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Abstract: We present studies of the electron transport and circular currents induced by the bias voltage
and the magnetic flux threading a ring of three quantum dots coupled with two electrodes. Quantum
interference of electron waves passing through the states with opposite chirality plays a relevant
role in transport, where one can observe Fano resonance with destructive interference. The quantum
interference effect is quantitatively described by local bond currents and their correlation functions.
Fluctuations of the transport current are characterized by the Lesovik formula for the shot noise,
which is a composition of the bond current correlation functions. In the presence of circular currents,
the cross-correlation of the bond currents can be very large, but it is negative and compensates for the
large positive auto-correlation functions.
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1. Introduction

In 1985, Webb et al. [1] presented their pioneering experiment, showing Aharonov-Bohm
oscillations in a nanoscopic metallic ring and a role of quantum interference (QI) in electron transport.
Later, Ji et al. [2] demonstrated the electronic analogue of the optical Mach–Zehnder interferometer
(MZI), which was based on closed-geometry transport through single edge states in the quantum
Hall regime. Theoretical studies [3–7] predicted coherent transport through single molecules with a
ring structure, where, due to their small size, one could show constructive or destructive quantum
interference effects at room temperatures. From 2011, these predictions have been experimentally
verified, using mechanically controllable break junction (MCBJ) and scanning tunneling microscope
break junction (STM-BJ) techniques [8,9] in various molecular systems: Single phenyl, polycyclic
aromatic, and conjugated heterocyclic blocks, as well as hydrocarbons (for a recent review on QI in
molecular junctions, see [10,11] and the references therein).

Our interest is in the internal local currents and their correlations in a ring geometry to see a
role of quantum interference. An interesting aspect is the formation of a quantum vortex flow driven
by a net current from the source to the drain electrode, which has been studied in many molecular
systems [7,10,12–21] (see also [22]). It has also been shown that, under some conditions, a circular
thermoelectric current can exceed the transport current [23]. In particular, our studies focus on the role
of the states with opposite chirality in the ring and on the QI effect and the circular current. Correlations
of the electron currents (shot noise) through edge states in the Mach–Zehnder interferometer have
been extensively studied by Buttiker et al. [24–28] (see also [29] and the references therein). However,
in a metallic (or molecular) ring, the situation is different than in the MZI, as multiple reflections
are relevant to the formation of the circular current. Our studies will show that the transition from
laminar to vortex flow is manifested in the shot noise of local currents. In particular, it will be seen in a
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cross-correlation function for the currents in different branches of the ring, which becomes negative
and large in the presence of the circular current.

The paper is organized as follows. In the next chapter, Section 2, we will present the model of three
quantum dots in a ring geometry, which is the simplest model showing all aspects of QI and current
correlations. The model includes a magnetic flux threading the ring, which changes interference
conditions as well as inducing a persistent current. The net transport current and the local bond
currents, as well as the persistent current (and their conductances), are derived analytically, by means
of the non-equilibrium Keldysh Green function technique. It will be shown that the correlation function
for the net transport current can be expressed as a composition of the correlation functions for the local
currents inside the ring. We will, also, show all shot noise components; in particular, the one for the
net transport current (given by Lesovik’s formula [30]). The next chapters, Sections 3–5, present the
analyses of the results for the case Φ = 0 (without the magnetic flux), for the case with the persistent
current only (without the source-drain bias V), and for the general case (for V 6= 0, Φ 6= 0) showing the
interplay between the bond currents and the persistent current. Finally, in Section 6, the main results
of the paper are summarized.

2. Calculations of Currents and Their Correlations in Triangular Quantum Dot System

2.1. Model

The considered system of three quantum dots (QDs) in an triangular arrangement is presented in
Figure 1. This system is described by the Hamiltonian

Htot = H3QD + Hel + H3QD−el , (1)

which consists of parts corresponding to the electrons in the triangular QD system, in the electrodes,
and in the coupling between the sub-systems, respectively. The first part is given by

H3QD = ∑
i∈3QD

εi c†
i ci + ∑

i,j∈3QD

(
t̃ijc†

i cj + h.c.
)

, (2)

where the first term describes the single-level energy, εi, at the i-th QD and the second term corresponds
to electron hopping between the QDs. Here, the hopping parameters t̃12 = t12eıφ/3 = t̃∗21, t̃23 =

t23eıφ/3 = t̃∗32, and t̃31 = t31eıφ/3 = t̃∗13 include the phase shift φ = 2πΦ/(hc/e), due to presence of the
magnetic flux Φ; where hc/e denotes the one-electron flux quantum. The spin of electrons is irrelevant
in our studies and so it is omitted. We consider transport in an open system with the left (L) and right
(R) electrodes as reservoirs of electrons, each in thermal equilibrium with a given chemical potential
µα and temperature Tα. The corresponding Hamiltonian is

Hel = ∑
k,α∈L,R

εk,α c†
kαckα, (3)

where εk,α denotes an electron spectrum. The coupling between the 3QD system and the electrodes is
given by

H3QD−el = ∑
k
(tL c†

kLc1 + tR c†
kRc2 + h.c.), (4)

with tunneling from the electrodes given by the hopping parameters tL and tR, respectively. The model
omits Coulomb interactions and, therefore, one can derive all transport characteristics analytically.
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Figure 1. Model of the triangular system of three quantum dots (3QDs) threaded by the magnetic flux
Φ and attached to the left (L) and the right (R) electrodes.

