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Integrating Epigenomic Elements 
and GWASs Identifies BDNF Gene 
Affecting Bone Mineral Density  
and Osteoporotic Fracture Risk
Yan Guo1, Shan-Shan Dong1, Xiao-Feng Chen1, Ying-Aisha Jing1, Man Yang1, Han Yan1, 
Hui Shen2, Xiang-Ding Chen3, Li-Jun Tan3, Qing Tian2, Hong-Wen Deng2 & Tie-Lin Yang1

To identify susceptibility genes for osteoporosis, we conducted an integrative analysis that combined 
epigenomic elements and previous genome-wide association studies (GWASs) data, followed by 
validation at population and functional levels, which could identify common regulatory elements and 
predict new susceptibility genes that are biologically meaningful to osteoporosis. By this approach, 
we found a set of distinct epigenomic elements significantly enriched or depleted in the promoters of 
osteoporosis-associated genes, including 4 transcription factor binding sites, 27 histone marks, and 21 
chromatin states segmentation types. Using these epigenomic marks, we performed reverse prediction 
analysis to prioritize the discovery of new candidate genes. Functional enrichment analysis of all the 
prioritized genes revealed several key osteoporosis related pathways, including Wnt signaling. Genes 
with high priority were further subjected to validation using available GWASs datasets. Three genes 
were significantly associated with spine bone mineral density, including BDNF, PDE4D, and SATB2, 
which all closely related to bone metabolism. The most significant gene BDNF was also associated 
with osteoporotic fractures. RNA interference revealed that BDNF knockdown can suppress osteoblast 
differentiation. Our results demonstrated that epigenomic data could be used to indicate common 
epigenomic marks to discover additional loci with biological functions for osteoporosis.

Osteoporosis is a major public health problem due to the aging population globally. This common skeletal disease 
is characterized by low bone mass, poor bone quality, and an increased predisposition to fractures1. Osteoporosis 
is diagnosed clinically through the measurement of bone mineral density (BMD), which is the most widely used 
predictor of fractures2,3. Therapeutic decisions that are aimed at preventing fractures are often based on BMD 
measurement.

BMD is known to be highly heritable, with heritability estimates between 0.6–0.84. Osteoporotic fracture, an 
endpoint clinical outcome of osteoporosis, also has moderate heritability of 0.5–0.75,6. During the past few years, 
genome-wide association studies (GWASs) have been demonstrated to be an effective strategy for genetic dissec-
tion of human complex diseases/traits7. Through this strategy, over 100 novel genetic loci have been successfully 
identified for osteoporosis8. However, the genetic variants identified so far together explain only a small propor-
tion of the heritability for osteoporosis9. Due to the modest genetic effect size and inadequate statistical power, 
true association signals may not be discovered with the use of a stringent genome-wide significance threshold 
alone10. It is likely that a sizable proportion of those rejected associations are false negative, and methods of inter-
pretation are needed to recognize such associations.

In addition, since most associated SNPs reported by GWASs reside within intronic or intergenic regions11, 
and the majority of the GWASs have not provided much information beyond statistical signals, it is difficult to 
elucidate the functional mechanisms for those novel susceptibility loci in determining the phenotype. Strikingly, 
these GWASs SNPs are usually involved in regulating gene expression via some common regulatory or functional 
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elements12–14. Finding such common regulatory elements could offer new insight into the biological link between 
the susceptibility SNPs and the phenotype, and therefore provide new therapeutic targets in the era of epigenomic 
drug development15,16. Fortunately, the Encyclopedia of DNA Elements (ENCODE) project has provided a rich 
source of regulatory data (i.e. epigenomic elements) for genome annotation17, mainly including transcription fac-
tor binding sites (TFBSs), chromatin states segmentation, and histone modification marks. TFBSs are the binding 
sites found in DNA for transcription factors (TFs), which are linked to transcriptional regulation. Chromatin 
state segmentation is a descriptive classification of chromatin, such as “enhancer” or “repressor”. Histone mod-
ification could impact gene expression by altering chromatin structure or recruiting histone modifiers. Gene 
expression is regulated by the interplay of these epigenomic elements. For instance, TF occupancy is linked to 
diverse chromatin features characterized by distinct histone composition, histone modifications and by bind-
ing of specific proteins. Depending on cellular contexts, a TF can bind to different TF occupancy and regulate 
different gene expression programs18. Recent studies have found that phenotype-associated SNPs are enriched 
in regions with epigenomic elements implicated in gene regulation17,19, which reminds us that it is necessary to 
incorporate epigenomic elements information to interpret GWASs data. Moreover, prioritizing candidate genes 
with those common epigenomic elements could help predict new susceptibility loci for a particular disease/trait.

Therefore, in this study, we hypothesized that common disease-specific epigenomic elements could identify 
additional susceptibility genes for disease. Through integrating epigenomic elements data, GWASs data, and phe-
notypic data, we (1) analyzed the features of epigenomic elements for all the osteoporosis-associated genes impli-
cated by GWASs, including TFBSs, chromatin states segmentation, and histone modification marks defined by 
ENCODE; (2) found common epigenomic marks associated with osteoporosis and prioritized all genes by these 
epigenomic marks to predict new susceptibility genes; (3) validated the predicted genes for associations with 
osteoporosis using available GWAS datasets, including GEFOS (Genetic Factors for Osteoporosis Consortium) 
dataset, and four GWASs samples from in-house studies. (4) explored the functional roles of the newly identified 
genes involved in bone cells. Our results demonstrated that epigenomic data could be used to indicate common 
epigenomic marks to identify susceptibility genes with biological functions for osteoporosis, which would there-
fore improve the power to detect associations, and offer strategies for developing new therapeutic targets.

