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Proline metabolism
reprogramming of trained
macrophages induced by early
respiratory infection combined
with allergen sensitization
contributes to development
of allergic asthma in
childhood of mice
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Background: Infants with respiratory syncytial virus (RSV)-associated

bronchiolitis are at increased risk of childhood asthma. Recent studies

demonstrated that certain infections induce innate immune memory (also

termed trained immunity), especially in macrophages, to respond more

strongly to future stimuli with broad specificity, involving in human

inflammatory diseases. Metabolic reprogramming increases the capacity of

the innate immune cells to respond to a secondary stimulation, is a crucial step

for the induction of trained immunity. We hypothesize that specific metabolic

reprogramming of lung trained macrophages induced by neonatal respiratory

infection is crucial for childhood allergic asthma.

Objective: To address the role of metabolic reprogramming in lung trained

macrophages induced by respiratory virus infection in allergic asthma.

Methods: Neonatal mice were infected and sensitized by the natural rodent

pathogen Pneumonia virus of mice (PVM), a mouse equivalent strain of human

RSV, combined with ovalbumin (OVA). Lung CD11b+ macrophages in the

memory phase were re-stimulated to investigate trained immunity and

metabonomics. Adoptive transfer, metabolic inhibitor and restore
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experiments were used to explore the role of specific metabolic

reprogramming in childhood allergic asthma.

Results: PVM infection combined with OVA sensitization in neonatal mice

resulted in non-Th2 (Th1/Th17) type allergic asthma following OVA challenge in

childhood of mice. Lung CD11b+ macrophages in the memory phage

increased, and showed enhanced inflammatory responses following re-

stimulation, suggesting trained macrophages. Adoptive transfer of the trained

macrophages mediated the allergic asthma in childhood. The trained

macrophages showed metabolic reprogramming after re-stimulation.

Notably, proline biosynthesis remarkably increased. Inhibition of proline

biosynthesis suppressed the development of the trained macrophages as

well as the Th1/Th17 type allergic asthma, while supplement of proline

recovered the trained macrophages as well as the allergic asthma.

Conclusion: Proline metabolism reprogramming of trained macrophages

induced by early respiratory infection combined with allergen sensitization

contributes to development of allergic asthma in childhood. Proline

metabolism could be a well target for prevention of allergic asthma in

childhood.
KEYWORDS

allergic asthma, trained macrophages, innate immune memory, proline metabolism
reprogramming, respiratory virus infection
Introduction

Asthma is a major public health problem that affects 300

million people worldwide, among which are a large proportion

of children (1). Aeroallergen sensitization is one of the strongest

asthma risk factors, and most frequently acts in synergy with

other proinflammatory environmental cofactors, most notably

respiratory viral infections, to drive disease development (2).

The most severe childhood asthma, and the type that confers the

highest ensuing risk for progression to persistent asthma, is

encountered when lower respiratory infections occur against a

background of pre-existing aeroallergen sensitization, in

particular during the period when postnatal lung growth and

differentiation are proceeding most rapidly (2, 3). Increasing

evidence is emerging to suggest that viral respiratory infections

in early life are related with the medium and long-term

development of asthma (4, 5). RSV is the most important

respiratory pathogen for infants. RSV infects more than 60%

of children in their first year of life (6). Epidemiological studies

have reproducibly implicated RSV-bronchiolitis as a major risk

factor for the onset and progression of asthma (7). Infants

hospitalized with RSV-associated bronchiolitis, or even to mild
02
RSV disease are at increased risk of asthma later in

childhood (8).

The association between bronchiolitis caused by RSV and the

development of recurrent wheezing and/or asthma was first

described more than 40 years ago, but the underlying

mechanisms are unclear. Elucidating the underlying

mechanisms of the childhood asthma associated with

respiratory virus infection in early life is critical for developing

effective asthma treatments. A growing concern is that viral

infections during the neonatal period perturb immunological

homeostasis in the airways, and is responsible for an

immunopathological memory in the lungs that could influence

the severity of asthma in childhood. In newborns, lung myeloid

cells are the key cell populations for immune tolerance and

immune response (9). At postnatal day 7, myeloid cells, such as

monocytes and macrophages reach adult-like cell frequencies,

while lymphoid cells have not reached half of the maximum (9). A

persistent post viral effects on the population dynamics of lung

myeloid cell populations and their functional phenotype have

been confirmed in parainfluenza and RSV infected mouse models

(10, 11). Recent studies demonstrated that certain infections and

vaccinations induce innate immune memory (also termed trained
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immunity), especially in macrophages, to respond more strongly

to future stimuli with broad specificity (12), resulting in non-

specific protection against reinfection (13), or involving in human

inflammatory diseases (14). Metabolic reprogramming, such as

glucose metabolism and amino acid metabolism, which increases

the capacity of the innate immune cells to respond to a secondary

stimulation, is a crucial step for the induction of trained immunity

(15). The characterization of the differential metabolic responses

of the different cells depends on the type of stimulus, cell subset, or

tissue microenvironment (15). We hypothesize that specific

metabolic reprogramming of lung trained macrophages induced

by neonatal respiratory virus infection contributes childhood

allergic asthma, which may provide a prevention or treatment

target for allergic asthma in childhood.