2.2. Calculation of Currents

We consider a steady-state current, with the net transport current through the 3QD system,
Itr = I12 + I13, expressed as a sum of the bond currents through the upper and the lower branches

Iij =
e
ıh̄
(t̃ij〈c†

i cj〉 − t̃ji〈c†
j ci〉). (5)

We use the non-equilibrium Green function technique (NEGF), which is described in many
textbooks (e.g., see [31]). To determine the currents, one calculates the lesser Green functions, G<

ji ≡
ı〈c†

i cj〉, by means of the equation of motion method (EOM). The coupling with the electrodes is
manifested by the lesser Green functions g<α = 2π(gr

α − ga
α) fα, where gr,a

α denotes the retarded (r) and
advanced (a) Green functions in the α electrode, and fα = 1/(exp[(E− µα)/kBTα] + 1) is the Fermi
distribution function for an electron with energy E, with respect to a chemical potential µα and at
temperature Tα. For any Green function G<

ji , we separate contributions from the left and the right
electrodes (i.e., we extract the coefficients in front of g<L and g<R ) and, after some algebra, the bond
current can be expressed as

Iij = −
e

2πh̄

∫ ∞

−∞
dE [GL

ij(E) fL − GR
ij (E) fR], (6)

where the dimensionless conductances for the upper and the lower branches are

GL
12 =2ΓLt12=[d23,31d∗23,23]/A, (7)

GR
12 =2ΓRt12=[d∗23,31d∗31,31]/A, (8)

GL
13 =2ΓLt31=[d12,23d∗23,23]/A, and (9)

GR
13 =2ΓRt31=[d12,31d23,31]/A. (10)

Here, we denote the coefficients: d12,23 = e−ıφt12t23 − t31wr
2, d12,31 = t12t31 − e−ıφt23wr

1, d23,31 =

eıφt23t31 − t12w3, d23,23 = t2
23 − wr

2w3, d31,31 = t2
31 − wr

1w3, and the denominator

A = |wr
1t2

23 + wr
2t2

31 + w3t2
12 − wr

1wr
2w3 − 2t12t23t31 cos φ|2, (11)

where wr,a
1 = E− ε1 − γr,a

L , wr,a
2 = E− ε2 − γr,a

R , w3 = E− ε3, Γα = 2=[γa
α]t2

α, and γr,a
α = gr,a

α t2
α.

Note that Equation (6) includes the transport current due to the bias voltage applied to the
electrodes, as well as the persistent current induced by the magnetic flux [a term proportional to sin φ],
which can be written as I12 = Itr

12 − Iφ and I13 = Itr
13 + Iφ, respectively. These coefficients are coupled

with those in (7)–(10):

GL
12 = G12 − GL

φ , GR
12 = G12 + GR

φ , (12)

GL
13 = G13 + GL

φ , GR
13 = G13 − GR

φ . (13)
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The first part is

Itr
ij = − e

2πh̄

∫ ∞

−∞
dE( fL − fR)Gij(E), (14)

where the bond conductances are

G12 = ΓLΓRt12w3[t23t31 cos φ− t12w3]/A, and (15)

G13 = ΓLΓRt23[t12t31w3 cos φ− t23t2
31]/A. (16)

The net transport current is Itr = Itr
12 + Itr

13 and the transmission is given by

T ≡ G12 + G13 = ΓLΓR[2t12t23t31w3 cos φ− t2
12w2

3 − t2
23t2

31]/A. (17)

The persistent current is expressed as

Iφ ≡ − e
πh̄

∫ ∞

−∞
dE (GL

φ fL + GR
φ fR) , (18)

where

GL
φ =ΓLt12t23t31 sin φ [2t2

23 − (wa
2 + wr

2)w3]/A, and (19)

GR
φ =ΓRt12t23t31 sin φ [2t2

31 − (wa
1 + wr

1)w3]/A. (20)

In the next section, we will show that the voltage bias can induce the circular current, where the
bond conductances Gij are larger than unity or negative.