Results
Osteoporosis-associated genes set. We obtained a total of 259 osteoporosis-associated genes from the 
GWAS Catalog and PheGenI database (Supplemental Table S1). These genes were supplied to pathway enrich-
ment analysis using the STRING online tool (http://string-db.org/). Twelve significant pathways were found 
(P <  0.05, Supplemental Table S2). Expectedly, these osteoporosis-associated genes tend to enriched in well-
known osteoporosis related pathways, such as Wnt signaling, Hedgehog signaling, osteoclast differentiation, and 
MAPK signaling pathways.

Identification of epigenomic elements enriched/depleted in osteoporosis-associated 
genes. We examined whether or not any of the epigenomic elements were enriched or depleted in the 
osteoporosis-associated genes. Three groups of epigenomic elements were used in the analyses, including 161 
TFBSs, 135 chromatin states, and 273 histone marks, which are summarized in more detail in Supplemental 
Table S3. A total of 52 epigenomic elements were identified to be significantly enriched or depleted in the 
osteoporosis-associated genes (Fig. 1).

For the TFBSs, we identified 2 TFBSs (EZH2 and RAD21) for enrichment, and 2 TFBSs (ELK4 and HDAC1) 
for depletion in the promoters of osteoporosis-associated genes, respectively (Fig. 1, Supplemental Table S3).

We then analyzed cell type-specific epigenomic elements which regulate the accessibility of chromatin, such 
as chromatin states and histone marks. Multiple cell types from ENCODE were used to collect these epigenomic 
data (Supplemental Table S4). For the chromatin states, 21 out of the 135 chromatin states segmentation types 
were identified to be enriched or depleted in the promoters of osteoporosis-associated genes (Fig. 1, Supplemental 
Table S3). Specifically, both “poised promoter” and “repressed” chromatin regions were significantly enriched in 3 
cell lines, including Gm12878 (Epstein-Barr Virus transformed B-lymphoblastoid), H1hesc (Human Embryonic 
Stem Cells), and Hmec (Human Mammary Epithelial Cells). On the other hand, depletions of “transcriptional 
elongation”, “weak transcribed”, and “transcriptional transition” regions were found in several cell lines, including 
Gm12878, H1hesc, Hmec, Hepg2 (Hepatocellular Carcinoma), Nhek (Normal Human Epidermal Keratinocytes), 
Hsmm (Human Skeletal Muscle Myoblasts), and Nhlf (lung fibroblasts). “Strong enhancer” region was depleted 
in Nhlf and K562 chronic myelogenous leukemia cell lines.

Analysis of histone modification marks identified 27 histone marks enriched or depleted in the promoters of 
osteoporosis-associated genes (Fig. 1, Supplemental Table S3). Specifically, “EZH2” mark was enriched in 6 cell 
lines, including Hsmm, B cells, Nhdf-Ad (Normal Human Adult Dermal Fibroblasts), Gm12878, Nhlf, and Huvec 
(Human Umbilical Vein Endothelial Cells). “KAT3B” mark was enriched in osteoblast. A repressive H3K27me3 
mark20 was enriched in 7 cell lines, including GM12878, A549 (epithelial cell line from a lung carcinoma tissue), 
Monocytes, H1hesc, NH-A (astrocytes), Hmec, and Huvec, while an activating H3K36me3 mark was depleted in 
7 cell lines, including Dnd41 (T cell), Nhek, monocyte, GM12878, Hepg2, H1hesc, and Nhlf. The enrichment of 
H3K27me3 and depletion of H3K36me3 were mostly non-cell type-specific.

Reverse prediction suggests new susceptibility genes for osteoporosis. Given that the identi-
fied epigenomic elements enriched/depleted in osteoporosis-associated genes could reflect osteoporosis-relevant 
regulatory factors, we performed reverse prediction analysis to prioritize all genes by these epigenomic features, 
which would suggest additional and/or novel susceptibility genes with high tendency to influence osteoporosis. 
We calculated a total score for each gene to make a ranking list. The top 20 genes ranked by the total scores are 
presented in Table 1.

http://string-db.org/
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Functional annotation and pathway analysis. To explore whether genes identified by the reverse epig-
enomic analysis are relevant to osteoporosis and may provide novel targets to osteoporosis, we conducted GSEA 
on all genes prioritized by the total scores. The results were similar as the original osteoporosis-associated genes. 
As shown in Table 2, we identified 36 significant pathways (FDR P <  0.05). The enriched pathways related to 

Figure 1. Enrichment/depletion of 52 epigenomic elements in the promoters of osteoporosis-associated 
genes. The x-axis denotes the − log10 transformed enrichment P-values for each element.

