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Cervical cancer is one of the common malignancies in women worldwide. Exploration of pathogene-
sis and molecular mechanism of cervical cancer is pivotal for development of effective treatment for
this disease. Recently, systems biology approaches based on high-throughput technologies have been
carried out to investigate the expression of some genes and proteins in genomics, transcriptomics,
proteomics, and metabonomics of cervical cancer. Compared with traditional methods，systems biol-
ogy technology has been shown to provide large of information regarding prognostic biomarkers and
therapeutic targets for cervical cancer. These molecular signatures from system biology technology
could be useful to understand the molecular mechanisms of cervical cancer development and pro-
gression, and help physicians to design targeted therapeutic strategies for patients with cervical
cancer.
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1. Introduction

Cervical cancer is the fourthmost commonly diagnosed cancer in fe-
males behind breast, colorectal and lung cancers worldwide [1]. Among
females, cervical cancer also ranks the fourth for cancer-related death in
theworld. According to estimate numbers from theWHO(World health
organization), there are 570,000 new cases of cervical cancer, and about
311,000 deaths due to this deadly disease worldwide in 2018 [1]. In the
United States this year, there are an estimated 13,240 cases and 4170
deaths from cervical cancer [2]. In China, 98,900 new cases of cervical
cancer and 30,500 deaths are reported in 2015 [3]. In recent years,
there is a common trend that most patients with cervical cancer died
with unmeasurable pain and suffered at relatively young age [4].
Although the incidence rate of cervical cancer was declined due to
increased screening in women and higher uptake of the HPV (human
papillomavirus) vaccination in the developed countries, it is still one
of the leading causes of cancer morbidity among females in less devel-
oped countries [1]. The five-year survival rate for patients with cervical
cancer is less than 50% in many underdeveloped countries [5]. More-
over, the survival rate of cervical cancer patients at advanced stages is
also low [6]. Thus, it is no exaggeration to note that exploration of
molecularmechanismof cervical carcinogenesis is pivotal to obtain bet-
ter treatment outcomes for cervical cancer patients. (See Fig. 1.)

Evidence has revealed thatmany factors have been found to be asso-
ciated with cervical cancer development, such as smoking, immune-
suppression, oral contraceptive use, high parity (a multiple number of
pregnancies), and HPV infection [1]. It is widely accepted that HPV is
the virtually important cause of cervical cancer development, although
the pathogenesis of cervical carcinoma is complex. The cervical tumor-
igenesis is often initiated by persistent infection of high-risk HPV
types, particularly virus types 16 and 18 [7]. More than 100 types
of HPV have been identified and the viral typing plays a key role in
determining the prognosis of cervical cancer [8]. Due to the different
pathogenicities of HPV, it can be divided into low-risk virus types and
high-risk types. Epidemiologic evidence showed that HPV16 and
HPV18 are correlatedwith cervical cancer [9]. It is important tomention
that not all cases with high-risk HPV infection will result in the high-
grade cervical intraepithelial neoplasia (CIN) development and cervical
cancer, suggesting that HPV infection is not sufficient to cause cervical
cancer [10]. Most of the subclinical changes are transient because HPV
infection is cleared spontaneously by the immune system. Only a
Fig. 1. Systems biology approaches are utilized in personalizedmedicine of cervical cancer. Syste
circRNAmicroarrays could be applied to various areas in the clinical management including cerv
minority of HPV infections lead to integration into the host genome,
resulting in abnormal gene structures and functions and malignant
transformation of cervical cells [10,11]. Genome-wide association
studies (GWAS) have shown that cervical cancer has genetic variations
in several susceptibility loci [12].

Accumulated evidence has demonstrated the reasons by which HPV
infection causes carcinogenesis [13]. Two viral oncoproteins E6 and E7
could play a key role in the HPV-infected cervical cancers. When the
viral genome integrates into the host DNA genome, E6 and E7 will be
upregulated and subsequently deregulate critical proteins in cellular
signaling pathways, such as inhibition of two important tumor suppres-
sor proteins, p53 and pRb [14]. Lau et al. reported that DNA tumor virus
oncogenes including E7 could bind and suppress the cGAS-STING DNA-
sensing pathway [15]. It has been documented that not all integrations
necessarily depend on the E6 and E7 oncogenes expression [16].
Notably, several reports have showed that cervical cancer has driver
mutations such as PIK3CA (phosphatidylinositide 3-kinases catalytic
subunit α), a key protein in the PI3K pathway, KRAS (Kirsten rat
sarcoma viral oncogene homolog), and EGFR (epidermal growth factor
receptor) [17]. Currently, clinical treatment managements for cervical
cancer typically include surgery, radiotherapy, and platinum-based
chemotherapy [18]. Treatment for early stage disease often is surgical
therapy such as cervical conization, total simple hysterectomy, or
radical hysterectomy based on extent of spread of cervical cancer [18].
Radiotherapy plays a pivotal role not only in locally advanced cervical
cancer but also in postoperative therapy to prevent locoregional recur-
rence as an adjuvant therapy [18,19]. In the recent years, a series of
systemic treatments, for instance, the platinum-based chemotherapy
and the recent FDA approved pembrolizumab, have applied for
recurrent and advanced cervical cancer [20]. Nowadays, the standard
frontline chemotherapeutic treatment for cervical cancer is the combi-
nation therapy of carboplatin, paclitaxel, and bevacizumab [21].
Although screening and advanced therapeutic strategies have improved
the survival rate of cervical cancer, some patients still die due tometas-
tasis and drug resistance. Without a doubt, HPV vaccination could pre-
vent the development of cervical cancer; however, many patients in
underdeveloped countries cannot get HPV vaccination due to economic
condition. Thus, it is pivotal to further understand the molecular mech-
anisms of cervical cancer development and progression, to discover the
novel molecular diagnostic methods and systemic managements for
cervical cancer. To achieve this goal, system biology approaches would
ms biology approaches such as DNAmicroarray, tissuemicroarray,microRNA, lncRNA and
ical cancer screening, diagnosis, detecting recurrence, and predicting therapeutic response.
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be new tools to be applied. In the following sections, we will review the
recent advance on the mechanism of cervical carcinogenesis by system
and network biology, including genomics, transcriptomics, proteomics,
and metabonomics.