2.3. Calculation of Current Correlations

Here, we consider a single-particle interference effect which takes place in a Mach–Zehnder
or Michelson interferometer, but not in a Hanbury Brown and Twiss situation with a two-particle
interference effect. The current fluctuations are described by the operator ∆ Îij(t)− 〈 Îij(t)〉, and the
current–current correlation function is defined as [32]

Sij,nm(t, t′) ≡ 1
2
[
〈 Îij(t) Înm(t′) + Înm(t′) Îij(t)〉 − 2〈 Îij(t〉〈 Înm(t′)〉

]
. (21)

We consider the steady currents, for which the correlation functions can be represented, in the
frequency domain, by their spectral density

Sij,nm(ω) ≡ 2
∫ ∞

−∞
dτeıωτSij,nm(τ). (22)

In this work, we shall restrict ourselves to studying the current correlations at the zero-frequency
limit ω = 0. As the net transport current is Îtr = Î12 + Î13, its current correlation function can be
expressed as a composition of the correlation functions for the bond currents

Str,tr = S12,12 + S13,13 + 2S12,13. (23)

The correlation functions Sij,in can be derived by means of Wick’s theorem [31] and are expressed as

Sij,in =
e2

πh̄
1
2
{tijtin(〈c†

i cj〉〈cic†
n〉+ 〈c†

i cn〉〈cic†
j 〉))− tijtni(〈c†

i ci〉〈cnc†
j 〉+ 〈c†

ncj〉〈cic†
i 〉))

+tjitni(〈c†
j ci〉〈cnc†

i 〉+ 〈c†
nci〉〈cjc†

i 〉))− tjitin(〈c†
i ci〉〈cjc†

n〉+ 〈c†
j cn〉〈cic†

i 〉))}. (24)
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Once again, we use the NEGF method. As the lesser Green functions, G<
ji ≡ ı〈c†

i cj〉, and the

greater Green functions, G>
ij ≡ −ı〈cic†

j 〉, have the same structure, one should only exchange the
Green functions in the electrodes: g<α = 2π(gr

α − ga
α) fα ↔ g>α = −2π(gr

α − ga
α)(1− fα). Separating

coefficients in front of fL(1− fL), fR(1− fR), and fL(1− fR) + fR(1− fL), and after some algebra,
one can derive a compact formula for any current–current function. The auto-correlation function for
the net transport current is given by the well-known Lesovik formula [30,33,34] (see also [32,35] for a
multi-terminal and multi-channel case)

Str,tr =
e2

πh̄

∫ ∞

−∞
dE
{
T 2 [ fL(1− fL) + fR(1− fR)] + T (1− T ) [ fL(1− fR) + fR(1− fL)]

}
, (25)

where T is the transmission through the 3QD system. For a given temperature TL = TR = T, one has
fL(1− fR) + fR(1− fL) = coth[(µL − µR)/2kBT]( fL − fR) and, thus,

Str,tr = 2Itr coth
(

eV
2kBT

)
− e2

πh̄

∫ ∞

−∞
dE T 2 ( fL − fR)

2 . (26)

When the scale of the energy dependence ∆E of the transmission T is much larger than both the
temperature and applied voltage (i.e., ∆E � eV � kBT), one can obtain the well known explicit
relation (see Blanter and Buttiker [32])

Str,tr =
e2

πh̄

[
2kBT T 2(EF) + eV coth

(
eV

2kBT

)
S sh

tr,tr

]
. (27)

The first term is the Nyquist-Johnson noise at equilibrium and the second term, with S sh
tr,tr = T (EF)(1−

T (EF)), corresponds to the shot noise [30,32,34].
The correlation functions for the bond currents are calculated from Equation (24) and are

expressed as

Sij,ik =
e2

πh̄

∫ ∞

−∞
dE
{
S sh

ij,ik [ fL(1− fR) + fR(1− fL)] + [GL
ijGL

ik fL(1− fL) + GR
ij GR

ik fR(1− fR)]
}

, (28)

where Gα
ij are given by (7)–(10), and the dimensionless spectral functions of the shot noise

components are

S sh
12,12 = ΓLΓRt2

12|d2
23,31 − d23,23d∗31,31|2/A2, (29)

S sh
13,13 = ΓLΓRt2

31|d∗12,23d∗23,31 + d12,31d∗23,23|2/A2, (30)

S sh
12,13 = ΓLΓRt12t31<[(d2

23,31 − d23,23d∗31,31)(d
∗
12,23d∗23,31 + d12,31d∗23,23)]/A2, and (31)

S sh
tr,tr ≡ S sh

12,12 + S sh
13,13 + 2S sh

12,13 = ΓLΓR|t12(d2
23,31 − d23,23d∗31,31) + t31(d12,23d23,31 + d∗12,31d23,23)|2/A2. (32)

