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Abstract
Deep reinforcement learning has the advantage of being able to encode fairly complex behaviors by collecting and learning
empirical information. In the current study,we have proposed a framework for reinforcement learning in decentralized collision
avoidance where each agent independently makes its decision without communication with others. In an environment exposed
to various kinds of dynamic obstacles with irregular movements, mobile robot agents could learn how to avoid obstacles and
reach a target point efficiently. Moreover, a path planner was integrated with the reinforcement learning-based obstacle
avoidance to solve the problem of not finding a path in a specific situation, thereby imposing path efficiency. The robots
were trained about the policy of obstacle avoidance in environments where dynamic characteristics were considered with soft
actor critic algorithm. The trained policy was implemented in the robot operating system (ROS), tested in virtual and real
environments for the differential drive wheel robot to prove the effectiveness of the proposed method. Videos are available at
https://youtu.be/xxzoh1XbAl0.
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1 Introduction

With the development of sensing and computer technologies,
autonomous driving systems, such as autonomous vehicles
andmobile robots, have gained large attention of researchers,
and experienced increased commercialization. The mobile
robots are used in logistics centers as logistics robots, which
are in-charge of transportation of goods, and in various other
fields such as serving in restaurants and cafes, delivering food
to home, and providing information for guidance or cleaning
at airports. Very recently, to prevent the spread of COVID-
19 infection, the biggest problem today, mobile robots have
been started to be used for quarantine purposes such as body
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temperature measurement and sanitizing. As working mech-
anism, themobile robots use internal sensors such as encoder
and IMU to measure their speed, posture and travel distance,
and external sensors such as lidar and camera to measure the
presence anddistanceof any surroundingwalls andobstacles.
With these sensors, they explore the environments to locate
themselves and autonomously drive to the destination. The
goal is that these mobile robots travel safely and quickly to
their destination without colliding with any obstacles.

The navigation of these mobile robots typically comprises
locating the robots first based on maps followed by gener-
ating paths from the robot’s current position to the target
position. The generated path is then followed by the robot.
For new obstacles that are not displayed on the map, the
robot itself detects the obstacles and avoids them using the
distance measuring sensor, namely lidar, and finally, reaches
to the target position. In many working scenarios, the move-
ment of dynamic objects is irregular, and it is a challenge
for a mobile robot to avoid the dynamic obstacles while
traveling and reach the destination without collision. This
is mainly because the mobile robots do not know the behav-
ior of the dynamic obstacles or where the obstacles would
finally head to, i.e., the destination. The bypassing of these
dynamic obstacles has been studied actively, using both the
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traditional analytical techniques [1,2] and empirical methods
[3–5].

However, the conventional obstacle avoidance method-
ologies such as dynamic window approach (DWA) [6] and
timed elastic band (TEB) [7] are specific for static obstacle
avoidance. Therefore, it becomes a challenge to bypass the
dynamic obstacles by predicting the next movement of the
obstacles, which requires sharing information with dynamic
obstacles or detecting a new dynamic object. The velocity
obstacle (VO) series method [8–11] has been used by several
researchers to address the dynamic obstaclemethod problem.
While it is advantageous for dynamic obstacle avoidance to
predict and avoid its next moving position through move-
ment path of the object, the conventional methods have the
disadvantage of requiring heavy computing power due to the
combination of complex conditions and equations.

Empirical information-based learning methodologies can
simplify formulas represented by combinations of complex
conditions in traditional methods. Reinforcement learning
(RL)has been actively studiedbecause of the advantage that it
can solve irregular problemswhich are otherwise not solvable
by traditional methods [12,13]. The representative obstacle
avoidance methodologies based on RL include CADRL [14]
and MRCA [15]. CADRL aims to drive by avoiding peo-
ple and requires the process of obtaining information on a
person’s position, speed, and size for avoidance. Therefore,
when a person is detected, it has excellent avoidance perfor-
mance, and has the advantage of being able to learn from
human movements to social rules such as left-hand or right-
hand traffic. However, if a person is not detected, avoidance
cannot be performed, and since detection is not carried out
on non-human dynamic objects, it has a disadvantage that
collision cannot be avoided. On the other hand, MRCA can
drive without collision in a multi-agent environment, and
unlike CADRL, performs the task of predicting and avoid-
ingmovements of dynamic obstacles through information on
distance from the lidarwithout detecting the dynamic objects.
Therefore, it is possible to avoid various dynamic obstacles,
not only specific dynamic objects, and has the advantage
of being able to learn quickly because multiple robots learn
the policy each as a respective agent. Each robot is applied
as a dynamic object with a collision avoidance policy but
presented as irregular movement of dynamic objects to the
other robots. However, this advantagemay be a disadvantage.
Since they are all assumed to use the same avoidance pol-
icy, it is relatively difficult to avoid dynamic obstacles with
different avoidance policies or without avoidance policies.
In addition, since it was trained in an environment where
dynamic factors were not considered, it has the disadvantage
of some differences in performance of driving and obstacle
avoidance in the real-world and training environments.