Gene Description Total score

PDE4D Phosphodiesterase 4D, cAMP-specific 136.16

ESRRG Estrogen-related receptor gamma 135.75

LINC00461 Long intergenic non-protein coding RNA 461 117.63

CHN2 Chimerin 2 114.19

IGF2 Insulin-like growth factor 2 104.99

LINGO1 Leucine rich repeat and Ig domain containing 1 100.34

SATB2 SATB homeobox 2 99.62

RUNX1T1 Runt-related transcription factor 1; translocated to, 1 99.29

GATA4 GATA binding protein 4 98.06

PHACTR3 Phosphatase and actin regulator 3 97.74

CREB5 cAMP responsive element binding protein 5 95.39

EIF4E3 Eukaryotic translation initiation factor 4E family member 3 92.64

PDE4B Phosphodiesterase 4B, cAMP-specific 87.49

SYBU Syntabulin (syntaxin-interacting) 87.16

KCNK10 Potassium channel, two pore domain subfamily K, member 10 86.73

BDNF Brain-derived neurotrophic factor 86.08

TRIM36 Tripartite motif containing 36 85.64

RTN1 Reticulon 1 85.13

RAPGEF4 Rap guanine nucleotide exchange factor (GEF) 4 85.05

EGFLAM EGF-like, fibronectin type III and laminin G domains 84.80

Table 1.  Top 20 genes ranked by the total scores from reverse prediction analysis.
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osteoporosis are particularly interesting, including Wnt signaling, calcium signaling, Hedgehog signaling, MAPK 
signaling, and TGF-β  signaling pathways.

We further applied GRAIL analysis to investigate potential connections between the top 20 genes from reverse 
prediction analysis and the 259 known osteoporosis-associated genes. As shown in Fig. 2, 10 of the 20 predicted 
genes were connected with 69 known osteoporosis-associated genes.

Validation at the population level. To confirm the relationship between the predicted genes with osteo-
porosis, we examined associations between the top 20 genes and BMD in four available GWAS BMD datasets, of 
which one was from the GEFOS dataset and the other three were from our own group (KCOS, OOS and COS). 
The basic characteristics of our samples are summarized in Table 3. Among the top 20 genes, 3 genes, including 
brain-derived neurotrophic factor (BDNF), phosphodiesterase 4D (PDE4D), and SATB homeobox 2 (SATB2), 
were successfully validated for associations with spine BMD. The detailed association results are summarized 
in Table 4. According to meta-analysis over the 4 GWAS datasets, two SNPs of BDNF, rs7124442 (3′UTR vari-
ant) and rs11030119 (intron variant), achieved P values of 2.47 ×  10−5 and 7.65 ×  10−5, respectively. Two SNPs 
of PDE4D, rs2938780 and rs2963826 (both intron variants), achieved P values of 1.15 ×  10−4 and 1.27 ×  10−4, 
respectively. And two SNPs of SATB2, rs895526 and rs6704641 (both intron variants), achieved P values of 
1.25 ×  10−4 and 1.28 ×  10−4, respectively. After multiple testing corrections, all of these 6 SNPs from 3 genes 
remained significant (adjusted P <  0.05), and the directions of their effects on spine BMD were totally consistent 