3. Bond Currents and Their Correlations: Driven Circular Current in the Case of Φ = 0

Let us analyse the bond currents in detail; first in the absence of the magnetic flux, Φ = 0, and for
a linear response limit V → 0. Using the derivations from the previous section, one can easily calculate
the bond conductances and current correlation functions. The results are presented in Figure 2 for an
equilateral triangle 3QD system (with all inter-dot hopping parameters t12 = t23 = t31 = −1, which
is taken as unity in our further calculations) and for various values of the energy level ε3 at the 3rd
QD. The central column corresponds to the case ε1 = ε2 = ε3 = 0, when the eigenenergies are given
by Ek = 2t cos k, for the wave-vector k = 0 and the degenerated state for k = ±2π/3. It can be seen in
the transmission (black curve), which is equal to T = 1 at E = −2 and T = 0 at E = 1, where the Fano
resonance takes place, with destructive interference of two electron waves. At low E < 0, the incoming
wave from the left electrode is split into two branches and the bond conductances are positive,
0 ≤ G12,G13 ≤ 1 (see the blue and green curves in the top panel of Figure 2). The cross-correlation
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function S sh
12,13 (for the currents in both branches) is positive (see the red curve in the bottom panel in

Figure 2). Note that, at the lowest resonant level, all correlation functions S sh
12,12 = S sh

13,13 = S sh
12,13 = 0,

which means that the currents in both branches are uncorrelated.
For E > 0, the conductances G12 and G13 can be negative and exceed unity (with their maximal

absolute values inversely proportional to the coupling Γα). This manifests a circular current driven by
injected electronic waves to the 3QD system, which can not reach the drain electrode; therefore, they
are reflected backwards to the other branch of the ring. The circular current can be characterized by
the conductance (see also [16])

Gdr ≡
{
G12 for G12 < 0,
−G13 for G13 < 0,

(33)

where the superscript “dr” marks the contribution to the circular current driven by the bias voltage,
in order to distinguish it from the persistent current induced by the flux (which will be analysed later).
There is some ambiguity in definition of the circular current. Our definition (33) is similar to the one
given by the condition sign[G12] = −sign[G13] for the vortex flow, used by Jayannavar and Deo [36] and
Stefanucci et al. [16] (see [37]–which refers to [7] ).

-3 -2 -1 0 1 2 3
E

-3 -2 -1 0 1 2 3
E

0

0.2

0.4

S tr
,tr

 , 
S 12

,1
2 ,

 S 13
,1

3 ,
 -

S 12
,1

3

-3 -2 -1 0 1 2 3
E

-2

-1

0

1

2

3

T, 
G 12

 , 
G 13

sh
sh

sh
sh

e3=-2 e3=0 e3=2

a) b) c)

f)e)d)

Figure 2. (Top) Transmission and dimensionless bond conductances: T—black, G12—blue,
and G13—green. (Bottom) Dimensionless spectral function of the shot noise: S sh

tr,tr—black, S sh
12,12—blue,

S sh
13,13—green, and −S sh

12,13—red; calculated as a function of the electron energy E for the equilateral
triangle system of 3QDs (with the inter-dot hopping t12 = t23 = t31 = −1, which is taken as unity in
this paper) in the linear response limit V → 0. The dot levels are ε1 = ε2 = 0 and ε3 = −2, 0, 2, for left,
center, and right columns, respectively. The coupling with the electrodes is taken to be ΓL = ΓR = 0.25.
Note that the cross-correlation function Ssh

12,13 (red) is plotted negatively to show the zero crossing
more clearly.

For the considered case in Figure 2b, with ε3 = 0, the circular current is driven counter-clockwise
for 0 < E < 1 and changes its direction to clockwise at the degeneracy point, E = 1 (i.e., when
G13 becomes negative). All correlation functions are large in the presence of the circular current;
their maximum is inversely proportional to Γ2

α. The cross-correlation S sh
12,13 is large but negative and,

therefore, this component reduces the transport shot noise, S sh
tr,tr = S sh

12,12 + S sh
13,13 + 2S sh

12,13 to the Lesovik
formula T (1− T ), which reaches zero at the degeneracy point E = 1 (see the black curve in Figure 2e).
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This situation is similar to multi-channel current correlations in transport through a quantum dot
connected to magnetic electrodes [38], where cross-correlations for currents of different spins usually
reduce the total shot noise to a sub-Poissonian noise with Fano factor F < 1 (however, in the presence
of Coulomb interactions, the cross-correlations can be positive and lead to a super-Poissonian shot
noise with F > 1).

