in in vitro and

possibly in vivo [21, 22]. In addition, both IFNT2 and IFNTc1 up-regulated IFN-stimulated

genes (ISGs), including ISG12, ISG15, or MX dynamin-like GTPase (MX)1, while only

IFNTc1 up-regulated the expression of MX2 in bovine endometrial epithelial cells [23]. We

therefore hypothesized that effects of IFNT2 and IFNTc1 differ in the bovine endometrium. In

this study, we evaluated how IFNT2 and IFNTc1 affected primary bovine endometrial epithe-

lial cells using RNA-seq, followed by quantitative PCR analysis.

Materials and methods

Cell preparation, culture condition

In this study, we did not perform any animal experiments. Bovine uterine endometrial epithe-

lial cells (EECs) were collected from Holstein cows at local abattoir (Tsuyama Meat Center) in

accordance with protocols approved by local institutional animal care [24], and the protocol

for bovine cell cultures was approved by the Ethics Committee of the University of Tokyo (Per-

mit Number: 449–2126). In brief, uteri of the early luteal phase (days 2 to 5) were used in this

study. The hysterectomized uterine lumen was trypsinized (0.3% w/v) in order to detach the

epithelial cells and then EECs were isolated. The isolated EECs were cultured on collagen type

I-coated culture dish in DMEM/F12 (1:1) medium supplemented with 10% (v/v) FBS, 40

units/ml of penicillin, and 40 μg/ml of streptomycin at 37˚C under 5% CO2 in humidified air

[11]. Human 293T cells (CRL-3216, ATCC) were grown in DMEM supplemented with 10%

(v/v) FBS and antibiotics at 37˚C in 5% CO2 [23].

Production and purification of recombinant IFNs

293T cells were transfected with the expression plasmid for IFNT2, IFNTc1 or IFNA [23] and

culture media were collected at 48–72 hours after transfection [23]. Recombinant IFNs

secreted to culture media from cells were purified using His-tagged protein purification

reagent (Medical and Biological Laboratories, Nagoya, Japan) according to the manufacturer’s
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instructions [23]. The titers of purified recombinant IFNT2, IFNTc1, and IFNA were deter-

mined by the assay using MDBK cells and VSV as previously reported [25].

RNA extraction and preparation for RNA-seq analysis

RNA was extracted from cultured EECs using Isogen (Nippon gene, Tokyo, Japan) according

to the manufacturer’s instructions. A portion of total RNA from cultured EECs treated with or

without IFNT2 or IFNTc1 (n = 3 each) was pooled. High-throughput sequencing libraries

were prepared using the SureSelect Strand Specific RNA Library Prep Kit (Agilent Technolo-

gies, Santa Clara, CA) according to the manufacturer’s instructions, and analysis was per-

formed by Kazusa DNA Research Institute (Chiba, Japan). Primary sequencing data were

deposited to the DDBJ (DNA Data Bank of Japan) Sequence Read Archive (accession number

DRA005460).

Mapping reads to the bovine genome

Nucleotide sequences identified by RNA-seq analysis were trimmed by PRINSEQ-lite v0.19.2.

Trimmed sequences were generated as FASTQ outputs and analyzed on the basis of the

TopHat/Cufflinks pipeline based on the bovine genome (bosTau8) and reference annotations

obtained from UCSC genome browser (http://genome.ucsc.edu). Differential and significant

gene expression analysis was performed with the use of gene-level FPKM (fragments per kilo-

base of gene locus summarized mRNA per million reads) expression levels. Genes were

selected with the criteria of an absolute expression level>10 FPKM in either IFNT2- or

IFNTc1-treated samples with at least 1.5-fold higher expression in IFNT2 or IFNTc1 than

non-treated EECs.