2. Systems Biology Approaches in Cervical Cancer

Systematic biology technology is of great value due to its compre-
hensive, accurate and sensitive characteristics, which integrates various
biological levels involved in genes, molecules, cells, organs and the
environment. Systems biology approaches determine the mechanisms
underlying certain conditions to dissect the dynamic changes and inter-
actions among individuals [22]. As a new research tool, systems biology
approach has been applied for the diagnosis and the discovery of new
biomarkers on the platform of genomics, proteomics andmetabolomics
for diseases. Nowadays, systems biology has becoming a promising
standard framework to explore the molecular mechanism of develop-
ment and progression of human diseases including cancer [23]. These
approaches including genomics, transcriptomics, proteomics and
metabolomics have been performed to analyze the genome (DNA),
transcriptome (mRNA), proteome (proteins), andmetabolome (metab-
olites), respectively, in the development and progression of cervical
cancer [24]. These system biologymethods could be used for the predic-
tion of prognosis and treatment outcomes in cervical carcinoma, which
could have potential clinical applications for cervical cancer (See Fig. 1).

2.1. Genomics

The application of genomics in cervical cancer mainly measures the
changes of oncogene and tumor suppressive gene profiles at the DNA
level. Moreover, this assay is helpful to determine the correlations be-
tween gene expression changes and pathological features. Therefore,
the application of genomics can provide a more comprehensive under-
standing of themechanismof cervical cancer development andprogres-
sion, and discover the biomarkers for cervical carcinoma. DNA chip
technology is the most widely used in genomics analysis. DNA chip,
also known as gene chip or DNA microarray, is based on the principle
of complementarities, using densely arranged DNA probes to extract
DNA or RNA information, and compare with the changes of gene ex-
pressions in different physiological states or diseases including cervical
cancer.

2.1.1. DNA Microarray
Wong et al. used DNA microarray that contained approximately

11,000 features to examine the expression profiles of cervical cancer
compared with normal cervical tissues [25]. This study reported that
about 40 genes were significantly different between cervical cancer
and normal tissues, which can completely segregate between tumor tis-
sues and normal samples. Moreover, clinical stage IB and IIB tumors
were also be classified according to the different expression signatures.
Furthermore, tumor samples thatwere responded to radiotherapywere
also identified by expression patterns in cervical cancer [25]. This study
suggests that DNA microarray might be useful for determining disease
stages and predicting radiotherapy response in cervical cancer. Song
et al. further analyzed the gene expression patterns among normal
cervix, carcinoma in situ (CIS), and invasive cervical cancer using DNA
microarray [26]. Among 15,286 genes, 458 genes were upregulated or
downregulated compared with each other group. Upregulation of 22
genes and down-regulation of 40 genes were observed in invasive
cervical cancer patients compared with CIS [26]. Moreover, the expres-
sion of several genes is associated with invasive cervical cancers
including upregulation of RBP1 (Retinol bindingprotein 1), TFRC (trans-
ferrin receptor), SPP1 (osteopontin), SAA1 (serum amyloid A1),
ARHGAP8 (Rho GTPase-activating protein 8), and NDRG1 (N-myc
downstream-regulated gene1), downregulation of GATA3 (GATA-bind-
ing protein 3), PLAGL1 (pleiomorphic adenoma gene-like 1), APOD
(apolipoprotein D), DUSP1 (dual specificity phosphatase 1), and
CYR61 (cysteine-rich, angiogenic inducer, 61) [26]. Zhu et al. reported
that 1326 geneswere upregulated and 1432 geneswere downregulated
in cervical cancer compared with normal cervix using oligonucleotide
microarrays [27]. Among these genes, there are multiple upregulated
genes, which are related with the apoptosis pathways, including Bcl-2
(B-cell lymphoma-2), Bcl-xL (B-cell lymphoma-extra large), and
c-IAP1 (cellular inhibitor of apoptosis protein 1) in late-stage cancer
compared to early-stage cervical cancer [27]. Consistently, 2036 differ-
entially expressed genes were identified by whole genome microarray
between cervical squamous carcinoma and normal cervical tissues, in-
cluding 1282 downregulated genes and 754 upregulated genes. Nota-
bly, PDGFRA (platelet-derived growth factor-A), CAV1 (caveolin 1),
and GJA-1 were confirmed to be important genes for invasion and me-
tastasis in cervical cancer [28]. Similarly, 7530 significantly
overexpressed genes were identified by a transcriptome analysis in
locally advanced cervical cancer patients, which were involved in 93
dysregulated signaling pathways [29].