The plots on the left and right hand sides of Figure 2 give more insight into the circular current
effect. They are calculated for the dot level ε3 = ∓2 shifted by a gate potential, which breaks the
symmetry of the system and removes the degeneracy of the states. Three resonant levels can be
observed with T = 1, where two of them are shifted to the left/right for ε3 = ∓2; however, the state at
E = 1 is unaffected. There is still mirror symmetry, for which one gets three eigenstates, where two of
them are linear compositions of all local states, but the one at E = 1 has the eigenvector 1/

√
2(c†

1 − c†
2)|0〉,

which is separated for the 3rd QD. Therefore, the bond currents are composed of the currents through
all three eigenstates, and their contribution depends on E. From these plots, one can see that the
circular current is driven, for E > ε3, when the cross-correlation S sh

12,13 becomes negative. The direction
of the current depends on the position of the eigenlevels and their current contributions. For ε3 = −2,
the current circulates clockwise, whereas its direction is counter-clockwise for ε3 = 2.

Here, we assumed a flat band approximation (FBA) for the electronic structure in the electrodes
(i.e., the Green functions gr,a

α = ∓ıπρ, where ρ denotes the density of states). Appendix A presents
analytical results for the currents and shot noise in the fully-symmetric 3QD system coupled to a
semi-infinite chain of atoms. The results are qualitatively similar. However, the FBA is more convenient
for the analysis than the system coupled to atomic chains; in particular, for the cases with ε3 = ∓2,
when localized states appear at −2.99 and 2.56 (i.e., below/above the energy band of the atomic chain).

The above analysis was performed under the assumption of a smooth energy dependence of
the conductance in the small voltage limit V → 0 and at T = 0. However, the conductances exhibit
sharp resonant characteristics in the energy scale ∆E ∝ Γα and, therefore, one can expect that these
features will be smoothed out with an increase of voltage bias and temperature. Figure 3 presents the
Fano factor F = Str,tr/2eItr, which is the ratio of the current correlation function to the net transport
current, which was calculated numerically from Equations (17) and (26). At E = −2, one can observe
the evolution from the coherent regime, from F = 0 to F = 1/2 in the sequential regime, for eV � Γα

or kBT � Γα. Quantum interference plays a crucial role at E = 1, leading to the Fano resonance for
which the transmission T = 0 and F = 1 in the low voltage/temperature regime. An increase of the
voltage/temperature results only in a small reduction of the Fano factor.

-3 -2 -1 0 1 2 3
EF

kBT

0.001
0.1
0.2
0.3
0.40

0.2

0.4

0.6

0.8

1

F

-3 -2 -1 0 1 2 3
EF

eV
0.01
0.5
1.0
1.5
2.0a) b)

Figure 3. Fano factor as a function of the Fermi energy EF for the equilateral triangle 3QDs system
(t12 = t23 = t31 = −1 and ε1 = ε2 = ε3 = 0) (a) for various bias voltages eV = 0.01, 0.5, 1.0, 1.5,
and 2.0, at T = 0; and (b) for various temperatures kBT = 0.001, 0.1, 0.2, 0.3, and 0.4, for V → 0.
The coupling to the electrodes is taken as ΓL = ΓR = 0.25, and the chemical potentials in the electrodes
are µL = EF − eV/2 and µR = EF + eV/2.
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4. Persistent Current and Its Noise: The Case V = 0

The persistent current and its noise has been studied in many papers (e.g., by Büttiker et al. [39–42],
Semenov and Zaikin [43–46], Moskalates [47], and, more recently, by Komnik and Langhanke [48])
using full counting statistics (FCS), as well as in 1D Hubbard rings by exact diagonalization by Saha
and Maiti [49] (see, also, the book by Imry [50]).

Here, we briefly present the results for the persistent current and shot noise in the triangle of
3QDs. Notice that, in the considered case, the phase coherence length of electrons is assumed to be
larger than the ring circumference, Lφ � L [51]. The circular current is given by Equation (18), which
shows that all electrons, up to the chemical potential in the electrodes, are driven by the magnetic
flux Φ. Figure 4 exhibits the plots of Iφ, derived from Equation (18), for different couplings with the
electrodes. In the weak coupling limit, where Γ→ 0 and the perfect ring is embedded in the reservoir,
the persistent current can be simply expressed as

Iφ = e ∑
k

vk fk = − e
h̄ ∑

k
2t sin(k + φ/3) fk , (34)

where fk = 1/(exp[(EF − Ek)/kBT] + 1) is the Fermi distribution for the electron with wave-vector k,
energy Ek = 2t cos(k + φ/3), and velocity vk = (1/h̄)∂Ek/∂k = (−2t/h̄) sin(k + φ/3), and where φ =

2πΦ/(hc/e) is the phase shift due to the magnetic flux Φ. The sum runs over k = 2πn/(Na) for n = 0,±1,
where N = 3 and a = 1 is the distance between the sites in the triangle. The current correlator is derived
from Equation (24)

Sφ,φ =
e2

h̄ ∑
k

4t2 sin2(k + φ/3) fk(1− fk) . (35)

This result says that fluctuations of the persistent current could occur when the number of
electrons in the ring fluctuates (i.e., an electron state moves through the Fermi level and Iφ jumps).
We show, below, that the coupling with the electrodes (as a dissipative environment) results in current
fluctuations [40,41], as well.