In the context of the above scenario, in the present study, in
this study, for decentralized dynamic obstacle avoidance, we

propose a method of predicting the next movement through
the movement of an obstacle based on RL and avoiding col-
lision. The dynamic object movement was predicted through
distance information from lidar without detecting the objects
to perform avoidance of various obstacles. Furthermore, to
reduce the differences between driving in real and train-
ing environments, the policy was trained in the environment
where inertia and friction dynamicswere considered. In addi-
tion, amulti-robot environmentwas also configured to enable
fast learning, and dynamic objects which do not have obsta-
cle avoidance policies other than robots were also placed
in the training environment to enable effective avoidance of
dynamic obstacles runningwith other policies.However, RL-
based obstacle avoidance alone caused the problem of not
finding a path in a specific situation. To tackle this problem
and impose the path efficiency, a path planner was integrated
with the reinforcement learning-based obstacle avoidance.

We implemented the reinforcement learning-based obsta-
cle avoidance to differential drive mobile robot and per-
formed the task of driving to the target position by avoiding
obstacles. To train the policy and evaluate the performance,
we constructed simulation environments, and evaluated the
efficiency of obstacle avoidance and driving through sim-
ulation and conducting real-world experiments. Section 2
describes the differential driving robot used in the present
study and the parameters of the model. Section 3 details the
reinforcement learning-based collision avoidance method.
The state, behavior, reward function, termination condition,
training environment, training algorithm are described in
detail and the train results along with the problem of the
method are also discussed. In Sect. 4, the modified method
which includes the path planner has been proposed and
explained. Section 5 evaluates the driving and obstacle avoid-
ance performance of the proposedmethod through real-world
experiments in comparison with dynamic window approach
(DWA), timed elastic band (TEB). Section 6 contains anal-
ysis and discussion of the results. Finally, conclusions are
drawn in Sect. 7.

2 Description of mobile robot

The methodology used in the current study can also be
applied to build any type of mobile robots, but the differ-
ential drive robot, which is widely used for indoor services,
was adopted for application and validation. The industrial
logistic robot, SR7 (Syscon co., Inchon, Korea), is shown in
Fig. 1 and its specifications are listed in Table 1.

The kinematics of the differential drive robot is repre-
sented by two-dimensional coordinates as indicated in Fig. 2.
The yaw angleψ represents the robot’s travel direction about
the x-axis at the center of the twowheels. The velocities of the
left and rightwheels arevL andvR, respectively,while the for-

123



Intelligent Service Robotics (2021) 14:663–677 665

Fig. 1 Differential drive wheeled SR7 robot

Table 1 Specification of SR7 robot

Proper Value

Type Differential drive

Dimension 0.8 × 1.0 × 0.32 m

Weight 150 kg

Wheel radius 0.55 m

Tread 0.75 m

Lidar angle 360 deg

Lidar minimum distance 0.5 m

Lidar maximum distance 20 m

Lidar resolution 0.25 deg

Fig. 2 Coordinate system for a
differential drive robot

ward velocity of themobile robot is given by v = (vL+vR)/2
and the yaw rate is ψ̇ = ω = (vR − vL)/W , where W is the
wheel tread.

The required rotation speeds of the motors ωR and ωL

can be obtained from the input of the robot which are the
forward velocity v and the yaw rotation velocity ω, under the
assumption that there is no slip,
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The kinematics of the robot is used to convert the linear
and angular velocity derived from the algorithm presented in
this paper to the rotation speed of left and right motor.

3 RL-based dynamic obstacle avoidance

In this section, we will develop an obstacle avoidance
model, named as Mobile robot Collision Avoidance Learn-
ing (MCAL) based on reinforcement learning. InMCAL, the
agent level decentralized collision avoidance paradigm was
adopted similar to the previous study multi-agent collision
availability (MRCA) [15]. However, to reduce the differ-
ence in obstacle avoidance performance between simulation
and real-world environments and to achieve high sample
efficiency and fast learning speed, MCAL was trained in
the environment with dynamics considered using the value-
based learning method, soft actor critic (SAC) [16].

Figure 3 shows the framework for MCAL, RL-based
obstacle avoidance method with continuous behaviors, and
each block performing the following tasks.

– The robot obtains the position and speed data (/Odom-
etry) and the lidar data (/Scan) via interactions with the
external environment, world.

– For localization [17], map information (/Map) and lidar
data (/Scan) were compared, and the robot’s position
(/Global Pose) was derived based on the map.

– The relative difference between the target position
(/Goal) and the position of the robot based on the map
(/Global Pose) is the distance from the robot to the target
position (/Relative Goal), which becomes the input of the
RL agent.

– The RL agent gathers information on the distance
between the robot and the target position (/RelativeGoal),
3 steps of lidar scan data (/Scan), and the speed of the
robot (/Odometry.speed), and outputs the forward and
rotational velocity (/Velocity) of driving to the target
point without collision through the trained deep neural
network of reinforcement learning.

– The Robot moves by controlling the forward and rota-
tional velocity obtained through the RL agent.

This process repeats until the target position is reached.