Using alignment of DNA microarray data, chromosomal alterations
were identified to play an important role in the development of
CIN and invasive cervical carcinoma [30]. Gain of 3q and loss of 4q
were detected from invasion cancer cDNA arrays, indicating that align-
ment of microarray data by chromosomes might be useful to estimate
chromosomal region aberrations [30]. DNA microarray has been used
to identify the gene expression profile between chemoradiotherapy re-
sistant and sensitive patients in advanced uterine cervical squamous
cell carcinoma [31]. Specifically, 108 genes were validated to be differ-
entially expressed between chemoradiotherapy resistant and sensitive
patients. PDGFRα (platelet-derived growth factor receptor alpha) and
PRKAR1A (protein kinase A type 1A) were increased in the chemo-
radiosensitive patients, whereas LDHA (lactate dehydrogenase A),
SMUG1 (single strand selective monofunctional uracil DNA glycosylase
1), BAK1 (Bcl-2 antagonist killer 1), CDK7 (cyclin dependent kinase 7),
BNIP3 (Bcl2 adenovirus E1B 19 kDa interacting protein 3) expressions
were increased in the chemo-radiotherapy resistant patients [31]. A
study described 22 upregulated and 181 downregulated genes, which
response to radiotherapy and chemo-radiotherapy in cervical cancer
patients using microarray gene expression profiling [32]. Another
study identified potential transcriptional regulation of cervix cancer
usingmicroarray gene expression data and promoter sequence analysis
of a curated gene set. The results revealed that E2F (adenovirus E2 fac-
tor) could have diagnostic/prognostic value and can be a potential ther-
apeutic target in cervical cancer [33]. Lee et al. reported that Dkk3
(Dickkopf-Related Protein 3) was downregulated and played a role as
a negative regulator of β-catenin in cervical cancer [34]. Several genes
including p16Ink4a, MCM3 (minichromosome maintenance complex
component 3), MCM5minichromosomemaintenance complex compo-
nent 5), CDC6 (cell division cycle 6), Geminin, Cyclins A-D, TOPO2A
(Topoisomerase 2α), CDCA1 (cell division cycle associated 1), and
BIRC5 (baculoviral inhibitor of apoptosis repeat-containing 5) were
identified to be differentially expressed by microarray analysis in cervi-
cal cancer [35]. Similarly, microarray expression analysis was utilized to
identify expression profiles of candidate genes that distinguished squa-
mous cell carcinoma and adenosquamous carcinoma [36]. This study
provides evidence that specific genes could be used as biomarkers for
prognosis and therapy targets in different clusters of cervical cancer. A
DNA microarray and gene pathway analysis dissected that inactivation
of DP1 induced p53 mRNA and increased p21Waf1/Cip1 and promoted
senescence in cervical cancer cells [37]. Overexpression of LAP2α
(lamina-associated polypeptide 2 alpha) was found to be associated
with aberrant E2F and p53 activities bymicroarray, qRT-PCR and immu-
nofluorescence analyses in cervical cancer [38].

2.1.2. DNA Microarray for Determining Mechanism of HPV Infection
It has been reported that a DNAmicroarray-basedmethodwas used

to detect infection and typing of HPVs [39]. Although HPV16 andHPV18
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are observed in amajority of invasive cervical cancer, HPV18 infection is
correlated with a more aggressive form of cervical cancer than HPV16
positive patients. To determine the mechanism of two types of HPV in-
fection, DNAmicroarray was used and found that some genes were dif-
ferentially expressed between HPV16- and HPV18-infected samples.
This study identified that different genes involved in signalingpathways
could serve a different role in HPV16- and HPV18- transformed cells
[40]. In addition, HPV DNA testing by a DNA microarray chip has been
used for primary screening for cervical lesions in Japan [41]. This report
reveals that HPV DNA testing in combination with cytology is superior
for CIN screening [41]. DNAmicroarraywas used to identify and charac-
terize potential markers for screening or treatment targets between 43
HPV16-positive cervical cancers and 12 healthy cervical epitheliums. It
was found that 997 of 8638 genes were deregulated, including 6 upreg-
ulated genes CCNB2 (cyclin B2), CDC20 (cell division cycle 20), PRC1
(Protein Regulator of cytokinesis 1), SYCP2 (SC protein-2), NUSAP1 (nu-
cleolar-spindle-associated protein 1), CDKN3 (Cyclin-dependent kinase
inhibitor 3) that belong to the mitosis pathway [42]. Moreover, CDKN3
was validated to be a survivalmarker and a potential treatment target in
cervical cancer [42]. Min et al. also used microarray analysis to identify
differentially expressed genes that were induced by HPV18 E6 silencing
RNA in cervical cancer [43]. Among 359 differentially expressed genes,
307 genes were up-regulated and 52 genes were downregulated in cer-
vical cancer cells with HPV18 E6 siRNA transfection [43]. Kang and col-
leagues utilized DNAmicroarray analysis and showed that a total of 594
genes were upregulated and 651 genes were downregulated after
HPV16 infection in cervical tissue [44].

The mechanisms for HPV-induced cervical cancer are complex. DNA
damage response (DDR) plays a key role in cell repaired and prepares
the cell for division. Viral oncoproteins combat the downstream conse-
quences of DDR in various ways. Once the damage is unrepaired, the
break points are easy for viral integration [10]. HPV infection leads to
host factors including inflammatory response and oxidative stress that
make initial infection such as interferon response. Interferon induces
loss of episomal HPV and inhibition of E2, resulting in the selection of
cells with integrated HPV genomes with higher expression of E6 and
E7 [45]. Subsequently, TLR9 (Toll-like receptor 9) is downregulated
and interferon response is impaired, leading to immune evasion and
HPV persistent infection. Overexpression of E6/E7 promotes genetic in-
stability and chromosomal rearrangements that enhance the risk of in-
tegration [46]. Similarly, deregulation of viral gene expression
deregulates the cell cycle via p53 and Rb degradation, deregulation of
oncogenes and miRNAs expression [47–50]. Without a doubt, further
investigation is required to determine the detailed mechanisms of
HPV-induced cervical cancer.