-0.25 0 0.25 0.5
f/2p

-3
-2
-1
0
1
2
3

If

-0.5 -0.25 0 0.25
f/2p

EF

-1.5
-0.75
1.5

a) b)G=0.01 G=0.25

Figure 4. Persistent current Iφ versus the flux φ threading the equilateral triangle system of 3QDs
(t12 = t23 = t31 = −1 and ε1 = ε2 = ε3 = 0). The coupling is taken as ΓL = ΓR = Γ = 0.01 and 0.25;
the Fermi energies are EF= −1.5 (black), −0.75 (blue), 1.5 (red); and T = 0.

At the limit, V → 0, the integrand function of the noise Sij,in, Equation (28), is proportional to
f (E)(1− f (E)), which becomes the Dirac delta for T → 0 and, therefore, one can analyze the spectral
function Sφ,φ = S12,12 + S13,13 − 2S12,13, where the components are Sij,in = S sh

ij,in + GL
ijG

L
in + GR

ij G
R
in (see

Equations (7)–(10) and (29)–(31)). Figure 5 presents the correlation function Sφ,φ and its various
components for the Fermi energy EF = −1.5 and the strong coupling ΓL = ΓR = 1 when fluctuations
are large. Notice that the fluctuations of the bond currents S12,12 and S13,13 (the blue and green curves,
respectively) are different, although the average currents are equal. The cross-correlation function
S12,13 is positive at φ = 0, but it becomes negative for larger φ, due to the quantum interference between
electron waves passing through different states (as described in the previous section).
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Figure 5 also shows (GL
12)

2 (blue-dashed curve) and (GL
12)

2 (blue-dotted curve), which correspond
to the local fluctuations of the injected/ejected currents to/from the upper branch on the left and
right junctions, respectively (see Equation (28)). The magnetic flux breaks the symmetry, inducing the
persistent current and, therefore, the local conductances GL

12 and GR
12 are asymmetric.

0

2

4

6

No
ise

s

-0.5 -0.25 0 0.25 0.5
f/2p

Sff

-S12,13

S13,13

S12,12

S12,12

S12,12

S12,12
LL

RR

Sff

-S12,13

S13,13

S12,12

S12,12

Figure 5. Flux dependence of spectral function of the persistent current correlator Sφ,φ (black) and
its components: S12,12 (blue), S13,13 (green), -S12,13 (red), and SLL

12,12 = (GL
12)

2 (blue-dashed), SRR
12,12 =

(GR
12)

2, (blue-dotted), respectively. We assume strong coupling: ΓL = ΓR = 1.0, EF = −1.5, and T = 0.

5. Correlation of Persistent and Transport Currents, Φ 6= 0 and V 6= 0

In this section, we analyze the currents and their correlations in the general case, derived from
Equations (6), (14), (18), and (28), in the presence of voltage bias and magnetic flux. The results for the
conductances and the spectral functions of the shot noise are presented in Figure 6. The magnetic flux
splits the degenerated levels at E = 1 and destroys the Fano resonance. Figure 6a shows that there is
no destructive interference for a small flux φ = 2π/16, and the transmission is T = 1 for all resonances.
One can observe the driven circular current for E > 0, with negative G12 and G13, but their amplitudes
are much lower than in the absence of the flux (compare with Figure 2b for φ = 0). For a larger flux,
φ = 2π/4, there is no driven component of the circular current (see Figure 6b, where G12, G13 ≥ 0).
It can also be seen that, for the state at E = 0, the electronic waves pass only through the lower branch
of the ring, and the upper branch is blocked (with G13 = 1 and G12 = 0, respectively).

-3 -2 -1 0 1 2 3
E

0

0.2

0.4

S tr
,tr

 , 
S 12

,1
2 
, S

13
,1

3 
, -

S 12
,1

3

-3 -2 -1 0 1 2 3
E

-0.5

0

0.5

1

1.5

T, 
G 12

 , 
G 13

sh
sh

sh
sh

f=2p/16 f=2p/4

a) b)

d)c)

Figure 6. (Top) Energy dependence of driven conductance G12 (blue), G13 (green) and transmission
T (black). (Bottom) Shot noise S sh

tr,tr (black) with the components: S sh
12,12 (blue), S sh

13,13 (green),
and −S sh

12,13 (red) for the considered triangular 3QD system threaded by the flux φ = 2π/16 (left) or
φ = 2π/4 (right); the coupling is ΓL = ΓR = 0.25, and T = 0. Note that we plot −Ssh