3.1 Reinforcement learning formulation

3.1.1 State

To formulate the collision avoidance problem within a rein-
force learning framework, the state consists of lidar data,
which are the distance information from the surrounding
environment, the forward velocity v and the rotational veloc-
ity ω of the robot, and the relative distances of x and y from
the robot to the target position as

st =[slidart , sgoalt , sspeedt ] (3)

123



666 Intelligent Service Robotics (2021) 14:663–677

Fig. 3 Structure of mobile robot
collision avoidance learning

where slidart = [ot−2
l , ot−1

l , otl ], sgoalt = otg = [x, y], and
sspeedt = ots = [v, ω].

slidart are the lidar data which indicate the relationship
between the obstacles and the robot by measuring the dis-
tance and the recognizing objects. Furthermore, the lidar data
on three consecutive time-steps was used to implicitly pre-
dict the movement direction and speed of the object. sgoalt
is the relative distance from the robot to the target position,
and driving direction can be effectively obtained from the
clear information provided by sgoalt on whether the moving
direction is right. sspeedt provides the velocity information of
the robot. Additionally, and the limiting speed and inertia of
the robot and avoidance method according to the speed can
be known from sspeedt .

3.1.2 Action

The behavior of the mobile robot can be defined as continu-
ous behavior to enable smooth movement and avoidance in
various ways, and consists of two-dimensional information
with the forward velocity v and the rotational velocity ω as
follows.

at =[v, ω] (4)

where v,ω are continuous values and have the limiting veloc-
ity constraints of v ∈ [0.00, 0.55], ω ∈ [−0.60, 0.60].

3.1.3 Reward

In this study, the robot aims to reach the target position
(Px , Py) and the orientation was not concerned since the
differential drive robot can rotate easily in place. To reach
the target position, driving with obstacle avoidance through
reinforcement learning without colliding with obstacles and
remaining within the performance limit is necessary. There-
fore, the reward was also considered separately. The total
reward function is the sum of these three reward functions,

R =Rg + Rc + Rω. (5)

If the mobile robot reaches the target position, the agent
receives a large reward of 10. Additionally, while moving
to the target position, if the distance to the target becomes
shorter than before, then also reward is given as the robot is
moving in the right direction.

Rg =
{
10 if discurr < 0.5

dispre − discurr otherwise
(6)

where the distance is given by

dis =
√

(pgoalx − probotx )2 + (pgoaly − proboty )2. (7)

Moving in a direction away from the target positionwill incur
a penalty corresponding to the distance traveled in one step,
and moving in the direction closer to the target position will
result in a reward corresponding to the distance traveled in
one step.

The reward Rc imposes a large penalty of -10 when there
is a collision with an obstacle, a policy that the robot needs
to be taught to avoid collisions with obstacles.

Rc =
{

−10 if Collision

0 otherwise.
(8)

The last reward Rω concerns the robot’s performance limit
as a penalty, instead of constraint equation. When the 150 kg
heavy robot SR7 rapidly rotates, it is difficult to control due to
inertia, so Rω imposes a large penalty on rotational velocity
beyond the threshold value in order to prevent the problem.

Rω =
{

−0.1|ω| if |ω| > 0.6

0 otherwise.
(9)

The weight of each reward was determined after trial and
error through experiment so that the robot learns the various
methods of obstacle avoidance according to the situation,
such as avoidance through acceleration and deceleration,
avoidance through stopping, and avoidance via directional
change.
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(a) (b)

Fig. 4 Actor and critic networks for mobile robot collision avoidance learning

3.1.4 Termination conditions

The termination condition for stopping an episode in the
training was designed for 3 cases, namely when the robot
reaches the target position, when it collides with an obstacle,
and when the number of steps to proceed the episode exceeds
2000.

T =
{
True if (Reached goal or Collision or step > 2000)

False otherwise

(10)

The limit condition of 2000 steps suppresses the tendency
to reach the target position by hovering around the target
position for a long time, or avoiding the obstacle by moving
through an inefficient path. Without such limits, the robot
will learn a very safe obstacle avoidance, such as slowing
down or stopping, only gaining small Rg for a long time.

3.2 Network

To apply SAC algorithm on collision avoidance, an actor
network to derive a policy and a critic network to derive
the Q-function for computing the cost of the policy were
constructed.

Referring to the network, MRCA [18], the actor network
shown in Fig. 4a consisted of two convolution layers, three
fully connected layers, two nonlinear activation ReLU func-
tions, and one linear activation function.Among the state in 3,
the lidar data 512 × 3 corresponding to 3 sample times was
input and passed through two convolution layers to derive a
temporal change.

This information, combined with the relative distance
(x, y) from the robot to the target position, and the veloc-
ity of the robot (v, ω) passed through two fully connected
layers. Finally, the mean velocity vtmeans and log standard
deviation vtlogstd form aGaussian distribution of actions. The
final action at was sampled.

Fig. 5 Environments for the Stage and Gazebo simulators for training

The Critic network shown in Fig. 4b is similar to that of
the Actor network, but the action obtained from the Actor
network was added and the final result obtained is the Q-
value.