In this study, the natural rodent pathogen Pneumonia virus of

mice (PVM), a mouse equivalent strain of human RSV, was used

to infect neonatal mice (16), followed with allergen ovalbumin

(OVA) sensitization as a co-factor. The mice showed non-Th2

(Th1/Th17) type allergic asthma following OVA challenge. PVM

infection combined with OVA sensitization (PVM-OVA) induced

lung trained macrophages, which mediated the allergic asthma in

childhood. Notably, proline metabolic reprogramming is crucial

for development of the trained macrophages as well as the allergic

asthma. Inhibition of excessive proline synthesis prevented

childhood allergic asthma.
Materials and methods

Mice

Specific pathogen-free BALB/c suckling mice (5 days post

birth) and female mice (4 or 6 weeks) were obtained from

Hebei Laboratory Animal Center (Shijiazhuang, China),

housed and manipulated according to the Care and Use of

Laboratory Animals (China). All animal experiments were

approved by the “Laboratory Animal Ethical and Welfare

Committee Hebei Medical University” under number

IACUC-Hebmu-2020010.
Frontiers in Immunology 03
Virus

PVM stain 15 was obtained from the American Type Culture

Collection (ATCC), passaged in Six-week-old BALB/c mice, and

titrated in BHK21 cells. The titer was determined by reed-

Muench method.
Animal treatment

Mice were treated as Table 1. Suckling mice were sensitized by

PVM (2500 TCID50) and/or OVA (0.02%, 5 µl per mouse, In

vivoGen, USA), or along with 10 m g/g BPTES (HY 12683, MCE,

NJ, USA) or 50 mg/g NFLP (N-Formyl-L-proline, Department of

Medicinal Chemistry, Hebei Medical University), and 0.2mg/g

Proline (Energy Chemical, Shanghai, China). Mice were sacrificed

for testing immune memory on day 20, or challenged daily from

day 21 to 25 with OVA (0.4%,50ul) intranasally for testing airway

hyperreactivity and lung inflammation.
Airway hyperreactivity

Lung resistance index (RI) and dynamic compliance (Cdyn)

in response to increasing doses of inhaled methacholine (Mch,

doses: 6.25,12.5,25, and 50 mg/ml) was assessed using Buxco

FinePointe Mouse RC site. Data are expressed as a percentage

change from baseline.
BALF collection

Bronchoalveolar lavages were performed as previously

described (17). Briefly, bronchoalveolar lavage fluid (BALF) was

collected by washing the lungs of a mouse with 700ul normal

saline via bronchus. Collected BALF was centrifuged, the cell

pellet was resuspended in PBS, and leukocytes were counted by

standard optical microscope or cell types were analyzed by

flow cytometry.
TABLE 1 Animal sensitization and challenge protocol.

Infection(5d post birth)0d Sensitization3d Sensitization4d Challenge21-25d

PBS PBS i.n. PBS i.n. PBS i.n. OVA i.n.

PBS-OVA PBS i.n. OVA i.n. OVA i.n. OVA i.n.

PVM PVM i.n. OVA i.n.

PVM-OVA PVM i.n. OVA i.n. OVA i.n. OVA i.n.

PVM-OVA+BPTES PVM i.n. + BPTES i.p. OVA i.n. + BPTES i.p. OVA i.n. OVA i.n.

PVM-OVA+NFLP PVM i.n. + NFLP i.p. OVA i.n.+ NFLP i.p. OVA i.n. OVA i.n.

PVM-OVA + BPTES + Pro PVM i.n. + BPTES i.p. + Pro i.p. OVA i.n. + BPTES i.p. + Pro i.p. OVA i.n. OVA i.n.

PVM-OVA + NFLP+ Pro PVM i.n. + NFLP i.p. + Pro i.p. OVA i.n. + NFLP i.p. +Pro i.p. OVA i.n. OVA i.n.
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Flow cytometry

Lung single cells were incubated with fluorescein labeled

antibodies, anti-mouse CD11b-PE, CD69-FITC, TLR4-APC,

CD49a-PE-vio770, Gr-1-FITC (MACS, Miltenyi, Germany). The

cells were analyzed on flow cytometry (BD), and FACS data were

analyzed using Cell Quest software (Becton Dickinson).
Histopathology

Lung tissues were fixed in 4% paraformaldehyde. Paraffin-

embedded sections were stained using Hematoxylin & Eosin

(H&E) or Periodic Acid Schiff (PAS), then scored blindly as

previously described (18, 19). The lungs then were embedded in

paraffin, sectioned, and stained with hematoxylin/eosin or

periodic-acid Schiff reaction mixture for detection of mucin.