RNA extraction and quantitative RT-PCR

Using ISOGEN reagent (Nippon gene), total RNAs were extracted from cultured EECs treated

with IFNTs, which were performed three times independently. For real-time PCR analyses,

isolated RNA (total 0.5 μg) was reverse transcribed to cDNA using the ReverTra Ace qPCR RT

Kit (Toyobo, Osaka, Japan) according to the manufacturer’s instructions. The cDNA reaction

mixture was subjected to real-time PCR amplification using the Thunderbird SYBR qPCR Mix

Kit (Toyobo) with primers listed in S1 Table, and PCR amplification was carried out on a Step

One Plus real-time PCR System (Applied Biosystems, Foster City, CA). Amplification efficien-

cies of each target and the reference gene, bovine glyceraldehyde-3-phosphate dehydrogenase

(GAPDH), were examined through their calibration curves and found to be comparable. The

thermal profile for qPCR consisted of 40 cycles at 95˚C for 15 sec, and annealing and extension

at 60˚C for 60 sec. Average threshold (Ct) values for each target were determined by Sequence

Detection System software v2.2 (Applied Biosystems). Each run was completed with a melting

curve analysis to confirm the specificity of amplification and the absence of primer dimer [11].

Transfection of small interfering RNA

The nucleotide structures of FOXS1 small interfering RNAs (siRNAs) were designed through

the use of the siDirect program (RNAi, Tokyo, Japan), and all siRNAs were prepared commer-

cially (Sigma–Aldrich). The nucleotide sequences of bovine FOXS1 (NM_001099716.1) were

used to design the siRNA. EECs grown in 12-well plates were transfected with a nontargeting

control siRNA (Invitrogen), FOXS1 #1 (5’-ACUCAAAGAAGAACAUUCCUG-3’,5’-GGAAU
GUUCUUCUUUGAGUGA-3’),or FOXS1 #2 (5’-AUGAUGUAGCGGUAGAUGCCG-3’, 5’-G
CAUCUACCGCUACAUCAUGG-3’) siRNA (100 nM each) using Lipofectamine RNAiMAX
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reagent (3 μL, Invitrogen) according to the manufacturer’s instructions [22]. After the trans-

fection, medium was removed, and the cells were cultured in fresh medium for 24 h. The

EECs were treated with IFNT2 or IFNTc1. The concentrations for each siRNA were

predetermined.

Statistical analysis

Data are expressed as the mean ± SEM. Significance was assessed using the Dunnet compari-

sons test. A P-value< 0.05 was considered statistically significant.

Results

Differential gene expression between IFNT2- and IFNTc1-stimulated

endometrial epithelial cells

To investigate effects of IFNT2 and IFNTc1 on gene expression in EECs, RNA-seq analyses

were executed, detecting 348 differentially expressed genes (DEGs) among non- (Ctrl),

IFNT2- and IFNTc1-treatment groups (S2 Table). The venn diagram shows the number of

genes with 1.5-fold changes among these groups, and the right table lists increased or

decreased genes in IFNT2 vs. IFNTc1 group, which overlap with Ctrl vs. IFNT2 or Ctrl vs.

IFNTc1 group (Fig 1A). Although RNA-seq analysis found that 12 gene expressions were

increased or decreased, qPCR did not detect changes in those gene expressions (Fig 1B). A

pair plot comparison of IFNT2 and IFNTc1 treatments showed that there were very few

DEGs, which were confirmed with high degree of correlation coefficient, 0.99 (Fig 1C). These

results indicated that IFNT2-induced DEGs were similar to those of IFNTc1 treatment in

EECs.

Increased DEGs from RNA-seq were then analyzed using the GO term (Enrichr; http://

amp.pharm.mssm.edu/Enrichr/) and pathway analyses (WikiPathways; http://www.

wikipathways.org/index.php/WikiPathways). These analyses detected 106 GO groups (S3

Table) and 4 pathways: 1) type II interferon signaling, 2) proteasome degradation, 3) type III

interferon signaling, and 4) DNA damage response (Table 1). To further examine whether

IFNTs regulated those 4 enriched pathways, all transcripts associated with these pathways

were subjected to qPCR analysis. Transcripts except for ICAM1 and DDB2 were up-regulated

by IFNT2 and IFNTc1, in agreement with those detected by the RNA-seq analysis (Fig 2).

Determination of IFNTs downstream transcription factors

It is reported that IFNT binds its receptor, upon which transcription factors STAT1/2 and

IRFs regulate the expression of interferon stimulated genes (ISGs) [15]. However, molecular

mechanisms associated with IFNT-induced signaling pathway has not been well characterized.