3.3 Training

3.3.1 Training environment

Two simulators were used for training simulation. The first
simulator, i.e., the Stage simulator [19] in Fig. 5a consid-
ers only the kinematic factors, so behaviors denoting the
dynamic characteristics such as inertia and friction can-
not be trained accurately, resulting in significant differences
between the real-world and training environments. However,
the simulation time can be accelerated due to its lightweight
simulator, allowing the advantage of fast learning.

The second simulator is the Gazebo simulator [20] in
Fig. 5b. It takes into account the dynamic factors, such as
inertia and friction as well as the kinematic factors. The dif-
ference between the real-world and training environments
also exists for the Gazebo simulator, but the difference can
be reduced. It has a disadvantage of longer simulation time.
In consideration of these advantages and disadvantages, after
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fast training in the Stage simulator, the actor and critic net-
works were trained again in the Gazebo simulator to reduce
the difference between the real-world and the learning envi-
ronment.

The training environment in the Stage simulator was con-
figured for a circular space with a diameter of 30 m, placing
randomly 7 static objects and 4 dynamic objects that do not
have any avoidance policy and move in a straight line at
random speeds between 0.5 and 1 m/s. In Fig. 5a, the red
squares were the robots, blues were dynamic objects, blacks
were static objects. We also deployed 4 robots to train the
policy simultaneously, and this multi-robot training has the
advantage that each robot treats others as dynamic obsta-
cles to learn how to avoid obstacles via various movements.
Moreover, since 4 robots gathered the necessary information
for training together, it can increase the learning speed. The
training environment in theGazebo simulatorwas configured
for a square space of 20m by 20m, placing randomly objects
just like the stage environment, and 4 robotswere trainedwith
the policy simultaneously. In Fig. 5b, the white boxes were
the robots having the goals in red, blue, yellow, andwhite cir-
cles individually. The walking people were dynamic objects,
and the gray boxes and cylinders were static objects.

3.3.2 Training algorithm

After trying to train with different algorithms, we adopted
SAC to train the weights of deep neural networks.

SAC is an off-policy learning algorithm that can use all
the information collected during the training process for deep
neural network learning. So, sample-efficient is high. The
objective function of SAC is given by

J (θ) =
T∑
t=0

Eπ [r(st , at , st+1) + αH(π(·|st )]. (11)

The entropy function H and the hyper-parameter α, which
determines the relative importance of the compensation
entropy, have been added to the existing objective function.
In the training with SAC, the agent acts more randomly and
this should result in effective learning. Since the Gaussian
distribution generated is relatively flat and if the optimal pol-
icy does not work well in the real environment due to the
difference between the training and the real environments,
there is a possibility to solve the problem with the next best
policy.

In fact, we compared the results after training with the on-
policy algorithm, Proximal Policy Optimization (PPO), and
it was confirmed that SAC achieves a faster learning speed
due to high sample efficiency.

The off-policy algorithm, SAC, requires replay of mem-
ory to store the generated state, reward, and action values

Fig. 6 Training framework for mobile robot collision avoidance learn-
ing

Table 2 Hyper-parameters for training in SAC

Parameters Value

Target smoothing factor τ 0.005

Discount factor γ 0.99

Learning rate α 0.0003

Batch size 1024

Replay memory size 500,000

Target update interval 1

Fig. 7 Reward for the stage simulation training

in every step of the training process, and the related train-
ing framework shown in Fig. 6 can improve policy through
the information stored in this repository. Pre-processing in
Fig. 6 refers to the process of obtaining a global pose from
scan data, odometry data, and map data. It transforms infor-
mation obtained from the environment to match the input of
the network.

3.3.3 Train result

The policy was trained using the Stage simulator with the
hyper-parameters in Table 2. The reward graph in Fig. 7 con-
firmed that the policy converged from the 20,000 episodes.
Furthermore, the policywith 3000more episodeswas trained
using the Gazebo simulator, to reduce the difference between
the training environment and real-world environment.
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Fig. 8 Problem with MCAL (square marker: start point, circle marker:
end point)

3.4 Problem of RL-based dynamic obstacle
avoidance

It was confirmed that the robot was trained according to the
above process successfully and to move without colliding
with any static and dynamic obstacles in open spaces. In par-
ticular, it was impressive to respond differently to dynamic
and static obstacles. As the dynamic obstacles come near, the
forward velocity decreases significantly, the rotational veloc-
ity increases significantly, and as the movement of dynamic
obstacle slows down, the changes in velocities then decrease.

However, certain problems were found when the robot
moved from point A to point B in a virtual environment, as
shown in Fig. 8a.

The movement path of the robot is shown in Fig. 8b, iden-
tifying the problem that the robot avoids the wall in the
middle, but fails to reach the target point and continues to
hover around the wall. This problem was caused by conflict-
ing objectives of the robot to minimize the distance from the
target point and tomaintain a certain distance from the obsta-
cle while moving according to the proposed method. Thus,
according to the action suggested by the trained policy of
MCAL, the robot moves in an inefficient path, resulting in
the problem of not finding the driving direction under cer-
tain circumstances. This occurs in certain situations, such as
in the presence of obstacles close to the front of the robot,
which can be attributed to a lack of lidar data and a lack of
training information in various environments.