The severity of inflammation was evaluated separately for the

alveolar and peribronchial tissue and perivascular spaces in a

group-blind fashion. The degree of inflammation in the alveolar

tissue was graded as follows: 0, normal; 1, increased thickness of

the interalveolar septa (IAS) by edema and cell infiltration; 2,

increased thickness of IAS with presence of luminal cell

infiltration; 3, abundant luminal cell infiltration; and 4,

inflammatory patches formed. The degrees of inflammation in

the peribronchial and perivascular spaces were graded as follows:

0, no infiltrate; 1, slight cell infiltration noted; 2, moderate cell

infiltration noted; and 3, abundant cell infiltration noted. The

mucus secretion was assessed on PAS-stained sections and

consists in general of mucopolysaccharides staining at the apical

pole of goblets cells in the peribronchial area, which was graded

using a semi-quantitative score from 0 to 5 with increasing grade

of infiltration by 2 observers independently as follows: 1 = Normal

lung; nomucus; 2 =Mucus in 1/3 of the bronchi; 3 =Mucus in 1/2

of the bronchi; 3 = Mucus in 2/3 of the bronchi; 4 = Mucus in 3/4

of the bronchi; and 5 = Mucus everywhere in the bronchi.
Cell isolation

Lung tissue was digested with collagenase type IV, and lung

single cells were obtained by grinding on 200-mesh copper

mesh.CD11b+ macrophages were sorted using Magnetic Bead

Sorting Kit (MACS, Miltenyi, Germany).
Adoptive transfer and challenge

Isolated CD11b+ macrophages were washed and resuspended

with 200 ml of PBS, and injected into a 4-week-old BALB/c mouse
Frontiers in Immunology 04
via the tail vein (5×105 cells per mouse). After 24 h, mice were

challenged i.n. with 50 ml of 0.4% OVA for 5 consecutive days.
Real-time RT-PCR

Total RNA was isolated using TRIZOL. Reverse

transcription was performed with Super Script III Kit (Thermo

Scientific, U.S.A). Cytokines were assessed by real-time PCR

with SYBR green (Vazyme, U.S.A). The mouse housekeeping

gene (b-actin) was used as a control. Primer sequences are listed

in Table 2.
Metabolomics

The metabolites of the CD11b+ macrophages were identified

by mass spectrometry (Shanghai Meiji Biology, China). Data

were analyzed on the online platform of Majorbio Cloud

Platform (www.majorbio.com). All the metabolites were

compared with KEGG and HMDB databases. PLS-DA and

OPLS-DA were used to capture the correlated differential

variables, and then the differential metabolic sets obtained

according to certain screening conditions (such as function,

expression level and expression difference) were analyzed.

Finally, the Major bio online tool was performed to explore

biological patterns, functions, and pathways of identified

differentially expressed metabolites.
Statistical analysis

Measurement data were first tested for normal distribution

using Kolmogorov-Smirnov methods. All data were normally

distributed. Comparisons of data between two groups were

analyzed by independent sample t test, and among multiple

groups were analyzed by one-way analysis of variance

(ANOVA). Data analyses were performed with GraphPad

Prism 8 (GraphPad Software, La Jolla, CA, USA). P<0.05 is

considered statistical significance.
Results

Neonatal PVM infection combined with
OVA sensitization facilitated childhood
asthma

AHR is a prominent feature of asthma. Neonatal mice were

sensitized and challenged as shown in Table 1. Following OVA

challenge in childhood, mice early sensitized by PVM-OVA
frontiersin.org
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showed higher RI and lower Cdyn, compared with those by PBS

or PBS-OVA (Figure 1A, P<0.01). RI in PVM group was higher

than that in PBS group (Figure 1A, P<0.05), while no statistical

difference on Cdyn between the two groups (Figure 1A, P>0.05).

PVM-OVA group exhibited multiple severe peribronchial and

perivascular inflammatory cell infiltration and mucus, while

PVM group or PBS-OVA group exhibited moderate or slight

inflammation and mucus (Figure 1B). Both inflammation and

mucus scores in PVM-OVA group were higher than those in

PVM, PBS-OVA, or PBS group (Figure 1C, P<0.05). The

inflammation score in PVM group was also higher than that

in PBS-OVA or PBS group. Both inflammation and mucus

scores in PVM and PBS-OVA were higher than those in PBS

group (Figure 1C, P<0.05). Relative expression of IL-17, TNF-a
or IFN-g was significantly higher in PVM-OVA group than that

in PBS or PBS-OVA group (Figure 1D, P<0.05). However,

expression of IL-5 was significantly lower in PVM-OVA group

than that in PBS or PVM group (Figure 1D, P<0.05). No

difference was observed in the expression of IL-13 between

PVM-OVA group and PBS group (Figure 1D, P>0.05).

Relative expression of IFN-g or IL-5 was significantly higher in

PVM group than that in PBS group (Figure 1D, P<0.05). No
Frontiers in Immunology 05
difference in all of these cytokine expressions was observed

between PBS-OVA and PBS groups (Figure 1D, P>0.05).

These data suggest that PVM infection in synergy with low

dose OVA sensitization in early life led to severe asthma in

childhood, which is similar to clinical childhood asthma (20, 21).

In contrast, PVM infection alone only led to slight asthma, and

OVA sensitization alone led to inflammatory histopathology,

but no increased RI and cytokine expression. This finding is

consistent with the results reported by R S Peebles Jr et al.