2.1.3. DNA Methylation Microarray
DNAmicroarray combinedwithmethylated DNA immunoprecipita-

tion was conducted to analyze genome-wide methylation profiling and
to identify hypermethylated biomarkers in high-grade CIN, which could
be used for early detection of CIN [51,52]. Moreover, distinct DNAmeth-
ylation profiles were identified by a microarray analysis between ade-
nocarcinoma and squamous cell carcinoma of uterine cervix [53].
Among 21 genes with differential methylation pattern between two
types of cervical cancers, Serine/threonine-protein kinase PAK 6 and
NOGOR (NOGO receptor) could be two potential markers to be used
for distinction of adenocarcinoma from squamous cancer [53]. One
group performed DNA methylation microarray in normal cervical epi-
thelium, CIN, and squamous cell carcinoma tissues. This study revealed
that DNA methylation regulated microRNAs in human cervical cancer
[54]. Furthermore, a total of 276 methylation genes that correlated
with the prognostic status of the cervical cancer were reported based
on methylation microarray analysis [55]. It has been reported that 12
candidate genes were identified by DNA methylation profiling for
screening markers of detection of cervical cancer [56]. Wu et al. carried
out methylated-CpG island recovery assay-based microarray analysis
and found 30 genes were significantly hypermethylated in cervical can-
cer [57]. One group carried out methylated DNA immunoprecipitation
coupled to promoter tilling arrays and identified DBC1 (deleted in blad-
der cancer protein 1), PDE8B (phosphodiesterase 8B), and ZNF582 (zinc
finger protein 582) with frequent methylation in cervical cancer [58].
Using a CpG island microarray analysis, one group identified 6 genes,
SOX1, PAX1 (paired box), LMX1A (LIM homeobox transcription factor
1, alpha), NKX6-1 (homeobox protein Nkx-6.1), WT1 (Wilms tumor-
1), and ONECUT1 (one cut homeobox 1), weremore frequentlymethyl-
ated in squamous cell carcinomas of the cervix [59]. In addition, DNA
methylation analysis was performed and identified that changes in
DNA methylation were related to the development of drug resistance
in cervical cancer cells [60]. Liu et al. used comprehensive analysis of
methylation microarray and transcriptome microarray to screen key
genes and found that 561 overlapping differentially methylated genes
were identified in cervical cancer. Several key genes of these identified
methylated genes were associated with cervical cancer [61].

2.1.4. Deep Sequencing
In addition to DNA microarray and methylation arrays, deep se-

quencing such as next-generation sequencing (NGS) has also been
widely used to understand genetic changes in cervical cancer [62,63].
For example, one group validated 20 different HPV genotypes in 266
cervical cancer specimens using NGS approach [64]. One study de-
scribed cervical cytology by deep sequencing to investigate and com-
pare HPV metagenomes for correlation with disease states [65]. 27
different genotypes were observed in LSIL (low grade intraepithelial le-
sion) samples, while 17 HPV genotypes were found in HSIL (high grade
intraepithelial lesion) patients. Moreover, specific HPV types E6/E7 ge-
netic distances are associated with carcinogenic potential [65]. Another
study identified pathogenesis of HPV-driven tumors, including cervical,
head and neck, anal, penile and vulvar cancers using NGS and other
‘omics’ approaches [66]. This study shed light onto genomic HPV inte-
gration sites, disrupted genes and pathways. Common and unique ge-
netic and epigenetic diversifications have also been determined by
NGS approach in HPV-mediated cancers including cervical cancer [66].

2.2. Transcriptomics

Transcriptomics is the sum of all RNA transcribed for studying gene
expression at RNA level, which is the link between genetic genomics
and functional proteomics. Transcriptomics have been utilized to deter-
mine the molecular mechanism of carcinogenesis including cervical
cancer. Specifically, microRNA array, lncRNA array, and circRNA array
have been conducted to dissect the insights intomechanisms of cervical
cancer.

2.2.1. mRNA Microarray
One study identified the transcriptomic codes of cervical cancer

using five different transcriptome datasets [67]. Hundreds of up- and
down-regulated genes were reported in individual dataset. Down-
regulation of 113 genes and up-regulation of 199 genes were observed
in cervical cancer by an analysis from all five transcriptome datasets
[67]. Proteins encoded by these dysregulated core genes are involved
in enzymes and modulators, hormones and signaling molecules, struc-
tural proteins, transporters, receptors, etc. The downregulated proteins
include ESR1 (estrogen receptor), KAT2B (lysine acetyltransferase en-
zyme), FGFR2 (fibroblast growth factor receptor 2), and WNK1 (ser-
ine/threonine protein kinase). The upregulated proteins have PARP1
(poly ADP-Ribose polymerase), GSK3B (glycogen synthase kinase 3
beta), CDK1 (cyclin dependent kinase 1), and PCNA (proliferating cell
nuclear antigen) [67]. Moreover, this study found that several protein
deregulations were involved in metabolism pathway in cervical cancer
by the integration of transcriptome data with the genome-scale meta-
bolic network. The arachidonic acid metabolism was the key pathway,
which was correlated with 15 reporter metabolites [67]. Kim et al.
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performed microarray analysis of mRNA expression and found that 53
geneswere differentially expressed in an early response to radiotherapy
group comparedwith a late response group [68]. Among53 deregulated
genes, RAR-β expression is correlated to early volumetric changes to ra-
diation therapy in cervical cancer [68].

Onegroupusedmicroarrayanalysis anddescribed the transcriptome
expression profile of irreversible senescence in HPV-positive cervical
cancer cells [69]. This report defined themolecularmechanismof senes-
cence pathway, including the induction of the RAB vesicular transport
machinery and reduction of chromation regulatory molecules [69].
Wang et al. utilized three mRNAmicroarray datasets to investigate the
important genes in cervical cancer. Furthermore, a protein-protein in-
teraction network was utilized to further analyze these interacting
genes. RhoB (Ras homolog family member B), stathmin 1 and cyclin
D1were found to be key genes in cervical cancer progression.Moreover,
RhoB and stathmin 1were identified aspotential biomarkers for diagno-
sis and treatment of cervical cancer [70]. The microarray analysis was
also used for the prediction of lymph node metastasis in cervical cancer
patients. This investigation validated that RBM8A (RNA-binding protein
8A), SDHB (Succinate dehydrogenase B), SERPINB13 (serpin family B
member 13), and γ-interferon could be biomarkers for prediction of
lymph node metastasis in cervical cancer [71].