These problems can be improved with a lot of train-
ing in a variety of environments. Also, previous RL-based
robot navigation studies solved this problem through effec-
tive exploration. [21,22].However, it is impossible to learn an
optimal path comparable to traditional algorithms for solving
optimization problems. The problem-solving through explo-
ration is highly likely to fail to derive the optimal path if the
observation value is generated equally for the complex and
wide environment. Therefore, we tried to solve these prob-

Fig. 9 Look-ahead point and optimal path

lems by integrating RL-based mobile robot navigation with
traditional method.

4 RL-based dynamic obstacle avoidance with
optimal path

To solve the problem of MCAL mentioned above, we
included classical optimal path planning toobtain an improved
MCAL method, so that the robot follows the optimal path
which the global path planner generates based on the map.
As shown in Fig. 9, we adopted the concept of look head
distance from the path-following method PurePursuit [23].
The look-ahead point is a moving point maintaining a certain
distance from the robot and replaces the target point in the
MCAL input.

In this section, we will propose Mobile robot Collision
Avoidance Learning with Path (MCAL_P) that follows the
look-ahead point through the trained policy and reaches the
target point with collision avoidance.

The overall procedure including path planner and look-
ahead point is shown in Fig. 10

– The robot obtains the position and speed data (/Odom-
etry) and the lidar data (/Scan) via interactions with the
external environment, world.

– Fpr Localization, map information (/Map) and lidar data
(/Scan) were compared, and the robot’s position (/Global
Pose) was derived based on the map.

– Path Planning such as A∗ [24] algorithm gives global
optimal path from the robot’s location to the target point
(/Path) from the input of map information (/Map), target
position (/Goal), and the robot’s location (/Global pose).

– Find Look Ahead Point finds a look-ahead point (/Look
Ahead Point), a point away from the robot by the look-
ahead distance in the path, based on the input of the
optimal path (/Path) and the position of the robot based
on the map (/Global pose).

123



670 Intelligent Service Robotics (2021) 14:663–677

Fig. 10 The MCAL_P
framework

Fig. 11 Robot odometry MCAL vs. MCAL_P (square marker: start
point, circle marker: end point)

– The relative difference between the look-ahead point on
the path (/LookAhead Point) and the position of the robot
based on the map (/Global pose) is the distance to the
look-ahead point (/Relative Goal), which becomes the
input of the RL agent.

– The RL agent receives the robot to the look-ahead point
(/Relative Goal), 3 steps of lidar data (/Scan), the speed
of the robot (/Odometry.speed) and outputs the forward
and rotational velocity (/Velocity) for driving to the look-
ahead point without collision through the trained deep
neural network of reinforcement learning.

– The Robot moves by controlling the forward and rota-
tional velocity obtained through the RL agent.

Without new training, the RL agent described in Sect. 3 was
reused.

4.1 Improvement of theMCAL problem

To checkwhether the problemofMCAL introduced in Sect. 3
was solved using MCAL_P, the test in Sect. 3.4 was con-
ducted in the same manner.

Figure 11 compares the movement paths of the mobile
robot usingMCALandMCAL_P.As intended, theMCAL_P
drove effectively in environments where MCAL failed by
obtaining a favorable direction for driving through the opti-
mal path.

Table 3 Common parameters for DWA and TEB

Parameters Value

Footprint 1.15 × 0.8 m2

Obstacle range 6.0 m

Raytrace range 10.0 m

Inflation radius 0.2 m

Local costmap size 6 × 6 m2

Maximum forward velocity 0.55 m/s

Minimum forward velocity 0.0 m/s

Maximum rotational velocity 0.6 rad/s

Minimum rotational velocity 0.6 rad/s

5 Simulation and real-world experiments

5.1 Real-world experiments in standardized
environments

The proposedmethodwas implemented based onNavigation
stack [25] in Robot Operating System (ROS) [26]. Further-
more, we also implemented DWA and TEB, the two most
commonly used conventional non-communicating obstacle
avoidance drivingmethods.We compared the obstacle avoid-
ance success, travel time, driving path, computation time, and
velocities of the proposed method through driving experi-
ments in the same environment as those of TEB and DWA.

The common parameters required for DWA and TEB are
shown in Table 3, the other parameters required for DWA
are listed in Table 4, and the other parameters required for
TEB are put in Table 5. For other parameters, the default
values provided by the Navigation stack in the ROS were
used. The parameters of each algorithm were set to achieve
same performance as much as possible in straight driving
without obstacles. However, it was difficult to make them
completely identical due to structural differences.
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Table 4 Parameters for DWA