(22).Th2-type cytokines were prevalent in eosinophilic asthma,

whereas Th1-type and Th17-type cytokines have been

implicated in neutrophilic asthma (23). In PVM-OVA group,

Th1/Th17 type cytokines increased. So, we further tested the

neutrophils and eosinophils in BALF. Neutrophils and

eosinophils of PVM-OVA group were remarkably higher than

those of PBS group, and notably, neutrophils of PVM-OVA

group were about 6 times more than those in PBS group

following OVA challenge (Figure 1E, P<0.05). There was no

detectable IgE in sera (data no shown). The data suggested

that early PVM-OVA sensitization resulted in asthma in

childhood with Th1/Th17-biased responses and remarkably

increased neutrophils.
TABLE 2 Primer sequences form RNA analysis by real-time PCR.

b-actin Forward GCTACAGCTTCACCACCACAG

Reverse GCTCTTTACGGATGTCAACGTC

IL-1 Forward TTCCTTGTGCAAGTGTCTGAAG

Reverse CACTGTCAAAAGGTGGCATTT

IL-5 Forward CCCATGAGCACAGTGGTGAA

Reverse CTCATCGTCTCATTGCTTGTCAA

IL-13 Forward CCTGGATTCCCTGACCAACA

Reverse GGGCCTTGCGGTTACAGA

IL-17 Forward CCTCCAGAATGTGAAGGTCA

Reverse CTATCAGGGTCTTCATTGCG

TNF-a Forward TGACGTGGAACTGGCAGAAGA

Reverse TGGGCCATAGAACTGATGAGAG

IFN-g Forward AGCAACAGCAAGGCGAAAAA

Reverse TGGTGGACCACTCGGATGA

MCP-1 Forward GCTGACCCCAAGAAGGAATG

Reverse GAAGACCTTAGGGCAGATGCA

GRO-a Forward CATGTAGAAAGCCCATCTGGA

Reverse CTGCAATCAGAAAAGAGTCATTG

PYCR1 Forward ACTCAGAACAGCATCCCAGC

Reverse TAAGCAAGGAGCGAAAGCCC

GLS1 Forward GTCCTGAGGCAGTTCGGAATACAC

Reverse GAGGAGGAGACCAACACAT
CATGC

GLS2 Forward GCCAGTTTGCCTTCCATGTG

Reverse GTCTAACTTCCGAGCGCAGT
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Lung CD11b+ trained macrophages
increased after PVM-OVA early
sensitization, and mediated asthma in
childhood

The data by flow cytometry showed that OVA or PVM alone

induced significantly elevated CD11blow macrophages, while

PVM-OVA induced more CD11bhigh macrophages, compared

with PBS on day 21 (Figure 2A, P<0.05). Johnston LK et al.

confirmed that CD11b high, CD11b int and CD11b low cells in

lung tissue were all macrophages (24). CD11b on macrophages is

the key regulatory factor of pro-inflammatory immune responses

(25). Then, we sorted the CD11bhigh and CD11blow cells,

performed cytospin, and confirmed that they were all
Frontiers in Immunology 06
macrophages in appearance (large, rounded nuclei with

abundant cytoplasm) with a microscope, and representative

images were shown (Figure 2B). To further assess a potential

role in asthma, the macrophages were isolated and adoptive

transferred to wild BALB/c mice of the same age (4 weeks post

birth) by tail vein (Figure 2C). RI increased, and Cdyn decreased

in PVM-OVA transfer group, compared with those in PBS

transfer group following OVA challenge (Figure 2D, P<0.05). RI

at 25 and 50mg/mlMch was higher, and Cdyn at 12.5 or 50mg/ml

Mch was lower in PVM-OVA transfer group, compared with

those in PVMor PBS-OVA transfer group (Figure 2D, P<0.05). RI

in PVM or PBS-OVA transfer group was same as that in PBS

transfer group, except that at the doses of 12.5, and Cdyn in PVM

or PBS-OVA transfer group was same as that in PBS transfer
B C

D

E

A

FIGURE 1

Neonatal PVM infection combined with OVA sensitization facilitated childhood allergic asthma in mice. (A) Airway resistance index (RI) and lung
dynamic compliance (Cdyn) to increasing doses of inhaled methacholine (MCh, 6.25, 12.5, 25, and 50 mg/ml) following OVA challenge from day
21 to 25 post infection in mice. PVM-OVA group compared with PBS group, *, with PBS-OVA group, #, with PVM group, ●. (B) H&E staining
shows peribronchiolar, perivascular, and interstitial inflammatory cell infiltration (100X). PAS staining shows bronchiolar mucus production
(400X). (C) Scores for pulmonary inflammation and mucus. (D) Relative expression of cytokines in lung tissue by real-time PCR. (E) Expression of
CD11b and/or Gr-1 on F4/80— BALF cells in PBS and PVM-OVA group by flow cytometry. Each experimental group contained three biology
repeats. Data are presented as means standard deviations of 5-6 mice per group and are representative of two experiments. Values are shown
as means ± SEM. (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 ##P<0.01, ###P<0.001, •P<0.05, ••P<0.01).
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B C

D E

F

G H
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A

FIGURE 2

Lung CD11b+ trained macrophages increased after PVM-OVA early sensitization and mediated asthma in childhood mice. (A) The lung CD11b+