2.2.2. miRNA Microarray
MicroRNAs (miRNAs) are short noncoding RNAswith a length of ap-

proximately 22 nucleotides, which are involved in posttranscriptional
regulation of gene expression [72]. MiRNAs have been identified to par-
ticipate in most biological processes such as cellular differentiation and
homeostasis. Furthermore, emerging evidence has revealed that
miRNAs play a vital role in various diseases, including cancers. [73]. In
recent years, miRNA microarray has been used to identify the expres-
sion profiles of miRNAs in cervical cancer [74–76]. For example, Li
et al. reported differentially expressed miRNAs in cervical squamous
cell carcinomas and adjacent non-tumor tissues using miRNA microar-
ray including 1145 miRNAs. Seven miRNAs including miR-886-5p
were differed significantly between tumor tissues and non-tumor tis-
sues [77]. One group identified 24miRNAs includingmiR-143markedly
and aberrantly expressed in cervical cancer by miRNA microarray anal-
ysis. Moreover, downregulation of miR-143 was observed in cervical
cancer and overexpression of miR-143 induced apoptosis and inhibited
tumor growth via targeting Bcl-2 [78]. Another group identified 15 dif-
ferentially expressedmiRNAs includingmiR-203 in cervical cancer [79].
The under-expression of miR-195-5p was determined by miRNAs mi-
croarray analysis in cervical cancer [80]. In-depth investigation showed
that miR-195-5p targeted MMP-14 and suppressed cell proliferation
and invasion in cervical carcinoma cells [80].

HPGD (15-hydroxyprostaglandin dehydrogenase), which sup-
presses cell proliferation andmigration, was identified as a direct target
of miR-146b-3p in cervical cancer by miRNA microarray and bioinfor-
matics analyses [81]. One group used miRNA microarray method and
found that miR-188, miR-99, miR-125b were downregulated, while
miR-223 was upregulated in cervical cancer. These expression of
miRNAs was associated with the short survival of cervical cancer pa-
tients [82]. In addition,miR-17-5pwasconfirmed to behighly expressed
in cervical cancer via miRNA microarray. Furthermore, miR-17-5p was
identified to promote cell proliferation and metastasis by targeting
TGF-β (transforming growth factor -beta)-receptor 2 in cervical cancer
[83]. In line with this, miR-374c-5p was found to be down-regulated in
TGF-β1-treated cervical cancer cells by microarray analysis [84].

2.2.3. LncRNA Microarray
Long non-coding RNAs (lncRNAs) are defined as functional RNA

molecules, which have longer than 200 nucleotides, but lncRNAs lack
protein-coding capability [85]. It has been demonstrated that lncRNAs
can regulate the activity of transcription factors or modulate alterna-
tions in chromatin structure [86]. An lncRNA plus mRNA microarray
was conducted and revealed that 1621 lncRNA and 1345 mRNAs were
differentially expressed between high-risk and low-risk squamous cer-
vical cancer [87]. Another group reported that 5844 lncRNAs and 4436
mRNAs were differentially expressed in cervical cancer compared
with normal cervical tissues [88]. Comprehensive lncRNAprofiling anal-
ysis was utilized to screen differentially expressed lncRNA in cervical
cancer, and observed that lncRNA NCK1-AS1 was upregulated in cervi-
cal cancer tissues [89]. Based on lncRNA microarray, lncRNA ANRIL
was found to be highly expressed in cervical cancer. Downregulation
of ANRIL inhibited cell proliferation, migration, and invasion in cervical
cancer cells [90]. Sun et al. used lncRNAmicroarray and discovered that
four circulating lncRNAs, including HOTAIR, PVT1, XLOC_000303, and
AL592284.1,might be the potential biomarkers for prediction of cervical
tumorigenesis [91]. Similarly, using transcriptome microarray analysis,
lncRNAUICCwas identified to be highly expressed in cervical cancer tis-
sue [92]. Subsequent study discovered that lncRNA UICC promoted
tumor growth and metastasis via regulating IL-6/STAT3 signaling path-
way [92]. LncRNA ZNF667_AS1 was also identified as an independent
prognostic factor of cervical cancer by microarray approach [93].
LncRNA CRNDE, which is discovered by lncRNA microarray, promoted
cell growth and metastasis in cervical cancer cells [94]. Similarly,
lncRNA SNHG1 was identified using lncRNAmicroarray in cervical can-
cer, and SNHG1 promoted cell proliferation, migration and invasion in
cervical cancer cells [95].