12,13.
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The lower panel of Figure 6 presents the spectral functions of the shot noise. According the
Lesovik formula, S sh

tr,tr = 0 at the resonant states (as T = 1). This seems to be similar to the case φ = 0
presented in the lower panel in Figure 2. However, there is a great difference in the components of
the shot noise S sh

ij,in, indicating the different nature of transport through these states and the role of
quantum interference. Let us focus on the lowest resonant state, at E = −2, in Figure 6c, and compare
with that in Figure 2e, in the absence of the flux. In the former case, the currents in both branches were
uncorrelated, and S sh

12,12 = S sh
13,13 = S sh

12,13 = 0. In the presence of the flux, quantum interference becomes
relevant, which is seen in the shot noise (Figure 6c). Now, the currents in both branches are correlated;
S sh

12,13 is negative close to resonance and fully compensates for the positive contributions S sh
12,12 and

S sh
13,13 at resonance. For φ = 2π/4 (see Figure 6d), all shot noise components are large, which indicates a

strong quantum interference effect.
Figure 7 shows the Fano factor in the presence of the flux φ = 2π/16 and for various bias voltages.

Compared with the results in Figure 3 for φ = 0, one can see how a small flux can destroy quantum
interference and change electron transport. It is particularly seen close to E = −1, where the states with
opposite chirality are located. In the case φ = 0, one can observe the Fano resonance with a perfect
destructive interference, T = 0 and F = 1. With an increase of the flux φ, the Fano dip disappears,
the two states are split, and transmission reaches its maximum value T = 1; the Fano factor F = 0 when
the splitting ∆E > Γα. A similar effect was seen in the case of Figure 2, where a change of the position
of the local level ε3 removed the state degeneracy and destroyed the Fano resonance.

0

0.2

0.4

0.6

0.8

1

F

-4 -3 -2 -1 0 1 2 3 4
EF

eV
0.01
0.5
1.0
1.5
2.0

Figure 7. Fano factor as a function of EF for the considered 3QD system threaded by the flux φ = 2π/16
and for various bias voltages eV = 0.01, 0.5, 1.0, 1.5, and 2.0. The coupling is ΓL = ΓR = 0.25,
the chemical potentials are µL = EF − eV/2 and µR = EF + eV/2, and T = 0.

For the strong coupling ΓL = ΓR = 1, the intensity of the transport current is comparable to
the persistent current and, therefore, one can expect a significant driven circular current. Figure 8
presents the flux dependence of the total circular current Ic and its driven component Idr, as well as the
transport current Itr, for various voltages. For the considered case EF = 0.9, the driven current circulates
counter-clockwise and deforms the flux dependence of the circular currents, which become asymmetric.
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 , 
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r  ,
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Figure 8. Circular current Ic = Idr + Iφ (solid curves), its driven component Idr (dashed curves),
and the net transport current Itr (dotted curves) versus φ for various bias voltages: eV = 0.01, 0.5,
1.0, and 1.5. We assume a strong coupling ΓL = ΓR = 1, the chemical potentials are µL = EF − eV/2,
µR = EF + eV/2, EF = 0.9, and T = 0.

6. Summary

We considered the influence of quantum interference on electron transport and current correlations
in a ring of three quantum dots threaded by a magnetic flux. We assumed non-interacting electrons
and calculated the bond conductances, the local currents, and the current correlation functions—in
particular, the shot noise—by means of the non-equilibrium Keldysh Green function technique, taking
into account multiple reflections of the electron wave inside the ring. As we considered elastic
scatterings, for which Kirchhoff’s current law is fulfilled, the transmission T = G12 + G13 is a sum of the
local bond conductances and the shot noise for the transport current is a composition of the local current
correlation functions, S sh

tr,tr = S sh
12,12 + S sh

13,13 + 2S sh
12,13 = T (1− T ), which gives the Lesovik formula.

In the system, having triangular symmetry, the eigenstates E0 = −2 and E± = 1 (with the
wavevector k = 0 and k = ±2π/3) play a different role in the transport, which is seen in the bond
conductances and the shot noise components. An electron wave injected with energy close to E0 is
perfectly split into both branches of the ring and the current cross-correlation function S sh

12,13 is positive.
At the resonance E0, the transmission T = 1 and all correlation functions S sh

12,12 = S sh
13,13 = S sh

12,13 = 0,
which means that the bond currents are uncorrelated. The magnetic flux changes quantum interference
conditions and correlates the bond currents; the cross-correlation S sh

12,13 becomes negative at the
resonance and fully compensates the positive auto-correlation components S sh

12,12 and S sh
13,13 (with

S sh
tr,tr = 0).