Parameters Value

Time to forward-simulate trajectories 5.0 s

Number of samples in the x velocity space 8

Number of samples in the y velocity space 0

Number of samples in the θ velocity space 8

Weight for staying close to the path 32.0

Weight for reaching its local goal 20.0

Weight for avoiding obstacles 0.02

Table 5 Parameters for TEB

Parameters Value

Desired temporal resolution of the trajectory 0.3 s

Hysteresis for automatic resizing 0.1

Minimum number of samples 3

Minimum obstacle distance 0.6 m

Inflation distance 0.6 m

Safety margin to penalty functions 0.1

Weight for maximum forward velocity 2.0

Weight for maximum rotational velocity 1.0

Weight for maximum forward acceleration 1.0

Weight for maximum rotational acceleration 1.0

Weight for non-holonomic kinematics 1000.0

Weight for forward direction 1.0

Weight for execution time 1

Weight for distancing from obstacles 50

5.1.1 Experimental environment andmethods

The real-world experiments were conducted by configuring
6 real-world environments as shown in Fig. 12. In each envi-
ronment, the mobile robot aims to avoid obstacles in the path
while driving, with 10 round trips from position A to position
B, with MCAL_P, DWA, and TEB, respectively. MCAL_P
has not trained in these 6 environments and this experiment
would check the generalization of the policy trained in the
simulator.

Map A Empty environment without objects (Fig. 12a)
Map B Environment where 3 static objects are placed at 4 m

intervals (Fig. 12b)
Map C Environment where 3 static objects are placed at 2 m

intervals (Fig. 12c)
Map D Environmentwhere two dynamic objects reciprocate

in a direction perpendicular to the robot’s moving
direction (Fig. 12d)

Map E Environmentwhere two dynamic objects reciprocate
in a direction parallel to the robot’s moving direction
(Fig. 12e)

Fig. 12 Environments for performance test(https://youtu.be/
xxzoh1XbAl0?t=25)

Map F Environmentwhere two dynamic objects reciprocate
in a direction diagonal to the robot’s moving direc-
tion (Fig. 12f)

5.1.2 Experimental results

Table 6 shows the probability of obstacle avoidance and the
results of the average travel time for 10 runs. The experiment
results were analyzed separately for the success rate of obsta-
cle avoidance, travel time, computation time, trajectory, and
driving tendency.
Success rate Table 6 shows that MCAL_P, DWA, and TEB
performed well in the Map B and Map C environments
that are related to static obstacle avoidance, and relatively
well in the Map D and Map F environments which are
related to dynamic obstacle avoidance. However, in Map
F, where dynamic objects move in parallel directions of
the robot’s progression, the DWA failed to evade, while the
TEB succeeded in avoiding only two out of ten times. In all
environments, the MCAL_P showed a significantly higher
probability of dynamic obstacle avoidance compared to the
DWA and TEB.
Travel timeOverall, theMCAL_P showed faster driving in all
environments than the DWA and TEB. This is because DWA
and TEB are always subject to acceleration and deceleration
by speed profile. TheMCAL_P does not have a speed profile
and only accelerates and decelerates in certain situations by
the trained policy, which seems to result in faster driving.
However, in narrow road environments such as Map C, it
was found that the robot was driving slower than DWA and
TEB.
Computation time The time taken to derive the forward and
rotational velocity, which are the outputs of each method
were compared using the same PC Intel i9-9900K with 32
GB ram and Geforce GTX 1080Ti. To derive the required
velocity for the situation, MCAL_P took the fastest time,
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Table 6 Success rate and travel
time for MCAL_P performance
test

Map MCAL_P DWA TEB
Success Time (s) Success Time (s) Success Time (s)

A 10/10 28.1 10/10 29.0 10/10 32.3

B 10/10 32.3 10/10 35.7 10/10 36.9

C 9/10 40.1 9/10 33.0 9/10 39.9

D 9/10 34.8 7/10 39.3 9/10 38.7

E 10/10 29.7 0/10 – 2/10 36.4

F 10/10 36.1 9/10 39.6 9/10 40.8

Bold values indicate the best performance in each map

0.00745 s, the TEB 0.015 s, and the DWA the slowest time,
0.028 s.
Trajectory Figure 13 shows the trajectories of the robot in
each map. In the Map A environment without an obstacle
(Fig. 13a), MCAL_P traveled with a relatively large y-axis
movement compared to DWA and TEB, indicating that it
is very difficult for MCAL_P to drive straight. This will be
discussed further in the next section. When avoiding static
obstacles in Map B (Fig. 13b) and Map C (Fig. 13c) envi-
ronments, the MCAL_P took a relatively large path to avoid
obstacles. Such avoidance of the obstacles which suddenly
started moving was expected during the training process of
MCAL_P. In Map D environment with dynamic obstacles, it
can be seen that the path of MCAL_P in Fig. 13d has a larger
movement along the y-axis compared to DWA and TEB.