LncRNAmicroarraywas also used to screen the differentially expres-
sion profiles of lncRNAs in early stage cervical cancer patients and found
a total of 2574 upregulated lncRNAs and 3270 downregulate lncRNAs.
Among these lncRNAs, overexpression of lncRNA RP11-396F22.1 was
correlated with poor prognosis in early stage cervical cancer patients
[96]. LncRNA microarray and lncRNA-mRNA co-expression analysis
were utilized to determine the expression of lncRNA in cervical cancer
cells. This study demonstrated that 4750 lncRNAs were differentially
expressed in HPV-16 positive cells compared with HPV negative cells.
Among these deregulated lncRNAs, 2127 lncRNAs were upregulated,
while 2623 lncRNAs were down-regulated. There were 5026 lncRNAs
that were differentially expressed in HPV-18 positive cells compared
to HPV negative cells, including 2218 upregulated and 2808 downregu-
lated lncRNAs [97]. One study by Sun et al. also identified differentially
expressed lncRNAs and mRNAs in cervical cancer compared with
peritumoral tissues by transcriptome microarray analysis. In fact, 708
lncRNAs were increased and 836 lncRNAs were decreased in cervical
cancer tissues. Moreover, 1288 mRNA levels were increased and 901
mRNAs were decreased in cervical cancer. Strikingly, lncRNA EBIC
interacted with EZH2 and inhibited E-cadherin and enhanced tumor
cell invasion in cervical cancer [98]. Zhu et al. also reported that 3356
lncRNAs have significantly different expression pattern in cervical can-
cer tissues compared with adjacent normal tissues, including 1857 up-
regulated lncRNAs [99]. Two lncRNAs (lncRNA01101 and lnc00277)
were selected and validated as novel factors from hundreds of lncRNAs
that were identified by microarray analysis in HPV-induced cervical
cancer [100].

2.2.4. circRNA Microarray
Circular RNA (circRNA), a special class of non-coding RNA, forms a

covalently closed continuous loop in which the 3′ and 5′ ends have
been joined together [101]. This feature confers numerous properties
to circular RNAs, such as resistance to RNA exonuclease activity, stable
expression and uneasy to degrade. The circRNA plays the important
role in modulation of gene expressions in human cancers, by sequestra-
tion or sponge other gene expression, especiallymiRNA. [102]. Recently,
it was reported that HPV-16 E7 oncoprotein altered the expression pro-
files of circular RNAs by high-throughput microarray technology in cer-
vical cancer cells [103]. In total, 526 dysregulated circRNAs were
changed by HPV E7 expression, including 352 upregulated and 174
downregulated circRNAs [103]. Emerging evidence has suggested that
circular RNAs (circRNAs) are critical regulators in the cancer
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development and progression. It has been documented that microarray
is an efficient tool for circRNA profiling [104]. One study showed that
about 80,000 circRNAs were detected in cervical cancer samples and
matched normal tissues, and about 25,000 of them were differently
expressed [104]. Abnormally expressed circRNA in cervical cancer
cells has been detected by human circRNA microarray screening.
Among these circRNAs, circRNA-000284 was upregulated in cervical
cancer cells and promoted cell proliferation and invasion via sponging
miR-506 [105]. CircRNA expression profiles defined that 45 expressed
circRNAs have 4 fold changes in cervical cancer tissues compared with
adjacent normal tissue. Among these dysregulated circRNAs, circ-
0018289 was up-regulated and promoted the tumorigenesis in cervical
cancer [106].

2.2.5. High-throughput RNA Sequencing
Recently, many groups use high-throughput RNA sequencing to ex-

plore the expression profiles of mRNAs,miRNAs, circRNAs, and lncRNAs
in cervical cancer [107–109]. For example, using RNA sequencing, tran-
scriptome profiling of the cancer and adjacent normal tissues from cer-
vical cancer patients has been analyzed [109]. There are 347
differentially expressed genes (DEGs), including 104 upregulated and
148 downregulated DEGs in cervical cancer [109]. Similarly, 40 upregu-
lated genes and 3 downregulated genes have been discovered in HSIL
using RNA-seq [110]. One study identified 304 mRNAs, 28 miRNAs, 99
circRNAs, and 19 lncRNAs that were differentially expressed in cervical
cancer patients [107]. Another study has validated significantly expres-
sion variation of six miRNAs between human cervical cancer lines and
normal cervical cells through a direct sequencing method [108]. Fur-
thermore, it displayed that miR-143 was decreased expression while
miR-21 was increased in cancer samples, indicating that these miRNAs
could be tumor markers [108]. Moreover, RNA-Seq analysis was carried
out to characterize HPV integration, viral gene expression and E6E7 al-
ternative transcripts in cervical cancer [111]. RNA sequencing is a pow-
erful tool to explore the expression profiles of RNAs in cervical cancer.

2.3. Proteomics

With the gradual completion of the human genome project, proteo-
mics emerges which requires reliable and high-throughput technolo-
gies such as mass spectrometry and tissue microarray [112]. Genetic
changes will eventually lead to changes in the protein expressed. Pro-
teins synthesized in the cervix are modified by phosphorylation, glyco-
sylation and acetylation, making their composition more complex than
genes. Therefore, it is possible to describe and predict complex life activ-
ities by using proteomic techniques to study the changes of various pro-
teins in life activities. Proteomics has been widely employed in cervical
oncogenesis. Gene-encoded proteomics compares the changes of pro-
tein profiles in cervical cancerwith normal cervix by establishing a com-
plete protein library to find out the differential proteins before and after
the occurrence of cervical cancer. Proteomics provides a new clue for
early search for new biomarker proteins and elucidates the pathogene-
sis of cervical cancer.

Lee et al. used proteomics and genomics to identify protein profiling
and modulators regulated by the E7 oncogene in the cervical cancer
cells. Protein disulfide isomerase A3, integrase interactor 1 protein, glu-
tathione S-transferase P, and vav proto-oncogene were decreased,
while heat shock 60 kDa protein 1, Ku70 binding protein, alpha enolase
were increased in cervical cancer after E7 induction [113]. The result
from a genomic method demonstrated that IL-12R beta 1, cytochrome
c, tumor necrosis factor receptor IIwere increased due to E7 overexpres-
sion. Therefore, E7 could evade immune surveillance via regulation of
multiplemolecules in cervical cancer [113]. Using proteomicmicroarray
and qRT-PCR approaches, it has been found that increased cycling cell
numbers and stem cell associated proteins, including chorionic gonado-
tropin, TP63 (Tumor protein p63), SOX2 (SRY-box 2), could be potential
biomarkers for high grade HPV positive CIN3 [114]. Zhu et al. used two-
dimensional electrophoresis and matrix-assisted laser desorption/ioni-
zation time-of-flight mass spectrometry to identify differentially
expressed proteins in squamous cervical cancer [115]. This study iden-
tified 55 dysregulated proteins, including 24 upregulation and 31
downregulation proteins in cervical cancer [115]. The overexpression
of S100A9 was further confirmed by immunoblotting and immunohis-
tochemical approaches in cervical cancer [115,116].