cells in the memory phase after sensitization by flow cytometry. (B) Lung CD11b+ macrophages morphologic evaluation. (C) Timeline of mouse
adoptive transfer experiment. (1) PBS transfer group, (2) PBS-OVA transfer group, (3) PVM transfer Group, (4) PVM-OVA transfer group. (D) RI
and lung Cdyn in mice after adoptive transfer of the lung CD11b+ macrophages following OVA challenge. PVM-OVA transfer group compared
with PBS transfer group, *, with PBS-OVA transfer group, #, with PVM transfer group, <.(E) Relative expression of MCP-1 and IL-5 in lung tissue
following OVA challenge by Real-time PCR. Each experimental group contained three biology repeats. Data are presented as means standard
deviations of 5-6 mice per group. (F) H&E staining of lung tissue slices after adoptive transfer the lung CD11b+ macrophages (100X) and
inflammation scores following OVA challenge. (G) CD11b+CD69+ macrophages or CD11b+TLR4+ macrophages in lungs by flow cytometry.
(H) TLR4 expression of the sorted CD11b+ macrophages after LPS or OVA stimulation by flow cytometry. (I) Relative mRNA expression of
chemokines MCP-1 or GRO-a of the sorted CD11b+ macrophages after LPS or OVA stimulation by real-time PCR. *P<0.05. ** P<0.01,
***P<0.001, **** P<0.001. ## means PVM-OVA transfer group compared with PBS-OVA transfer group (P<0.01). The symbol “■” but not
“<” means PVM-OVA transfer group compared with PVM transfer group (P<0.05).
Frontiers in Immunology frontiersin.org07

https://doi.org/10.3389/fimmu.2022.977235
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.977235
group at all doses of Mch (Figure 2D, P>0.05). MCP-1 expression

was significantly higher, and IL-5 expression was inhibited in

PVM-OVA transfer group, compared with those in PBS, PVM or

PBS-OVA transfer group (Figure 2E, P<0.05), and there was no

difference on relative expression of MCP-1 or IL-5 between PVM

or PBS-OVA transfer group and PBS transfer group (Figure 2E,

P>0.05). Histopathology showed that in PVM-OVA transfer

group, the alveolar structure was destroyed, and the infiltration

of inflammatory cells increased significantly, while the CD11blow

macrophages from PVM or PBS-OVA group did not lead to

inflammation histopathology (Figure 2F). These results suggest

that the macrophages induced by PVM-OVA in early life

mediated asthma in childhood, while the macrophages induced
Frontiers in Immunology 08
by PVM or OVA alone did not contribute to severe allergic

asthma. This supports the conclusion that PVM infection in

synergy with OVA sensitization in early life led to severe

asthma in childhood, but not PVM infection or OVA

sensitization alone (Figure 1). Therefore, we conducted all

subsequent experiments using PVM-OVA but not PVM or

PBS-OVA alone.

CD69 is a key marker of tissue resident memory T cells (26).

We found that CD11b+CD69+ macrophages in PVM-OVA group

were remarkable higher than those in PBS group (Figure 2G,

P<0.001). A remarkable feature of trained immune cells is its ability

to mount a stronger transcriptional response to nonspecific stimuli

compared to untrained cells. The CD11b+ macrophages from
frontiersin.o
B

C

D E

F

A

FIGURE 3

Lung CD11b+ trained macrophages undergo metabolic reprogramming. (A) Heat map of differential metabolites of PVM-OVA group vs PBS
group. (B) Venn plot of the numbers of different metabolites among groups. The diagram shows overlapping and distinct metabolites indicated
by the numbers in the intersections and circles, respectively. (C) KEGG compound classification of differential metabolites. (D) Heat maps of
differential metabolite amino acids or phospholipids. (E) KEGG pathway enrichment analysis. (F) The abundance of metabolites related to TCA
cycle. ***P<0.001, ****P<0.0001.
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PVM-OVA group expressed higher level of TLR4 after OVA or

lipopolysaccharide (LPS) stimulation, compared with those from

PBS group (Figure 2H, P<0.001). In contrast, the macrophages

without in vitro stimulation in PVM-OVA group or PBS group

expressed very low level of TLR4 (Figure 2G). Moreover, relative

expression of MCP-1 in the macrophages from PVM-OVA group

after LPS stimulation significantly increased, compared with that of

PBS group (Figure 2I, P<0.05). Gro-a expression in PVM-OVA

group after OVA stimulation significantly increased, compared

with that of PBS group (Figure 2I, P<0.001). These results

suggested that increased lung CD11b+ macrophages induced by

PVM-OVA were trained macrophages.
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Lung trained macrophages undergo
metabolic reprogramming

Trained immunity involves metabolic reprogramming,

which endows innate immune cells with the ability to respond

more strongly to a second stimulus (27). The CD11b+

macrophages in the memory phase were sorted and re-

stimulated by LPS for metabolic analysis. As shown in

Figure 3A, most of the metabolites markedly increased, and a

few metabolites decreased in PVM-OVA group, compared with

those in PBS group. There were 108 specific metabolites in

PVM-OVA group, while there were 3 specific metabolites in PBS
B

C

D E

A

FIGURE 4

Proline metabolism in mice sensitized with PVM-OVA was significantly reprogrammed. (A) Volcanic map of differential metabolites of PVM-OVA
group vs PBS group. (B) The abundance of proline. (C) Diagram of proline synthesis pathway from glutamine. (D) The abundance of dipeptide
containing glutamic acid. (E) Relative expression of enzymes, GLS1, GLS2 and PYCR1, in the synthesis pathway of proline in the lung by real-time
PCR. Each experimental group contained three biology repeats. *P<0.05, ***P<0.001, ****P<0.0001.
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group, as found by Venn map/diagram analysis (Figure 3B). The