Such characteristics of these driving trajectories were
observed probably because the MCAL_P avoided obstacles
by various methods such as stopping and turning to avoid
obstacles depending on the situation. On the other hand, the
DWA and TEB tended to stop first to avoid obstacles and
waited for them to pass before driving. This avoidance ten-
dency can also be confirmed through the trajectories in the
Map E environment. In Fig. 13e, the DWA and TEB collided
with an obstacle at point (− 4.5, 11) and moved toward the
target point after the obstacle moved away. The trajectories
of DWA and TEB in Map E in Fig. 13e are almost identical
to those of Map A. This means that DWA and TEB were not
able to adopt different behaviors from the obstacle-free envi-
ronment Map A for the obstacle coming forward and avoid
the collision by stopping and waiting for the obstacle to pass
away. However, the MCAL_P rapidly moved in the y-axis
direction at point (− 4.5, 11), which was close to the obsta-
cle, and by changing direction, avoided the collision with
the approaching obstacle from the front. Due to the differ-
ence in these avoidance methods, the DWA and TEB cannot
avoid dynamic obstacles with various movements, but the
MCAL_P can avoid dynamic obstacles with various move-
ments in various ways.
Driving tendency Figures 14 and 15 show the graphs of the
forward and the rotational velocity for six environments.
When avoiding static obstacles in Figs. 14 and 15b, c, the

DWA and TEB avoided the obstacles by accelerating and
decelerating the speed without stopping; however, to avoid
the dynamic obstacles in Figs. 14 and 15d–f, the DWA and
TEBavoided obstacles simply by stopping.Due to this avoid-
ance method, the dynamic obstacles moving ahead of the
robot cannot be avoided. Unlike the DWA and TEB, the
MCAL_P avoided obstacles bymoving, changing directions,
or accelerating/decelerating speed depending upon the situ-
ation without distinguishing whether the obstacle is static or
dynamic. The MCAL_P can avoid obstacles with varying
motion, but in narrow sections such as Map C. The for-
ward velocity graphs in Fig. 14c show a large variation and
the tendency to steer after stopping to avoid obstacles. As a
result, the driving performance is degraded by performing the
avoidance through a somewhat inefficient path when avoid-
ing static obstacles. Interestingly, at the start of the driving
in Fig. 14, the MCAL_P and other algorithms have different
acceleration. The TEB and DWA have acceleration limita-
tions but the actual acceleration on the start wasmuch smaller
than the limit.Whilemoving, the DWAand TEB can acceler-
ate and decelerate faster than staring and this can be seen by
the sharp drop in Fig. 14c–e. We consider that these factors
are characteristic of the algorithm.

In addition, the rotational velocity graph in Fig. 15 shows
that theMCAL_P rotates left and right repeatedly and moves
with great shaking. Such movements occur even in situations
where there are no obstacles, such as in Fig. 13a, and is
responsible for the robot’s failure to move along a straight
line. Since moving both along a curved path and a straight
one is not performed well, the robot cannot travel along the
optimal path. Therefore, the robot always draws an inefficient
path when driving. This is the disadvantage of MCAL_P.

5.2 Real-world experiment in real working
environment

To identify the possibility of obstacle avoidance driving in
spaces such as real collaborative factories and parks, we
constructed an environment in which a large number of peo-
ple moved and the robot proceeded via driving using the
MCAL_P methodology.
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Fig. 13 Robot odometry for performance test (square marker: start
point, circle marker: end point)

Fig. 14 Forward velocity of the robot

The robot started from position A in Fig. 16 and reached
the final target point D via positions B and C. In this environ-
ment, there were 4 static obstacles and 7 dynamic obstacles
(see Fig. 17).

It could be seen that the MCAL_P avoided with excellent
performance even when a large number of people congre-
gated and moved. In this experiment, there were 20 times
when robots had to avoid various obstacles, and all 20
times succeeded in avoiding them. The robot avoided fast
approaching people in various ways, such as making a sud-
den stop or changing direction.

Thus, it is expected that the robot will be able to perform
excellent obstacle-avoidance driving even in collaborative
environments such as actual factories and crowded environ-
ments in parks and airports.

5.3 Multi-robot driving simulation

In this work, MCAL, MCAL_P were trained in the form
of multi-robots. Accordingly, a simulation experiment was
conducted to confirm that each robot was well avoided and
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Fig. 15 Rotational velocity of the robot

Fig. 16 Map for real working environment

Fig. 17 Experiment for real working environment (https://youtu.be/
xxzoh1XbAl0?t=91)

Fig. 18 Virtual environment for multi robot test (https://youtu.be/
xxzoh1XbAl0?t=148)

traveled to the target point even in an environment where a
number of robots traveled together, such as a logistics center.

5.3.1 Experimental environment andmethods

A 10 × 5 m environment in which two robots were run
(Fig. 18a), and a 10× 10m environment in which four robots
were run (Fig. 18b) were constructed for multi-robot naviga-
tion and driving. In Fig. 18a, robots A and B, where position
of one was the target of the other, conducted 10 obstacle
avoidance runs. Similarly, in Fig. 18b, an experiment was
conducted in which robot A moved to the position of robot
C as the target position, robot B went to the position of D as
the target position, robot C drove to the position of robot A
as the target position, and robot D moved to the position of
robot B as the target position 10 times.

5.3.2 Experiment result

In both the experiments in which the two robots avoided each
other and in which the four robots avoided one another, the
robots succeeded in all the 10 attempts and showed excellent
obstacle avoidance performance. Although the robots did not
communicate with each other, they had the same policies.
Therefore, they took the same actions to avoid, and unlike
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Fig. 19 Robots odometry for multi-robot test (square marker: start
point, circle marker: end point)

people and objects defined as dynamic obstacles in previous
experiments, each robot easily avoided each other. The paths
for the same policy can be found in Fig. 19. It can be seen
that the robots derived similar driving paths under similar
conditions and showed a tendency to avoid by turning to the
left of the others.