A protein microarray, also termed a protein chip, is created by large
number of proteins arrayed on a surface enabling the simultaneous
study of protein functions and interactions in array technologies [117].
The protein microarray platform is particularly suited for unbiased
global profiling [118]. PTEN (phosphatase and tensin homolog deleted
on chromosome ten) expressionwas evaluated in cervical cancer by tis-
sue microarray [119]. This study identified that majority of cervical ad-
enocarcinoma patients have PTEN expression, which was correlated
with histologic subtypes of adenocarcinoma [119]. Similarly, RB path-
way was also assessed in 265 paraffin-embedded samples of cervical
intraepithelial neoplasia by immunohistochemistry applied to a tissue
microarray [120]. This group reports that low expression of p16
(INK4a) is associatedwith prognostic significance to predict recurrence,
suggesting that p16 level could be used for stratifying patients for differ-
ent treatment strategy [120]. Additionally, the expression of senescence
and apoptosis markers was determined using immunohistochemical
staining in tissue microarray in cervical cancer. The results demon-
strated that p15 (INK4b), p16 (INK4a) and p14 (ARF) levels were in-
creased in cervical carcinoma, indicating that senescence and
apoptotic pathways could be involved in cervical tumorigenesis [121].
Using a tissue microarray and IHC approach, one group revealed that
up-regulation and nuclear localization of VHR (VH1-related) were ob-
served due to its post-translational stabilization in cervical cancer cell
lines, demonstrating that VHR might be a potential novel marker and
therapeutic target for cervical carcinoma [122]. Using tissuemicroarray,
MMP-2 (matrix metalloproteinase 2) was identified to be highly
expressed in cervical cancer tissues and correlated with lymph node
metastasis and parametrium invasion. Interestingly, MMP-2 level is
not associated with recurrence and survival in patients with cervical
cancer [123]. Wan et al. utilized oligonucleotide microarray and tissue
microarray to reveal that SIX1 and GDF15 could be two potential bio-
markers of cervical cancer progression [124]. Similarly, high level of
human nm23-H1 (nonmetastatic clone 23 type 1) was reported to be
associated with poor differentiation and worse overall survival using
tissue microarray approach in cervical cancer [125]. MEKK3 (mitogen-
activated protein kinase/extracellular signal-regulated kinase kinase ki-
nase 3) and survivin expressions were associatedwith clinical stage, in-
filtration depth, and lymph node metastasis in cervical cancer using
tissue microarray and immunochemistry approaches [126]. In addition,
KLF5 (Krueppel-like factor 5) was confirmed as a potential molecular
marker in cervical cancer by a tissue microarray [127]. Expression of
FGFR (fibroblast growth factor receptor) family members has been val-
idated to be correlated with prognosis in early stage cervical cancer
using a tissue microarray [128]. Recently, high expression of SEL1L
(sel-1 homolog 1), Notch3 (Notch homolog 3) and SOCS3 (suppressor
of cytokine signaling 3) was identified by tissue microarray in cervical
cancer patients [129]. The study from Chen and colleagues confirmed
that FOXM1 (forkhead box M1) and the Hh signaling pathway partici-
pate in cervical cancer by tissuemicroarray analysis. They also indicated
that FOXM1may be a downstream target gene of the Hh signaling path-
way in cervical cancer, which provides a potential novel diagnostic and
therapeutic target for cervical cancer [130]. In addition to proteomics to
identify total protein expression changes, protein tyrosine phosphoryla-
tion changes have been measured in cervical cancer using phosphor-
proteomics [131]. This study revealed that Annexin A1 as well as
DNA-PKcs (DNA-dependent protein kinase, catalytic subunit) could
have synergistic effects with HPV infection [131]. Similarly, nine phos-
phorylation sites of Mcl-1 in response to microtubule targeting agents
were identified using two-dimensional gel electrophoresis and
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phosphoproteomics, implying thatMcl-1 phosphorylation is required to
further dissect its function and role in cervical cancer [132].
2.4. Metabonomics

Metabonomics is to use modern analytical methods to study the
metabolic products of endogenous small molecular substances such as
plasma, urine, tissue homogenate and cells to reveal the metabolic es-
sence of life activities [133]. It has been known that cancer development
and progression often have accompanied with metabolic changes.
Metabolomics has been used to measure cancer metabolism and to
identify altered metabolites and pathways in tumor initiation and pro-
gression [133]. Metabolomics is high efficiency because it does not
need full genome sequencing and a large number of expressed sequence
tags (EST) and are far less than the number of genes and proteins [134].
Over the past decade, cancermetabolic research is revived, and particu-
larly two outstanding characteristics have gotten the center of atten-
tion: (1) Warburg effect: an increased glucose uptake rate and
secretion of lactate even in the presence of oxygen and (2) glutamine
addiction: a high glutamine uptake rate is necessary for cell growth
[135]. Understanding cancer metabolism is important, which could be-
come a focus of chemotherapeutics [136]. A recent research shows the
changes of oncoproteins E6 and E7 in glycosylation, and lymph invasion
has related to the expression levels of some glycogens in cervical carci-
noma. 9 upregulated glycogens and 7 downregulated glycogens in HeLa
shE6/E7 cells have been reported using the microarray analysis [137].
One study has shown that 117 genes were differentially expressed, in
which most genes were involved in regulation of catalytic activity
using transcriptomics analysis between cervical cancer patients and
normal controls [138].