KEGG compound classification analysis showed that these

metabolites were grouped into biochemical classes including

amino acids, phospholipids, vitamins, carboxylic acids and

oligosaccharides (Figure 3C). Among the differential

metabolites, the most abundant metabolite classes were amino

acids and phospholipids (Figure 3C). Amino acids such as

tryptophan, methionine, proline, and so on, and phospholipid

metabolites including various phosphatidylcholine (PC) and

phosphatidylethanolamine (PE) in PVM-OVA group were

significantly increased, compared with those in PBS group

(Figure 3D). Reprogramming of energy metabolism is the

symbol of cancer, which meets the rapid growth of cancer cells

(28). Metabolic pathway enrichment analysis in the KEGG

database showed that the differential metabolites between

PVM-OVA and PBS groups were most concentrated on

central carbon metabolism in cancer (Figure 3E), which

implied cancer cell-likely energy metabolism characteristic of

the CD11b+ macrophages in PVM-OVA group. Consistently,

quantity of isocitrate or citramalate in PVM-OVA group was
Frontiers in Immunology 10
markedly higher than that in PBS group (Figure 3F, P<0.05).

These results suggested that the metabolism of the CD11b+

macrophages was reprogrammed, which further demonstrated

the macrophages to be trained macrophages.
Proline metabolism in mice sensitized
with PVM-OVA was significantly
reprogrammed

Evidences have shown that proline deficiency can

significantly inhibit the growth of cancer cells (29, 30).

Proline is a “limiting amino acid” of cancer cells (29).

Trained immune cells display some similar metabolic

characteristics to cancer cells, such as increased glycolysis,

amino acid metabolism, and so on (27, 31). We speculated

that proline metabolism may play an important role in the

trained macrophages. As expected, proline displayed markedly

difference among “up” metabolites in the volcano map

(Figure 4A). The quantity of proline in PVM-OVA group
B

C

A

FIGURE 5

Proline metabolism plays a crucial role in development of the trained macrophages. (A) Diagram of proline synthesis from glutamine with
inhibitors of key enzymes. (B, C) Mice were sensitized with PVM-OVA, PVM-OVA followed by BPTES or BPTES+Proline, or PVM-OVA followed
by NFLP or NFLP+Proline. The lung CD11b+ trained macrophages in the memory phase were detected by flow cytometry (n = 5 per group).
Each experimental group contained three biology repeats. ***P<0.001, ****P<0.001.
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was more than 3 times higher than that in PBS group

(Figure 4B, P<0.001). In the proline synthesis pathway from

glutamine as shown in Figure 4C, L-Glutamyl-P, a key

intermediate metabolite, increased in PVM-OVA group,

compared with that in PBS group (Figure 4D, P<0.05). In

addition, some dipeptides containing glutamate or glutamine,

such as Gamma−Glu−Leu, Gamma−Glutamylphenylalanine

and Glutamylisoleucine also increased in PVM-OVA group,

compared with those in PBS group (Fig 4D). These data imply
Frontiers in Immunology 11
that the proline synthesis pathway was up-regulated in PVM-

OVA group. Glutaminase (GLS) is the first rate-limiting

enzyme in the proline synthesis pathway, which catalyzes

catabolism of glutamine. Proline - 5 - carboxylic acid

reductase 1 (PYCR 1) catalyzes the last step of proline

synthesis(Figure 4C). The relative expression of GLS1 or

GLS2 significantly increased in PVM-OVA group, compared

with that in PBS group, which was consistent with the change

of proline (Figure 4E, P<0.05). However, the expression of
B

C
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A

FIGURE 6

Excessive proline synthesis caused by early respiratory virus infection combined with allergen sensitization contributed to allergic asthma in
childhood. Mice were sensitized with PVM-OVA, PVM-OVA followed by BPTES or NFLP, or PVM-OVA followed by BPTES+Proline or NFLP
+Proline, and challenged with OVA after 21 days post infection. (A) RI and Cdyn to methacholine (MCh, 6.25, 12.5, 25, and 50 mg/ml), (#, ▲,
◆P < 0.05, * *,##, ▲▲P < 0.01, * * *,###, ▲▲▲P < 0.001. PVM-OVA group compared to PBS group, *, or BPTES group, #, or NFLP group,
▲. BPTES group compared to BPTES +Pro group, ◆. NFLP group compared to NFLP +Pro group, ●). (B) H&E staining shows peribronchiolar,
perivascular, and interstitial inflammatory cell infiltration. (100 X). (C) PAS staining shows bronchiolar mucus production (400X). (D, E) Scores for
pulmonary inflammation or mucus. (F) Number of inflammatory cells in BALF. (G) Relative expression of IFN-g, IL-17, IL-23 and MCP-1 by real-
time PCR. Each experimental group contained three biology repeats. Data are presented as means standard deviations of five mice per group
and are representative of two experiments. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. ▲▲▲▲ means PVM-OVA group compared with
NFLP group (P<0.0001).
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PYCR1 was obviously reduced in PVM-OVA group, compared

with that in PBS group (Figure 4E, P<0.05), which may be due

to feedback inhibition of increased proline (32). All of the data

suggested that proline synthesis pathway is remarkably active

in PVM-OVA group.
Proline metabolism plays a crucial role in
development of the trained
macrophages

To explore the role of proline metabolism on development of

the trained macrophages, mice were given BPTES or NFLP, a

chemical inhibitor of GLS or PYCR1 in the synthetic pathway of

proline (Figure 5A), or replenished proline after given BPTES or

NFLP, during the early sensitization with PVM-OVA, and the

trained macrophages were detected by flow cytometry.