6 Analysis and discussion

When driving to avoid obstacles through MCAL, the prob-
lem was that the driving could not be continued for a long
time if the driving direction was not found. To improve this,
the proposed MCAL_P provides the robot with a favorable
direction for driving through an optimal path. The MCAL_P
was able to effectively avoid dynamic obstacles in various
ways, such as acceleration, directional change, and stopping
unlike the DWA and TEB, which avoided dynamic obstacles
only through stop actions, thus confirming the best dynamic
obstacle avoidance performance. This observation seems to
be because the objective functions of DWA and TEB were
calculated without considering the movement direction and
speedof the obstacle, and thus, only favorable for static obsta-
cle avoidance. On the other hand, the MCAL_P can grasp
temporal movement of obstacles around the robot by setting
the lidar data of the current step and the previous two steps
as a state. The dynamic obstacle avoidance performance of
MCAL_P is excellent because the obstacle avoidance policy
was trained considering themovingdirection and speedof the
dynamic object. In addition, theMCAL_Palso showed excel-
lent avoidance performance in a complex environment where
a large number of large people move, and showed smooth
avoidance behavior even in multi-robot environments.

However, the MCAL_P has certain disadvantages also.
It tends not to decelerate and accelerate except in the situ-
ations of avoiding obstacles, which can be a problem when
carrying work. Despite reducing inefficient driving using the
optimal path, the disadvantage of making inefficient driving,
such as frequent deceleration and stop movements, remains

when avoiding narrow-positioned static obstacles. This is
attributed to the problem in training focused on dynamic
obstacle avoidance, largely avoiding static obstacles consid-
ering the possibility ofmovement, and the problem caused by
the robot’s poorly controlled and out-of-target movements.

Another drawback is the problem of not being able to
draw a straight path, which is believed to be due to reinforce-
ment learning. During training, the robot drives directly and
receives the evaluation of the drive as a reward, and learns
the policy for obstacle avoidance and driving in a way that
maximizes its rewards. Therefore, if driving along a straight
line is not executed during training, the robot cannot deter-
mine whether a straight line is a good way of driving because
it would not have any information on straight line driving.
However, in the reinforcement learning of continuous action,
the probability that the rotational velocity of 0 rad/s will be
continuously derived for all steps is close to 0, so information
on straight-line driving is not obtained.

7 Conclusion

The current study proposed a method in which a mobile
robot is able to avoid both static and dynamic obstacles and
can drive to the target point based on reinforcement learn-
ing. Assuming decentralized control without communication
between agents, only the information on distance obtained
through lidar was used to derive the avoidance policy for new
and various obstacles. In this regard, for effective dynamic
obstacle avoidance, the method of predicting and avoiding
the movements of dynamic obstacles was adopted based on
the information of the lidar distance of the present and the
past two steps. Instead of separately predicting the motions
of the obstacles, planning, and following a path, reinforce-
ment learning was used to take into account the avoidance of
various motions of an irregular dynamic environment from
the observed state and output the action directly. To reduce
the difference between the real driving environment and the
training environment, we developed a training environment
where dynamic characteristics were considered and imple-
mented using soft actor critic as the reinforcement learning
algorithm to learn policies. Furthermore, due to the high
sample efficiency of SAC, the policy could be obtained in
short time. As the first idea, the reinforcement learning-based
obstacle avoidance driving method proposed in this study
involves forward and rotational velocity, which are contin-
uous actions for obstacle avoidance and driving to target
position by inputting the lidar data over time, the speed of
the robot, and the distance to the target position. However, it
showed a problem that driving in a specific environment was
impossible. In order to solve this problem, a path planner was
integrated, and the input of the trained policy was modified
with the lidar data, the speed of the robot, and the distance to
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the look-ahead point. The improved method, while follow-
ing the optimal path globally, performed various methods of
avoidance through acceleration/deceleration, stopping, and
direction change according to the movement of the dynamic
obstacle and the distance between the robot and the obstacle
locally.

Through various simulations and real-world experiments,
it was confirmed that the obstacle avoidance performance
was excellent in the actual work environment. The dynamic
object avoidance performance of MCAL_P was much better
than the DWA and TEB algorithms, and the time of operation
to derive the algorithm’s resulting values, linear and angular
velocity was also shorter. In real-world environmental exper-
iments, we confirm that robots usingMCAL_P can also avoid
objects that appear suddenly at fast response rates. We also
found that in multi-agent environments, more effective and
secure avoidance proceeds because robots using MCAL_P
avoid each other with the same policy.

However, there are certain disadvantages also that need
to be improved, e.g., it cannot drive in a straight line, draws
inefficient paths while avoiding static obstacles, and does not
perform acceleration/deceleration while driving other than
obstacle avoidance.

Videos of the experiment are available at https://youtu.be/
xxzoh1XbAl0.
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