Name Size ES NES FDR P-value

Neuroactive ligand receptor interaction 270 0.67 2.87 < 1.0E-05

Calcium signaling pathway 176 0.58 2.40 < 1.0E-05

Hedgehog signaling pathway 56 0.66 2.32 < 1.0E-05

Cytokine cytokine receptor interaction 260 0.54 2.29 < 1.0E-05

Cell adhesion molecules cams 131 0.58 2.28 < 1.0E-05

Basal cell carcinoma 55 0.66 2.27 < 1.0E-05

Axon guidance 128 0.56 2.23 < 1.0E-05

Autoimmune thyroid disease 50 0.62 2.14 9.15E-05

Melanogenesis 101 0.55 2.13 8.14E-05

Maturity onset diabetes of the young 25 0.71 2.13 7.32E-05

Olfactory transduction 389 0.48 2.11 1.40E-04

Arrhythmogenic right ventricular cardiomyopathy 74 0.57 2.07 2.55E-04

Ecm receptor interaction 84 0.54 1.97 7.09E-04

Gap junction 89 0.52 1.96 7.73E-04

Dilated cardiomyopathy 90 0.51 1.93 1.03E-03

Proximal tubule bicarbonate reclamation 23 0.65 1.93 1.06E-03

Long term depression 70 0.52 1.92 1.10E-03

Hypertrophic cardiomyopathy hcm 83 0.51 1.90 1.42E-03

Melanoma 71 0.52 1.89 1.47E-03

Allograft rejection 35 0.58 1.86 1.84E-03

Type I diabetes mellitus 41 0.57 1.86 1.86E-03

Vascular smooth muscle contraction 115 0.48 1.85 2.07E-03

Wnt signaling pathway 149 0.45 1.83 2.58E-03

Hematopoietic cell lineage 85 0.49 1.83 2.60E-03

Mapk signaling pathway 266 0.43 1.82 2.59E-03

Intestinal immune network for iga production 46 0.54 1.82 2.70E-03

Pathways in cancer 324 0.42 1.80 3.61E-03

TGF beta signaling pathway 85 0.48 1.79 4.06E-03

Graft versus host disease 37 0.54 1.78 4.21E-03

O glycan biosynthesis 27 0.58 1.74 6.86E-03

Aldosterone regulated sodium reabsorption 42 0.52 1.71 8.95E-03

Cardiac muscle contraction 73 0.46 1.69 1.10E-02

Asthma 28 0.54 1.68 1.15E-02

Long term potentiation 69 0.46 1.66 1.44E-02

Amyotrophic lateral sclerosis 52 0.45 1.55 4.17E-02

Nitrogen metabolism 23 0.52 1.54 4.24E-02

Table 2.  Significant pathways by preranked gene set enrichment analysis on all genes prioritized by 
the predicted total scores. Note: Size: Total number of genes in the category; ES: enrichment score; NES: 
normalized enrichment score; FDR: false discovery rate.
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across different studies. The heterogeneity test between studies showed that there was no heterogeneity for all of 
the SNPs we identified (all Qhet P >  0.05, I2 =  0) (Table 4).

For the above 6 significant SNPs, we also tested for associations with osteoporotic fractures in the CFS sample 
(Table 5). Both SNPs of BDNF were found to be significantly associated with osteoporotic fractures (rs11030119: 
P =  0.024; and rs7124442: P =  0.042). These two SNPs were in high LD with each other (pairwise LD r2 =  0.9). The 
minor alleles of both SNPs have protective effects on fractures, with the odds ratio (OR) estimated to be 0.58 (95% 

Figure 2. Connections between the top ranking predicted genes and the known osteoporosis-associated 
genes. Ten out of the 20 predicted genes, which are marked by black triangle, are connected with 69 known 
osteoporosis-associated genes. The lines between genes represent individually significant connections that 
contribute to the positive signal, with the thickness of the lines being inversely proportional to the probability 
that a literature-based connection would be seen by chance.

Characteristics KCOS OOS COS

CFS

Cases Controls

Sample size 2,286 1,000 1,627 350 350

Population Caucasian Caucasian Han Chinese Han Chinese Han Chinese

Female (%) 75.59 50.10 50.71 64.57 50.57

Age (yrs) 51.37 ±  13.76 50.23 ±  18.24 34.49 ±  13.24 69.35 ±  7.41 69.54 ±  6.09

Height (m) 1.66 ±  0.08 1.71 ±  0.10 1.64 ±  0.08 1.63 ±  0.12 1.59 ±  0.10

Weight (kg) 75.27 ±  17.54 80.16 ±  17.79 60.12 ±  10.48 59.15 ±  12.05 59.61 ± 10.84

Spine BMD (g/cm2) 1.02 ±  0.16 1.03 ±  0.16 0.95 ±  0.13 — —

Femoral neck BMD (g/cm2) 0.80 ±  0.15 0.81 ±  0.14 0.81 ±  0.13 — —

Table 3.  Basic characteristics of 4 in-house GWAS samples. Notes: Data are shown as mean ±  standard 
deviation. Abbreviations: KCOS, Kansas-city osteoporosis study; OOS, Omaha osteoporosis study; COS, 
Chinese osteoporosis study; CFS, Chinese Fractures Study.
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confidence interval (CI): 0.35–0.96) for rs11030119, and 0.67 (95% CI: 0.45–1.00) for rs7124442, respectively. The 
effects on fractures risk for both SNPs were totally consistent with their associations with increased BMD values.

To explore the functional relevance of the identified 6 significant SNPs, we performed cis-eQTLs analysis in 
462 unrelated human LCLs samples from 1000 Genome Project. Although all of these 6 SNPs were not associated 
with expression levels of their transcript, we found several surrogate SNPs, which were in high LD with the two 
significant SNPs (rs7124442 and rs11030119) in BDNF, significantly associated with BDNF mRNA expression 
levels (Table 6).

Functional Assays. Based on the significant effect we identified for BDNF, we further investigated the func-
tion of BDNF in bone. BDNF is reported to be involved in chondrocyte differentiation, cartilage development 
and osteogenesis21–23. Therefore, we tested the role of BDNF in osteoblast biology to assess the function of the 
identified loci. Real-time PCR revealed that differentiated osteoblasts had higher BDNF expression level than 
pre-osteoblasts (p <  0.05) (Fig. 3A). After treatment with siRNA against BDNF, we examined the mRNA expres-
sion levels of osteoblast differentiation markers, including alkaline phosphatase (ALP), osteocalcin (OCN), col-
lagen type-I (COL1), and runt-related transcription factor 2 (RUNX2)24. As shown in Fig. 3B, knockdown of 
BDNF significantly suppressed the expression of marker genes COL1, RUNX2, and OCN, compared with the 
control siRNA treated group in differentiated osteoblast cells (p <  0.05). Western blot analysis gave similar results 
(Fig. 3C), suggesting that BDNF may stimulate osteoblast differentiation, resulting in increased bone formation.