Compared with PVM-OVA group, the lung trained

macrophages in BPTES group were significantly inhibited (Fig

5B, P<0.05). The percentage of trained macrophages in BPTES

group was more than ten times lower than that in PVM-OVA

group (Figure 5B, P<0.05). Expectedly, the trained macrophages

in BPTES+Pro group was partly recovered (Figure 5B, P<0.05).

Similarly, the lung trained macrophages in NFLP group were

eight times less than those in PVM-OVA group, while those in

NFLP +Pro group were almost fully recovered (Figure 5C,
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P<0.05). These results suggest that proline metabolism plays a

crucial role in development of the trained macrophages.
Excessive proline synthesis caused by
early respiratory virus infection
combined with allergen sensitization
contributed to allergic asthma in
childhood

To study the effects of proline on the allergic asthma, BPTES

or NFLP was injected into mice when they were sensitized by

PVM-OVA in early life, and airway hyperresponsiveness and

lung inflammation of the mice were evaluated following OVA

challenge in childhood. As expected, inhibition of the key

enzyme GLS or PYCR1 in the synthetic pathway of proline

using inhibitor BPTES or NFLP when PVM-OVA sensitization

in early life significantly inhibited RI, and increased Cdyn

following OVA challenge in childhood, compared with PVM-

OVA sensitization alone (Figure 6A, P<0.05). In contrast, RI

increased in BPTES+Pro or NFLP+Pro group with supplement

of proline, compared with that in BPTES or NFLP group at high

doses of Mch, and Cdyn deduced in NFLP+Pro group at 25mg/

mL Mch compared with that in NFLP group (Figure 6A,

P<0.05) . Compared with the severe inflammatory

histopathology and mucus in PVM-OVA group, no or little

inflammatory cell infiltration and mucus production were
B

C

D

A

FIGURE 7

Graphical representation of results. (A, B) Neonatal respiratory virus infection can promote the occurrence of non-Th2 allergic asthma through
the production of a large number of trained macrophages, which undergo metabolic reprogramming. (C, D) Notably, proline metabolic
reprogramming mediate development of the trained macrophages as well as non-Th2 allergic asthma in childhood mice.
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observed in BPTES or NFLP group, while the inflammatory cell

and mucus almost recovered in BPTES+Pro or NFLP+Pro group

(Figures 6B-E, P<0.05). Similarly, the total number of

inflammatory cells in BALF remarkably reduced in BPTES or

NFLP group compared with that in PVM-OVA group, while

that in BPTES+Pro or NFLP+Pro recovered (Figure 6F, P<0.05).

Then, the relative expression of Th1 type cytokine IFN-g, Th17
type cytokine IL-17 and IL-23, and chemokine MCP-1 was

detected by real-time RT-PCR. BPTES or NFLP significantly

inhibited the expression of IFN-g, IL-17, IL-23 and MCP-1,

while proline supplementation could up-regulate the expression

of these Th1/Th17 type and pro-inflammatory cytokines

(Figure 6G, P<0.05). These results showed that inhibition of

proline metabolic pathway could inhibit Th1/Th17 type

responses, alleviate the symptoms of allergic asthma, while

proline supplementation after the inhibition could restore the

Th1/Th17 type response and asthmatic symptoms, which

indicated that excessive proline synthesis caused by early

respiratory virus infection combined with allergen sensitization

contributed to allergic asthma in childhood. Regulation of

proline metabolism may be a well preventive strategy for

allergic asthma.
Discussion

In this study, we established an animal model of neonatal

respiratory virus infection promoting childhood non-Th2 (Th1/

Th17) type allergic asthma. Neonatal sensitization with PVM-

OVA resulted in increased lung trained macrophages, which

mediated the childhood asthma. Interestingly, proline

metabolism reprogramming was proved to play a critical role in

development of the trained macrophages and allergic asthma.

Inhibition of the excessive proline synthesis prevented allergic

asthma in childhood (Figure 7). To our knowledge, we provide

the first evidence that proline metabolism reprogramming

contributes to trained macrophages caused by early respiratory

virus infection and allergen sensitization, and the non-Th2 (Th1/

Th17) type allergic asthma in childhood. Proline metabolism may

be a target for preventing the allergic asthma in childhood.

Allergic asthma is a complex chronic airway disease in which

many different immune cells and environmental exposure

factors are involved in its pathological process (33).

Development of childhood asthma is related to the lower

respiratory tract viral infections in early years, and then

exposed to allergens (34). Human RSV is the most frequent

cause of respiratory tract infections in infants and are major

triggers of wheezing and asthma exacerbations (35). In this

study, PVM (a mouse equivalent strain of human RSV)

infection combined with OVA exposure in early life led to

severe allergic asthma following OVA challenge in juvenile

mice, while PVM infection or OVA sensitization alone did not

elicit classical asthma. Consistently, R S Peebles Jr et al. found
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that RSV infection during OVA sensitization increased and

prolonged AHR compared to mice only RSV-infected or

OVA-sensitized (22). Two asthma phenotypes have been

described, Th2 and non-Th2. Th2-asthma (i.e., eosinophilic

asthma) is characterized by elevated expression of Th2-type

cytokines, along with airway eosinophilia, and augmented

allergen-specific IgE. Non-Th2 asthma (i.e., neutrophilic

asthma), by contrast, is characterized by high levels of IFN-g
and IL-17, along with airway neutrophilic infiltrate (36). Recent