Metabolomics were also applied to cervical cancer using 1H nu-
clear magnetic resonance (1H NMR). Ye et al. detected metabolomics
profiles of serum samples from patients with cervical cancer, CIN, and
chronic cervicitis, respectively. They found that the main metabo-
lites, including formate, tyrosine, β-glucose, inositol, glucine, carni-
tine, glutamine, acetate, alanine, valine, isoleucine, and VLDL (very
low density lipoprotein), could be contributed to these discrimina-
tions [139]. This study indicates that the systemicmetabolic response
might validate the potential biomarkers for cervical cancer. Chai et al.
used 1H NMR combined with chemometric analysis to generate met-
abolic profile data in fecal samples of cervical cancer patients with
radiation-induced acute intestinal symptoms (RIAIS) [140]. The
different metabolic profiles were developed not only between the
pre- and post-radiotherapy RIAIS patients, but also between RIAIS
patients and controls, suggesting that this profile could be useful for
RIAIS diagnosis or therapeutic monitoring [140]. Yin et al. used
UPLC-MS (ultra-performance liquid chromatographic-mass spec-
trometry) to detect the molecular metabolite in plasma of squamous
cervical cancer, and identified two metabolites, phosphatidylcholine
and lysophosphatidylcholine, as novel potential biomarkers for
cervical cancer [141]. Moreover, a metabolomics approach has been
carried out to predict the response to neoadjuvant chemotherapy in
cervical cancer patients [142]. L-valine and L-tryptophan have been
validated as the potential biomarkers for patient response to chemo-
therapy [142]. Furthermore, metabolic signatures in plasma were
assessed by high-performance liquid chromatography in CIN and
cervical squamous cell carcinoma. Compared with healthy controls,
lower levels of plasma amino acids were observed in CIN and cervical
cancers. Arginine and threonine levels were upregulated in plasma of
CIN patients, while there levels were downregulated in cervical can-
cer. Moreover, the plasma levels of a larger group of amino acids were
gradually decreased from CIN to invasive cervical cancer. This study
suggest that plasma-free amino acid profiles could be useful for help-
ing cancer diagnoses in the early stage using blood samples and
metabolomic analysis [143].
2.5. Other Systems Biology Approaches

Recently, commensal bacteria were revealed to be a major factor in
both healthy and disease pathogenesis through human microbiome re-
search. It is expanded beyond the gut to other organ systems, especially
as vaginal microbiome [144]. Many studies have proved the association
between the vaginal microbiome and CIN [145,146]. Previous studies
have shown that a great deal of vaginal flora such as mycoplasma
genitalium, aerobic lactobacilli, Staphylococcus epidermidis, enterococci,
Escherichia coli, and bacteroides species in cervical cancer patients are
diverse compared with that in healthy controls [147,148]. In a word,
microbiomes rich in L. crispatus were connected with healthy patients
while lactobacillus inners associated with higher grades of CIN in
HPV-positive patients and cervical cancer [146,149]. The epigenomics
emerged recently is the research of epigenetic changes at the genomic
level. The essence is to alter the modification of the genome involved
in DNA methylation, histone modifications without affecting the DNA
sequence, thereby affecting individual development, and this change
also can be inherited [150]. DNAmethylation changes and histonemod-
ifications are being studied in cervical cancers of epigenetic regulation
of gene expression. As mentioned above, DNA methylation in the pro-
moter and upstream CpG islands has been contributed to cervical carci-
nogenesis in several tumor suppressor genes including cell cycle,
apoptosis, DNA repair, cell differentiation, transcription, and signaling
pathway [150]. Phosphorylation and acetylation of histone H3were re-
ported significant association with cervical cancer progression [151].
3. Conclusion and Perspective

Systems biology approaches have been utilized to explore the mo-
lecular mechanism of cervical cancer development and progression.
DNA microarray and tissue microarray have been performed to deter-
mine the biomarkers of prognosis and treatment outcome in cervical
cancer. Transcriptomics is the link between genetic genomics and func-
tional proteomics. Specifically, microRNA array, lncRNA array, and
circRNA array have been conducted to dissect the insights into mecha-
nism of cervical carcinoma. It is necessary to mention that the effective
combination of genome, transcriptome, proteome and metabolome
could be a better approach to explore the molecular mechanism and
to identify biomarkers for cervical cancer prognosis. The common path-
ways or targets could be identified in cervical cancer by genome, tran-
scriptome, proteome approaches. For example, p16 level was found to
be downregulated by DNA microarray [35] and tissue microarray
[121]. However, inconsistent results were also found by different ap-
proaches. For instance, p53 was observed to be decreased by DNA mi-
croarray [37], whereas its expression was increased by tissue
microarray [121]. These controversial findings suggest that identified
targets by each approach must be further validated by other multiple
methods.

We think that new systems biology approacheswill be discovered to
define the molecular basis of cervical tumorigenesis, and to impact on
translation medicine of cervical cancer in the near future. Moreover, in
the screening of drug therapy for cervical cancer, such as single drug ac-
tive site or multi-link, multi-target integration and regulation of drug
combination, systems biology approach will become an important
way. In addition, appropriate statistical analyses would be of great
help for systems biology methods. Due to too comprehensive data
from system biology approach, it is difficult to select the key pathways
and important targets involved in cervical cancer development, pro-
gression, and treatment. In a word, using systems biology technology
will largely help us to study the pathogenesis of cervical cancer and
seek diagnostic accuracy, predictive performance and effective treat-
ment for current basic and clinical study. However, it has a long way
for better personalized therapy of human cancer patients by system bi-
ology technologies.
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