Discussion
With GWAS becoming a convenient and powerful tool for genetic decipherment of complex diseases, an arising 
new challenge is how to utilize the genomic data efficiently to interpret the GWASs results and better under-
stand the disease mechanisms. The ENCODE project17 has provided a wealth of various functional elements data, 

SNP Chr Positiona A1/A2 Genic position Gene

In-house GWAS samples GEFOS sample Combined meta-analysisb

PadjustedP_FN Dir P_SP Dir P_FN Dir P_SP Dir P_FN P_SP Qhet P I2

rs7124442 11 27633617 C/T 3′ UTR BDNF 0.265 + 0.074 + 0.082 + 1.26 ×  10−4 + 0.022 2.47 ×  10−5 0.75 0 0.02

rs11030119 11 27684678 T/C intron BDNF 0.325 + 0.103 + 0.137 + 3.04 ×  10−4 + 0.041 7.65 ×  10−5 0.79 0 0.02

rs2938780 5 59132490 C/T intron PDE4D 0.586 + 0.080 + 0.004 + 5.35 ×  10−4 + 0.002 1.15 ×  10−4 0.67 0 0.02

rs895526 2 199870670 A/G intron SATB2 0.269 + 0.212 + 0.784 – 2.84 ×  10−4 + 0.259 1.25 ×  10−4 0.91 0 0.02

rs2963826 5 59132680 T/C intron PDE4D 0.614 + 0.088 + 0.004 + 5.57 ×  10−4 + 0.002 1.27 ×  10−4 0.70 0 0.02

rs6704641 2 199872497 G/A intron SATB2 0.357 + 0.203 + 0.806 – 3.04 ×  10−4 + 0.290 1.28 ×  10−4 0.94 0 0.02

Table 4. Significant association results between the predicted genes and spine/femoral neck BMD in the 
GWAS BMD datasets. Note: Chr: chromosome; FN: femoral neck; SP: spine; Dir: direction, which is for the 
effect of A1 (Minor allele). aPosition was relative to the hg18 version of the human genome. bCombined meta-
analysis means that the P value was combined by including all the GWAS samples. Qhet is the Cochran’s Q 
statistic, and I2 is the measure of heterogeneity. All P values listed in Table 4 are two-sided.

SNP Gene A1/A2 MAF cases MAF controls OR (95%CI) P

rs7124442 BDNF C/T 0.062 0.089 0.67 (0.45–1.00) 0.042

rs11030119 BDNF T/C 0.037 0.062 0.58 (0.35–0.96) 0.024

rs2938780 PDE4D C/T 0.170 0.194 0.85 (0.65–1.11) 0.238

rs895526 SATB2 A/G 0.497 0.491 1.02 (0.83–1.26) 0.825

rs2963826 PDE4D T/C 0.171 0.194 0.86 (0.65–1.13) 0.268

rs6704641 SATB2 G/A 0.500 0.489 1.04 (0.85–1.29) 0.658

Table 5. Association results of the above 6 BMD associated loci from Table 4 with osteoporotic fractures. 
Note: MAF: minor allele frequency for the A1 (minor allele); OR: odds ratio; CI: confidence interval.

Target SNP Gene Surrogate SNPs r2, Distance (Kb) to target SNP PeQTL

rs7124442 BDNF rs73432320 1, 7.8 3.06 ×  10−4

rs7130131 0.7, 14.2 2.21 ×  10−3

rs7927728 0.7, 9.6 2.21 ×  10−3

rs11030119 BDNF rs73432320 1, 58.9 3.06 ×  10−4

rs7130131 0.7, 65.3 2.21 ×  10−3

rs7927728 0.7, 60.6 2.21 ×  10−3

Table 6.  Results of cis-expression quantitative trait locus (eQTL) analyses.
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which can be used to the design, analysis and interpretation of GWASs, and therefore improve our knowledge of 
human diseases processes25. In this study, through integrating epigenomic elements and GWASs data, we iden-
tified a set of distinct epigenomic elements associated with osteoporosis. The further reverse analysis based on 
these epigenomic features predicted a ranking list of candidate genes for osteoporosis, and we successfully identi-
fied BDNF as a susceptibility gene for BMD and osteoporotic fractures, which highlights the efficiency of finding 
missing heritability of osteoporosis by reasonably prioritizing genes using epigenomic data.

For the epigenomic elements analysis, we didn’t restrict our analysis to any given cell types. It is because 
that the osteoporosis-associated genes identified by GWASs are disease-specific, not cell type-specific. Moreover, 
osteoporosis is a systematic metabolic disease, which could be caused by a number of diseases, including diabe-
tes, hyperthyroidism, gastrointestinal disorders, kidney disease, rheumatoid arthritis, and systemic lupus ery-
thematosus. It might lose some information by focusing on any given cell types. For the identified significant 
epigenomic marks, EZH2 (enhancer of zeste homolog 2) has been reported as a transcription repressor through 
H3K27me326. Previous studies have revealed that EZH2 could interact with Wnt signaling27–29, which is a crucial 
pathway to bone biology and development. Interestingly, we found that most of the enriched epigenomic ele-
ments for osteoporosis are repressed or inactive marks, such as “poised promoter”, “repressed” chromatin regions, 
EZH2, and repressive H3K27me3 mark, which suggests that osteoporosis-associated genes tend to be affected 
by repressive or inactive epigenomic marks, and disruption of these transcriptionally inactive or repressive state 
might be a factor in the disease.