studies have increasingly shown that severe childhood asthma is

associated with neutrophils (37, 38). In this study, the asthma

mice showed increased Th1- and Th17-type responses and

neutrophils in lungs, and no detectable IgE in sera, which is

similar to the no-Th2 asthma. Consistently, RSV infection

combined with OVA sensitization led to increased AHR with

diminished Th2 response (22). In addition, human rhinovirus

exposure combined with OVA sensitization led to Th1- and

Th17-biased responses and neutrophilic inflammation following

OVA challenge in mice (39). In contrast to Th2-asthma, non-

Th2 asthma does not respond steroids or newly developed

asthma drugs (40). Elucidating the underlying cellular and

molecular mechanisms of the childhood asthma associated

with early respiratory virus infection is critical for developing

effective asthma treatments and predicting patient prognosis.

Immune memory plays a key role in the pathogenesis of

allergic asthma. Immune memory is a defining characteristic of

adaptive immunity, but in recent years, evidences have

demonstrated that innate immune system can display

characteristics of immunological memory, termed “innate

immune memory” or “trained immunity” (12–14). Bovis

bacillus Calmette-Guerin (BCG), Candida albicans, Candida

albicans-derived beta-glucan, and oxidized low-density

lipoprotein (oxLDL) have successfully induced innate immune

training of macrophages (41–43). Trained monocytes/

macrophages showed the increase in the production of pro-

inflammatory cytokines following re-stimulation with LPS (44).

Macrophages are the key cell group of immune tolerance and

immune response in lungs (45) and have been considered to play

an important role in the pathogenesis of virus-induced asthma

exacerbations (46). In this study, the trained macrophages

induced by PVM-OVA significantly increased, and showed

enhanced ability to produce surface activated molecules and

pro-inflammatory cytokines following LPS or OVA re-

stimulation. Although being considered as a beneficial

response against re-infections, trained immunity could also

promote maladaptive immune responses that aggravate

pathology (47). It has been reported that trained immune cells

participate in many inflammatory diseases including asthma,

atherosclerosis and neurodegenerative diseases (48, 49). We

found that adoptive transfer of the trained macrophages

induced by PVM-OVA resulted in asthma symptoms

following OVA challenge. The results indicate that trained

macrophages in lungs facilitate allergic asthma in childhood.
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Trained immune cells are mainly characterized by metabolic

and epigenetics reprogramming (12). Metabolic reprogramming,

such as glycolysis, glutaminolysis, or cholesterol synthesis, is critical

for the functional fate of trained monocytes andmacrophages (50).

Beta-glucan triggers metabolic reprogramming in macrophages,

and induces the expression of genes associated with central

metabolism, enabling innate immune cells to mount a highly

efficient proinflammatory response against recurrent fungal

infection (51). We found that the trained macrophages in PVM-

OVA group had a large number of metabolites, such as amino

acids, phospholipids, isocitrate, and so on. Amino acids play a vital

role in the physiological/metabolic functions of humans, and the

abnormal metabolism of amino acids is related to many human

diseases, including asthma (52) and cancer (53). The increase of

certain amino acids such as cysteine and serine in asthmatic

patients leads directly or indirectly to the onset of asthma (54).

The metabolic profiles of amino acids in asthmatic children were

significantly different from those of normal children (55). Trained

immune cells have many similar metabolic characteristics to cancer

cells, for example, they are both energy-intensive cells, and have

metabolic disorders, including amino acid and glucose metabolism

disorders (56–58). The disorder of proline biosynthesis promotes

the occurrence of various cancers, and proline is the “limiting

amino acid” of cancer cells (29, 59). In this study, the level of

proline in the trained macrophages induced by PVM-OVA was

significantly increased, compared with that in naïve macrophages.

Moreover, some intermediates as well as the key enzyme GLS in

the biosynthesis pathway of proline were also significantly

increased in the trained macrophages. The last enzyme PYCR1

in the biosynthesis pathway of proline reduced in the trained

macrophages, which is consistent with the previous report that

PYCR1 activity was significantly feedback inhibited by increased

proline (32). Inhibition of the key enzyme GLS or PYCR

suppressed induction of the trained macrophages, and led to

completely prevention of allergic asthma in childhood. In

contrast, supplement of proline after delivery of the inhibitors

led to remarkable restore of the trained macrophages, as well as

allergic asthma. These results indicated that proline metabolism

plays a crucial role in development of the trained macrophages as

well as childhood allergic asthma. Proline may be a “ limiting

amino acid” for trained immune cells. However, this study did not

firmly establish the causative effects of proline metabolism in

trained macrophages in promoting later asthma development,

which is a limitation of this study. In sum, to our knowledge,

this is the first report that proline metabolic reprogramming is

involved in the training of macrophages in lungs associated with

early respiratory virus infection combined with allergen

sensitization, as well as the development of the non-Th2 (Th1/

Th17) type allergic asthma in childhood. Inhibition of excessive

proline synthesis prevented the childhood allergic asthma

associated with early respiratory infection combined with
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allergen sensitization. Proline metabolism could be a well target

for preventing allergic asthma in childhood and predicting

patient prognosis.
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