To identify transcription factors induced by IFNT stimulation in EECs, increased DEGs were

subjected to GO term analysis. From the RNA-seq data, 17 transcription factors were identi-

fied as up-regulated DEGs (Table 2), among which 15 genes, FOXS1, STAT1, IRF9, ZNFX1,

NFE2L3, IRF7, EGR1, GTF2B, STAT2, CSRNP1, DDIT3, HMGA1, ATF3, IRF8, and IRF3 were

up-regulated in IFNT2- or IFNTc1-treated EECs (Fig 3). In both RNA-seq and qPCR analyses,

FOXS1 exhibited the highest expression among these transcription factors.

Effects of FOXS1 knockdown on the expression of IFNTs downstream

factors

To ascertain whether FOXS1 regulated the gene expression induced by IFNT2 or IFNTc1, we

performed knockdown of FOXS1 by two siRNAs (#1 and #2), which specifically recognized

Endometrial factors similarly induced by IFNT variants
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Fig 1. Differential gene expression in bovine endometrial epithelial cells treated with IFNT2 or IFNTc1.

(A) Venn diagram shows the number of gene with 1.5-fold changes among Control (Ctrl), IFNT2, and IFNTc1

treatment groups, and right table lists increased or decreased genes in IFNT2 vs. IFNTc1 group, which

overlap with Ctrl vs. IFNT2 or Ctrl vs. IFNTc1 group. (B) EECs were incubated without (Ctrl) or with IFNT2 or

IFNTc1 (2 x 105 cells/5000 IU/well) for 24 h. RNA was extracted from the EECs and subjected to real-time

PCR analysis on mRNA expression with overlapping IFNT2 vs. IFNTc1 group with other groups. GAPDH

mRNA was used as an internal control for RNA integrity. Value represent the mean ± SEM from three

independent experiments in each treatment. (C) these diagrams show pair plots comparison among Ctrl,

IFNT2, and IFNTc1, and density plots in each groups. Figures show correlation coefficient among Ctrl, IFNT2,

and IFNTc1.

doi:10.1371/journal.pone.0171858.g001
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FOXS1 mRNA sequences in different regions (Fig 4A). Two FOXS1 siRNAs down-regulated 9

genes, EIF2AK2, IRF3, HMGA1, IRF9, PSMA2, CSRNP1, PSME2, THRA, and ATF3, and up-

regulated 9 genes, PSMB8, IRF8, PML, PSMB9, STAT1, ICAM1, STAT2, PSMB10, and SFN in

IFNT2-treated EECs (Fig 4B). Similar to IFNT2 treatment, Two FOXS1 siRNAs regulated 18

gene expressions in IFNTc1-treated EECs (Fig 4C).

Discussion

In this study, we first demonstrated the global gene expression of primary bovine EECs treated

with IFNT2 or IFNTc1, and identified a novel FOXS1 signaling pathway, resulting in IFNT

response. Although several studies have shown variants of IFNT transcripts [9, 12, 13], their

regulation and effects on EECs have not been characterized. In this study, IFNT2 and IFNTc1

Table 1. Genes related to IFNTs-induced enriched pathways in EECs.

Pathway P-value Gene name

1 Type II interferon signaling

(IFNG)

6.48E-07 STAT1, STAT2 IFI6 EIF2AK2 TAP1, IRF8, ISG15, IRF9,

PSMB9, ICAM1

2 Proteasome Degradation 6.44E-03 UBA7, PSMA2 PSME1, PSME2, PSMB10, PSMB8, PSMB9

3 Type III interferon signaling 3.03E-02 STAT1, STAT2, IRF9

4 DNA Damage Response 3.25E-02 GADD45B, SFN, BID, ATRIP, PML, DDB2

doi:10.1371/journal.pone.0171858.t001

Fig 2. Identification of gene expression induced by IFNTs in EECs. EECs were incubated without (Ctrl)

or with IFNT2 or IFNTc1 (2 x 105 cells/5000 IU/well) for 24 h. RNA was extracted from the EECs and

subjected to real-time PCR analysis to determine gene expression related to type II interferon, proteasome

degradation, type III interferon, and DNA damage response signaling in Ctrl, IFNT2-, or IFNTc1-treated EECs

(n = 3 each group). GAPDH mRNA was used as an internal control for RNA integrity. aP < 0.01, bP<0.05 vs.