We suggest a list of novel candidate genes for osteoporosis. Among which, three genes (BDNF, PDE4D, and 
SATB2) were confirmed for association with spine BMD in four GWAS datasets. Especially, BDNF was also asso-
ciated with osteoporotic fractures. BDNF encodes a member of the neurotrophin family of growth factors, which 
are related to the canonical nerve growth factor. BDNF is required for differentiation and survival of specific neu-
ronal subpopulations in both central and peripheral nervous systems30. Moreover, BDNF mRNA was previously 
reported to be expressed in murine osteoblasts (MC3T3-E1 cells)31. Several studies have shown that BDNF plays a 
role in chondrocyte differentiation, cartilage development and osteogenesis21–23. A phosphorylation-related SNP 
rs6265 in BDNF has been identified to be associated with BMD in humans32. We explored the role of BDNF in 
osteoblast biology and found that siRNA mediated BDNF knockdown can suppress the expression of osteoblast 
differentiation markers, suggesting that BDNF may stimulate osteoblast differentiation, resulting in increased 
bone formation. Pathway analysis revealed that BDNF is involved in the MAPK signaling pathway, which plays 
an essential role in osteoblast differentiation and skeletal development33–35. Modulation of bone formation by 
BDNF may influence fracture risk by affecting both bone mass and bone quality. The other two genes also have 
potential connection with bone or osteoporosis. PDE4D encodes cyclic AMP-dependent phosphodiesterase 4D. 
PDE4D selective inhibitors can promote osteoblast differentiation in progenitor cells36 and increase bone mass by 
promoting bone formation in normal mice37. A previous genetic association study identified a variant in PDE4D 
associated with lumbar spine BMD in females38. SATB2 encodes a nuclear matrix-associated transcription factor 
and epigenetic regulator that plays a critical role in osteoblast lineage commitment39. Targeted knockout of SATB2 
in mice could result in impaired osteoblast differentiation and craniofacial skeletal defects40. Recent studies sug-
gested SATB2 as a novel sensitive marker of osteoblastic differentiation41,42. Together, taking into account of the 

Figure 3. Functional analysis of siRNA mediated BDNF knockdown in osteoblasts. (A) Cells were grown 
with 200 ng/ml rhBMP-2 for the indicated times, and real-time PCR was performed. * p <  0.05 vs preosteoblasts. 
(B,C) Cells were first transfected with BDNF siRNA or scramble siRNA. And then incubating cells with 200 ng/ml 
rhBMP-2 for additional 2 days, real-time PCR for BDNF, ALP, COL1, RUNX2, OCN (B) and western analysis for 
BDNF, COL1, RUNX2, OCN (C) were performed. * p <  0.05 vs the scramble siRNA-treated group in differentiated 
osteoblast cells. All data are expressed as the mean± SD from three independent experiments.
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above lines of biological evidence, our findings further highlights the importance of these genes to the pathogen-
esis of osteoporosis, and also support our hypotheses that epigenomic data could be used to predict susceptibility 
genes with functional information for diseases.

Our study has several implications compared with conventional GWAS strategies. First, candidate gene pri-
oritization strategies by epigenomic data could increase the prior probability of an association test, and therefore 
increase the power of detecting bona fide associations in a study of a given size, which may discover genes that 
would be missed by traditional association studies relying on strictly P value driven approaches. Second, incorpo-
rating epigenomic regulatory information may provide more insight into disease biology and offer strategies for 
therapeutic development. The susceptibility genes we identified have close relationship with bone metabolism. 
Functional enrichment analysis of the genes prioritized by the epigenomic elements revealed osteoporosis related 
pathways, including Wnt signaling, Hedgehog signaling, and MAPK signaling pathways, which are consistent 
with our prior understanding of the pathophysiology of osteoporosis, and meanwhile implicate the feasibility 
of our study. Third, we confirmed the significant associations of 3 predicted genes in our 3 GWAS datasets and 
GEFOS dataset. Specifically, GEFOS is the largest dataset for osteoporosis GWAS meta-analysis9. Thus, our asso-
ciation results are robust and may provide convergent validity for our findings.

Our current study also has some limitations. For example, in the gene validation stage, we arbitrarily selected 
the top 20 genes and further remained significant after multiple testing corrections in four GWAS datasets. Thus, 
it is likely that some genes that contribute to osteoporosis susceptibility but did not meet our selection criteria 
could have been missed. Second, for the epigenomic elements analyses, we focused on the promoter regions of 
genes, since promoter is a critical regulatory region that can work in concert with many other regulatory elements 
to direct the level of transcription of a given gene. It is easy to find regulatory commonalities, but might neglect 
some potential meaningful epigenomic elements located on other regions of genome.

In conclusion, through the integrated analysis of GWASs and epigenomic data, we identified a set of signifi-
cant regulatory elements enriched in osteoporosis-associated genes. We also discovered BDNF as a susceptibility 
gene implicated in osteoporosis that is biologically meaningful. Beyond generating a list of associated SNPs by 
statistical signals, our findings demonstrate that an integrative approach combining GWASs and epigenomic pro-
filing could lead to the identification of additional loci with functional information underlying osteoporosis. The 
genes may provide future targets for research into the etiology and treatment of osteoporosis.

Materials and Methods
Acquisition of osteoporosis-associated genes. We used the National Human Genome Research 
Institute (NHGRI) GWAS Catalog43 (www.genome.gov/gwastudies downloaded on Apr 20, 2015) and 
Phenotype-Genotype Integrator (PheGenI) database44 (http://www.ncbi.nlm.nih.gov/gap/phegeni) to obtain a 
list of osteoporosis-associated genes, using osteoporosis related phenotypes including BMD, fractures, femoral 
neck bone geometry, hip bone size, and spine bone size.