Quantum interference plays a crucial role in transport through the degenerate states at E± = 1,
where one can observe Fano resonance with destructive interference. In this region, the circular current
Idr can be driven by the bias voltage. The bond conductances have an opposite sign, their maximal
value is inversely proportional to the coupling, Γα, with the electrodes, and they can be larger than unity.
The direction of Idr depends on the bias voltage and the position of the Fermi energy EF, with respect
to the degenerate state E±. The auto-correlation functions S sh

12,12, S sh
13,13 are large (inversely proportional

to Γ2
α) close to the resonance. The cross-correlator S sh

12,13 is negative in the presence of the driven circular
current. Our calculations show that a small magnetic flux, φ = 2π/16, can destroy the Fano resonance,
and two resonance peaks (with T = 1) appear. The driven component, Idr, is reduced with an increase
of φ, and it disappears at φ = 2π/4. However, quantum interference still plays a role; the bond currents
are strongly correlated (with large S sh

12,12 and S sh
13,13 and negative S sh

12,13). For a large coupling, the driven
part Idr can be large and can profoundly modify the total circular current Ic = Idr + Iφ.

We also performed calculations of the bond currents and their correlations for rings with a
various number of sites; in particular, for the benzene ring in para-, metha-, and ortho-connection
with the electrodes. The results are qualitatively similar to those presented above for the 3QD ring:
Quantum interference of the travelling waves with the eigenstates of opposite chirality leads to the
driven circular currents, accompanied by large current fluctuations with a negative cross-correlation
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component. To observe this effect, the two conducting branches should be asymmetric; in particular,
in the benzene ring, the driven circular current appears for the metha- and ortho-connections, but is
absent in the para-connection, where both conducting branches are equivalent (see also [7]).

An open problem is including interactions between electrons into the calculations of the coherent
transport and shot noise. Coulomb interactions can be taken into account in the sequential regime [52],
or by using the real-time diagrammatic technique [53–55]; however, in practice, one includes only first-
and second-order diagrams with respect to the tunnel coupling and the role of QI is diminished. In
principle, one can treat QI on an equal footing with electron interactions in the framework of quantum
field theory [56], as was done for the Anderson single impurity model, by means of full counting
statistics (FCS), where the average current and all its moments were calculated [57]. However, this is a
formidable task, even for the simple 3QD model.
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Appendix A. Coupling to Atomic Chain Electrodes: Analytical Results

The results for the conductances and shot noise may be simplified when we take all hopping
integrals equal to t, the same position of the site levels ε = 0, and the symmetric coupling tL = tR = t,
with the electrodes as a semi-infinite atomic chain. In this case, the Green functions in the electrodes
are gr = eık/t and ga = e−ık/t and the electron spectrum is Ek = 2t cos k. From Equations (7)–(10), one
can calculate the dimensionless bond conductances as

GL
12 = 2 sin k [sin k + sin 3k− sin(2k + φ)] /A , (A1)

GR
12 = 2 sin k [sin k + sin 3k− sin(2k− φ)] /A , (A2)

GL
13 = 2 sin k [sin k− sin(2k− φ)] /A , and (A3)

GR
13 = 2 sin k [sin k− sin(2k + φ)] /A , (A4)

where the denominator

A = 4 + cos 2φ− 2 cos φ(3 cos k− cos 3k)− cos 4k. (A5)

It is seen an asymmetry with respect to the direction of the magnetic flux (to φ) for the conductances
GL

ij and GR
ij from the left and the right electrode. The transmission, T , is expressed as

T ≡ GL
12 + GL

13 = GR
12 + GR

13 = G12 + G13 = 2 sin2 k[1− 4 cos k(cos φ− cos k)]/A , (A6)

where the driven part of the bond conductances are calculated using Equations (15) and (16)

G12 = 4 sin2 k cos k(2 cos k− cos φ)/A , (A7)

G13 = 2 sin2 k(1− 2 cos φ cos k)/A , and (A8)

GL
φ = GR

φ = 2 sin φ sin k cos 2k/A , (A9)

and, from Equations (19) and (20), the part induced by the flux is

GL
φ = GR

φ = 2 sin φ sin k cos 2k/A . (A10)

It can be seen that the conductance G12 becomes negative at k = π/2 (i.e., when the circular current
becomes driven).
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The shot noise for the bond currents is expressed as

S sh
12,12 = 4 sin2 k |eıφ(cos φ− 2 cos k) + cos 2k|2/A2 , (A11)

S sh
13,13 = 4 sin2 k | cos k− eıφ|2/A2, (A12)

S sh
12,13 = −4 sin2 k

[
2 cos φ cos k(cos φ− cos k)2 + sin2 φ

]
/A2, and (A13)

S sh
tr,tr = T (1− T ) = 4 sin2 k(cos φ− cos k)2[1− 4 cos k(cos φ− cos k)]/A2 . (A14)

Notice that the cross-correlation S sh
12,13 can be positive or negative in the laminar or the vortex regime,

respectively.
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