Ctrl. Value represent the mean ± SEM from three independent experiments in each treatment.

doi:10.1371/journal.pone.0171858.g002
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induced transcripts associated with 4 enriched pathways. In addition, IFNT2 and IFNTc1

up-regulated several transcription factors, among which FOXS1 was found as the highest

expressed gene. Furthermore, the knockdown of FOXS1 down-regulated 9 genes including

IRF3 and IRF9, and up-regulated 9 genes including STAT1, STAT2, and IRF8. These findings

suggested that upon IFNT stimulation, FOXS1 could have mediated up- or down-regulation

of IFNT-stimulated transcription factors such as STAT1, STAT2 and IRFs, followed by activa-

tion of type II interferon, proteasome degradation, type III interferon, and DNA damage

response signaling pathways.

FOXS1 is Forkhead type transcription factor expressed in Sertoli cells and peri-endothelial

cells of the developing mouse fetal testis [26]. Male and female Foxs1 knockout mice are fertile,

but the mutant males accumulate blood in the fetal testis [26]. Foxs1 is also expressed in

gonadal-like cells in Gata6 conditional knockout mice [27]. In addition to gonadal-like cells,

Table 2. Transcriptional factors up-regulated by IFNTs in EECs.

Accession No. Gene Fold change (IFNT2 /Ctrl) Fold change (IFNTc1 /Ctrl)

1 NM_001099716 FOXS1 97.40 113.81

2 NM_001077900 STAT1 4.81 5.69

3 NM_001024506 IRF9 4.35 4.89

4 NM_001205716 ZNFX1 3.99 4.42

5 NM_001077899 NFE2L3 2.96 3.20

6 NM_001105040 IRF7 2.87 3.03

7 NM_001045875 EGR1 2.63 2.70

8 NM_001046142 GTF2B 2.48 2.82

9 NM_001205689 STAT2 2.47 1.93

10 NM_001098035 CSRNP1 2.06 2.19

11 NM_001078163 DDIT3 1.94 2.11

12 NM_001076523 HMGA1 1.80 2.03

13 NM_001046193 ATF3 1.66 1.80

14 NM_001083769 IRF8 1.64 1.62

15 NM_001075742 TBP 1.50 1.70

16 NM_001029845 IRF3 1.40 1.53

17 NM_001040566 RNF141 1.16 1.65

doi:10.1371/journal.pone.0171858.t002

Fig 3. Determination of IFNTs’ downstream transcription factors. EECs were incubated without (Ctrl) or

with IFNT2 or IFNTc1 (2 x 105 cells/5000 IU/well) for 24 h. RNA was extracted from the EECs and subjected to

real-time PCR analysis to determine the expression of transcription factors in Ctrl, IFNT2-, or IFNTc1-treated

EECs (n = 3 each group). GAPDH mRNA was used as an internal control for RNA integrity. aP < 0.01, bP<0.05

vs. Ctrl. Value represent the mean ± SEM from three independent experiments in each treatment.

doi:10.1371/journal.pone.0171858.g003
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Foxs1 is expressed in neural crest derivatives [28–30]. However, molecular mechanisms on

how FOXS1 regulates those phenotypic changes have not been characterized. In this study,

FOXS1 was up-regulated by IFNT2 and IFNTc1, and its knockdown regulated general IFNT-

induced transcription factors such as STAT1 and STAT2 in bovine EECs. In addition, IFNA

treatment similarly increased FOXS1, STAT1 and STAT2 expression (S1 Fig); however, type I

IFNs such as IFNA and IFNB do not exist in the bovine and ovine uterine lumen during peri-

implantation period. [12, 31]. In human dermal fibroblast cells, FOXS1, up-regulated by

STAT4, induces the differentiation into myofibroblast [32]. In addition, we confirmed the

presence of STAT1- or STAT2-binding elements on FOXS1 promoter region (S2 Fig). These

findings suggested that activation of STAT1 or STAT2 could induce FOXS1 expression and

FOXS1 then down-regulate STAT1 and STAT2 expression: possible negative feedback loop

between FOXS1 and STAT1/2 in the bovine endometrial epithelium (Fig 5).