Functional annotation. We used ENCODE data drawn from the UCSC genome browser to conduct 
functional annotation for the genomic regions of interest45. In this study, we focused on promoter regions of 
osteoporosis-associated genes. An in-house Perl script was used to extract the promoter regions, which were 
defined as 2,000 nucleotides upstream of a gene’s transcription start site. For the genes with more than one tran-
script, the pipeline extracted the promoters for each transcript, and merged overlaps into a single promoter. The 
annotated genomic features can be classified into three groups of epigenomic elements, including TFs obtained 
experimentally by ChIP-seq, histone modifications by ChIP-seq, and chromatin state segmentation by hidden 
Markov model (HMM) from ENCODE. A total of 569 epigenomic elements were used in the analysis. The data 
from multiple cell lines were used.

Enrichment analysis of epigenomic elements. We first calculated the total number of promoters of 
osteoporosis-associated genes annotated by the 569 epigenomic elements obtained above. The annotation was 
defined that if the promoter overlaps with each epigenomic element for at least 1 nucleotide, it means that the 
promoter is annotated by this element46. If a given promoter overlaps with the same epigenomic element for more 
than 1 time, it is only counted once to reflect the fact of overlap. Then, using the promoters of all genes on genome 
as a background, we randomly selected the same number of promoters as those in the osteoporosis-associated 
genes set to perform random sampling, which could distinguish regulation of one set of genes from another. 
Such random sampling was repeated 1,000 times to estimate the average number and variance of random anno-
tation. Compared with the random sampling results, we implemented Fisher’s exact test to identify epigenomic 
elements that was significantly over-represented or under-represented in the osteoporosis-associated genes. For 
easier comparison and visualization, P values were transformed into logarithm (log10[P] for under-represented; 
− log10[P] for over-represented). As a control group, we also randomly selected a genes set of the same size as the 
osteoporosis-associated genes to conduct the above process.

Reverse prediction. To predict new candidate genes for osteoporosis, we analyzed the promot-
ers of other genes to evaluate whether they shared similar set of epigenomic elements as those promoters of 
osteoporosis-associated genes. The promoters of all genes were annotated for the presence of the significant epig-
enomic elements obtained by the above enrichment analysis. For each gene, we first counted the times of its pro-
moter annotated by each of the significant epigenomic elements. Then we weighted the counts of each element by 
the corresponding transformed P values. By summing up the weighted counts on each promoter, we acquired the 
total score denoting each gene to prioritize the importance of genes.

http://www.genome.gov/gwastudies
http://www.ncbi.nlm.nih.gov/gap/phegeni
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Functional annotation and pathway analysis. We ranked all genes based on the scores obtained from 
the reverse epigenomic analysis. The ranked gene list was supplied to gene set enrichment analysis (GSEA)47 
pre-ranked analysis with default parameters. c2 KEGG (curated gene sets from KEGG pathway databases) were 
used for the analysis. We used the Gene Relationships Across Implicated Loci (GRAIL) text-mining algorithm48 
to investigate connections between the predicted new genes and the known osteoporosis-associated genes iden-
tified by GWASs.

Validation in GWAS datasets. To validate the predicted candidate genes at the population level, we took 
advantage of the available five GWAS datasets, of which one was from the published GEFOS dataset and the other 
four were from our own group. All the studies related to the datasets were approved by the respective institutional 
ethics review boards and all participants provided signed informed-consent documents. The related information 
is described in detail as follows.

GWAS datasets. GEFOS dataset. We checked the SNPs of the interested genes for their association signals 
with femoral neck and lumbar spine BMD in the GEFOS (Genetic Factors for Osteoporosis Consortium) dataset 
(http://www.gefos.org). GEFOS is the largest GWAS meta-analysis to date in the bone field, including 17 GWASs 
and 32,961 individuals of European and East Asian ancestry9.

Four in-house GWAS samples. Our own GWAS datasets include three BMD samples and one fracture sample: 
1) Kansas City Osteoporosis Study (KCOS) with 2,286 unrelated individuals of European ancestry; 2) Omaha 
osteoporosis study (OOS) with 987 unrelated individuals of European ancestry; 3) Chinese Osteoporosis Study 
(COS) with 1,627 unrelated Chinese of Han ethnicity; and 4) Chinese Fractures Study (CFS) with 350 cases with 
osteoporotic hip fractures and 350 elderly healthy controls. The description of each study has been detailed in our 
previous studies49–51.

Phenotype measurements. For our own three GWAS BMD samples, BMD (g/cm2) at spine and fem-
oral neck (FN) was measured with dual energy x-ray absorptiometry (DXA) using Hologic 4500 W machines 
(Hologic Inc., Bedford, MA, USA) that were calibrated daily. For the GEFOS samples, BMD was measured with 
DXA scanners using Hologic (Hologic Inc., Bedford, MA, USA) or Lunar scanners (Lunar Corp., Madison, WI, 
USA). Raw BMD values were adjusted by significant covariates including sex, age, weight and height. To adjust for 
potential population stratification, the first ten principal components emerging from the EIGENSTRAT analyses 
were also included as covariates52.

Genotyping and quality control. Samples from KCOS and COS were genotyped using Genome-Wide 
Human SNP Array 6.0 (Affymetrix Inc., Santa Clara, CA, USA), and sample from OOS and CFS were genotyped 
using the Affymetrix Human Mapping 500 K array set, according to the manufacturer’s protocols. The details of 
genotyping for each sample have been described in our previous studies49–51. Quality control of genotype data 
were implemented with PLINK53, with the following criteria applied: individual missingness <  5%, SNP call rate 
> 95%, and Hardy-Weinberg equilibrium (HWE) P-value <  0.0001.

Association analyses. For the KCOS and COS samples, a linear regression implemented in PLINK53 was 
fitted to test for association assuming an additive inheritance model. For the OOS and CFS samples, IMPUTE 
program54 was utilized to impute the genotypes of SNPs detected on Array 6.0 but not on 500 K array set based on 
HapMap data (release 22). To ensure the reliability of imputation, all imputed SNPs reached a calling threshold 
of 0.90, i.e., a 90% probability that an imputed genotype is true. SNPTEST54 was used to examine associations 
in these samples. Summary statistics of associations from each GWAS BMD sample were combined to conduct 
meta-analysis using the METAL software package55, taking into account the square-root of each sample size. The 
between-study heterogeneity was assessed using both the Cochran’s Q statistic and the I2 metric. The Benjamini 
and Hochberg (BH) procedure was used for multiple-testing adjustment.

Expression quantitative trait locus (eQTL) analysis. We conducted eQTL analysis to evaluate whether 
the predicted significant SNPs for each locus also influence expression level of their nearest transcript. Gene 
expression information was obtained from human lymphoblastoid cell lines (LCLs) of 462 unrelated individuals 
from 1000 Genomes Project56. The linear regression model implemented in PLINK53 was used to determine asso-
ciations between expression levels and SNPs. We also included surrogate SNPs with linkage disequilibrium (LD) 
r2 >  0.7 with target SNPs in the test.

Functional Assays. Culture of osteoblast cell line. Murine pre-osteoblast MC3T3-E1 cells (ATCC, VA, 
USA) were cultured in α -minimum essential medium (α -MEM, Invitrogen, CA, USA) containing 10% fetal 
bovine serum (FBS) and 1% penicillin-streptomycin at 37 °C. To induce osteoblastic differentiation, cells were 
plated at a density of 5 ×  104 cells/cm2 and cultured with 200 ng/mL human recombinant bone morphogenetic 
protein 2 (rhBMP2, Peprotech, USA). The medium was replaced every other day unless otherwise indicated.

Transfection with small interfering RNA (siRNA). When cells confluence reached at 30%, cells were 
transfected with siRNA against murine brain-derived neurotrophic factor (BDNF) or with non-silencing siRNA 
(Shanghai GenePharma Co.,Ltd) using X-treme GENE siRNA Transfection Reagent (Roche, NJ, USA) accord-
ing to the manufacturer’s instruction. Briefly, after incubating MC3T3-E1 cells with siRNA-reagent mixtures 
in α -MEM containing for 6 hours, 200 ng/ml rhBMP2 were added and cells were incubated for an additional 

http://www.gefos.org


www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:30558 | DOI: 10.1038/srep30558

48 hours. The sequences of siRNA were described in Supplemental Table S5. The efficiency of knockdown was at 
least 70% as confirmed by analyses of mRNA levels.

Semi-quantitative RT-PCR and Real-time PCR. Total RNA was isolated using the TRIzol reagent 
(Invitrogen, CA, USA), and complementary DNA (cDNA) was synthesized using the Super Scripts II First-Strand 
cDNA synthesis kit (Invitrogen, CA, USA) according to the manufacturer’s instructions. Semi-quantitative 
RT-PCR experiments were optimized for the number of cycles to ensure that the amplifications were analyzed 
within an exponential phase. We analyzed the expression levels of BDNF, as well as osteoblast differentiation 
markers, including ALP, OCN, COL1, and RUNX224, by real-time PCR in an Eppendorf Real-time PCR System, 
using the comparative threshold cycle (Ct) method for relative quantification. The glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) gene was used as an endogenous control. The specific primers for indicated genes are 
presented in Supplemental Table S6.

Western blot. Total protein was extracted using RIPA buffer (Beyotime Biotechnology, China). Samples were 
separated by 14% SDS-PAGE, and then transferred onto PVDF membranes (Roche, Germany). After blocking 
in TBST (Tris buffered saline with 0.1% Tween-20) and 5% non-fat milk and incubated with primary antibodies 
for BDNF, ALP, OCN, COL1, Runx2, or β -actin (Cell Signaling Technology Inc., USA). Then the membrane was 
incubated with horseradish peroxidase (HRP)-conjugated goat anti-rabbit secondary antibody (Abcam, MA, 
USA). Immunoreactivity was detected by enhanced chemiluminescence reaction using LuminataTM Western 
HRP substrate (Millipore, USA). ECL images were acquired and analysed with the Chemiluminescence Imaging 
System (CLINX, Shanghai, China).

Statistical Analysis. Each experiment was repeated independently at least three times, unless indicated oth-
erwise. The results were expressed as the mean ±  standard deviation of triplicate independent samples. Student’s 
t-test was used to examine the differences between the two groups of data. Differences with p <  0.05 were consid-
ered as statistically significant.
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