In the pro-inflammatory response to control the immune system, proteasomes are replaced

with immunoproteasomes, which are induced by interferon-gamma (IFNG) and increase the

Fig 4. Effects of FOXS1 knockdown on the expression of IFNTs downstream factors. (A-C) EECs were

transfected with non-targeting control (Ctrl: 200 nM) or FOXS1 siRNA (#1 or #2: 200 nM) for 48h, and then

incubated with IFNT2 (B) or IFNTc1 (C) (2 x 105 cells/5000 IU/well) for 24 h. RNA was extracted from the

EECs and subjected to real-time PCR analysis (n = 3 each group). GAPDH mRNA was used as an internal

control for RNA integrity. Values represent the mean ± SEM from three independent experiments in each

treatment.

doi:10.1371/journal.pone.0171858.g004

Endometrial factors similarly induced by IFNT variants
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production of peptides for presentation of MHC class I molecules [33]. The proteasome con-

sists of three units, 20S proteasome, 19S regulator, and proteasome activator 28 (PA28),

among which PA28 is composed of PSME1 and PSME2 [33]. 20S proteasome has 20 subunits,

among which 3 subunits are replaced with PSMB8, PSMB9, and PSME10 by IFNG stimulation,

resulting in immunoproteasome formation. In our results, IFNT2 and IFNTc1 up-regulated not

only PSME1, PSME2, PSMB8, PSMB9, and PSMB10, but also class I antigen presentation-related

genes such as BOLA-A, B2M, TAP1/2, and several ubiquitin ligases (S2 Table). These results

were consistent with our and other previous studies which demonstrated changes in protein

and gene expression during peri-implantation periods [11, 20, 34]. In addition, FOXS1 knock-

down increased the expression of PSMB8, PSMB9, and PSMB10. These findings suggested that

IFNT2 and IFNTc1 induced immunoproteasome formation and class I antigen presentation in

endometrial epithelial cells, which could condition the EECs for interaction with semi-allogenic

conceptuses.

Our previous study demonstrated that MX1, ISG12, ISG15, ISG17, IRF1, and IRF2 were sim-

ilarly up-regulated by IFNT2 or IFNTc1 treatment, but MX2 was only up-regulated by IFNTc1

[23]. This study showed that IFNTc1 tended to increase the expression of MX2 compared

with that of IFNT2. However, correlation coefficient of gene expression between IFNT2 and

IFNTc1 was 0.99, indicating no or minimal difference in gene expression between IFNT2 and

IFNTc1. The amino acid sequences of IFNT2 and IFNTc1 differ slightly, of which IFNTc1 has

one casein kinase 2 phosphorylation domain whereas IFNT2 does not (S3 Fig). These results

suggest that IFNT2 and IFNTc1 still differ in nucleotide structures and possibly functions, but

further experiments are required to prove definitive functional differences between IFNT2 and

IFNTc1.

In conclusion, this study demonstrated the global gene expression of IFNT2- or IFNTc1--

treated primary bovine endometrial epithelial cell. One of these genes was transcription factor

FOXS1, up-regulated by IFNT2 and IFNTc1, and its knockdown up-regulated STAT1 and

STAT2. Therefore, FOXS1 could play a role as a negative feedback regulator of IFNTs signal-

ing in bovine endometrial epithelial cells.

Fig 5. Diagram illustrating the potential role of IFNT through FOXS1 in EECs. IFNT2 and IFNTc1 bind to

their receptor and then activate STAT1 or STAT2. Activated STATs up-regulate FOXS1 expression, which

down-regulates STATs expression, resulting in a negative feedback loop between STATs and FOXS1.

doi:10.1371/journal.pone.0171858.g005

Endometrial factors similarly induced by IFNT variants
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Supporting information

S1 Fig. Effect of IFNA on the expression of FOXS1 in bovine EECs. EECs were incubated

without (Ctrl) or with IFNA (2 x 105 cells/5000 IU/well) for 24 h. RNA was extracted from the

EECs and subjected to real-time PCR analysis. GAPDH mRNA was used as an internal control

for RNA integrity. aP< 0.01 vs. Ctrl. Values represent the mean ± SEM from three indepen-

dent experiments in each treatment.
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S2 Fig. Possible STAT1- and STAT2-binding sites on FOXS1 promoter region.
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S3 Fig. The amino acid sequences of IFNT2 and IFNTc1.
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S1 Table. Oligonucleotide primers for real-time PCR analyses.
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S2 Table. Lists of DEGs from RNA-seq analysis.

(XLSX)

S3 Table. Lists of GO term from RNA-seq analysis.

(XLSX)
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