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A history of traumatic brain injury (TBI) increases the odds of developing Alzheimer’s
disease (AD). The long latent period between injury and dementia makes it difficult
to study molecular changes initiated by TBI that may increase the risk of developing
AD. MicroRNA (miRNA) levels are altered in TBI at acute times post-injury (<4 weeks),
and in AD. We hypothesized that miRNA levels in cerebrospinal fluid (CSF) following
TBI in veterans may be indicative of increased risk for developing AD. Our population
of interest is cognitively normal veterans with a history of one or more mild TBI
(mTBI) at a chronic time following TBI. We measured miRNA levels in CSF from three
groups of participants: (1) community controls with no lifetime history of TBI (ComC);
(2) deployed Iraq/Afghanistan veterans with no lifetime history of TBI (DepC), and (3)
deployed Iraq/Afghanistan veterans with a history of repetitive blast mTBI (DepTBI). CSF
samples were collected at the baseline visit in a longitudinal, multimodal assessment
of Gulf War veterans, and represent a heterogenous group of male veterans and
community controls. The average time since the last blast mTBI experienced was
4.7 ± 2.2 years [1.5 – 11.5]. Statistical analysis of TaqManTM miRNA array data
revealed 18 miRNAs with significant differential expression in the group comparisons:
10 between DepTBI and ComC, 7 between DepC and ComC, and 8 between
DepTBI and DepC. We also identified 8 miRNAs with significant differential detection
in the group comparisons: 5 in DepTBI vs. ComC, 3 in DepC vs. ComC, and 2 in
DepTBI vs. DepC. When we applied our previously developed multivariable dependence
analysis, we found 13 miRNAs (6 of which are altered in levels or detection) that show
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dependencies with participant phenotypes, e.g., ApoE. Target prediction and pathway
analysis with miRNAs differentially expressed in DepTBI vs. either DepC or ComC
identified canonical pathways highly relevant to TBI including senescence and ephrin
receptor signaling, respectively. This study shows that both TBI and deployment result
in persistent changes in CSF miRNA levels that are relevant to known miRNA-mediated
AD pathology, and which may reflect early events in AD.

Keywords: veterans, deployment, mild traumatic brain injury, cerebrospinal fluid, microRNA, Alzheimer’s disease

INTRODUCTION

Traumatic brain injury (TBI) has been associated with cognitive
impairment (McInnes et al., 2017). Several epidemiologic studies
have also reported an association between a history of closed
head injury and Alzheimer’s disease (AD) or dementia (Plassman
and Grafman, 2015). Repetitive, mild TBI (mTBI), resulting from
either blunt force and/or blast wave brain trauma, are particularly
strong predictors of AD and related disorders (ADRD)
(Guskiewicz et al., 2005; DeKosky et al., 2010). Retrospective
cohort studies in older veterans demonstrated that TBI in earlier
life was associated with a 60% increase in the risk of developing
dementia (Barnes et al., 2014, 2018). Since the year 2000, the
Department of Defense has recorded over 300,000 TBIs in service
members deployed to Iraq and/or Afghanistan, and it is likely
that mTBIs in particular have been under-reported (Sibener et al.,
2014). The United States Department of Veterans Affairs recently
published a review of the evidence regarding the link between TBI
and dementia: www.hsrd.research.va.gov/publications/esp/tbi-
dementia-brief.pdf. This review reported that while few studies
have focused on evaluating the association between TBI and
dementia in military and veteran populations, those that did
(Barnes et al., 2014, 2018) were consistent with a systematic
review of worldwide general community studies that suggest TBI
is associated with increased risk of dementia (Li et al., 2017).
Interestingly, the Li study also demonstrated a dose-response
relationship between number of TBIs and dementia diagnosis.
Consequently, as the population of veterans ages, an increased
incidence of ADRD will present a large burden on families,
caregivers, and the Veterans Affairs health care system.

The precise mechanisms triggered by TBI that may lead to
cognitive impairment are not clear. In this study, we examined
miRNAs as a link between TBI and AD in war veterans. MiRNAs
are short, non-coding RNAs that regulate protein translation
via suppression or degradation of messenger RNA (mRNA)
transcripts (Bushati and Cohen, 2007; Filipowicz et al., 2008;
Shyu et al., 2008). MiRNAs contribute to normal developmental
changes in the brain, and to the initiation and/or progression of
neurological diseases in neurons and glia (O’Carroll and Schaefer,
2013). Furthermore, changes in miRNA levels have been linked
to neurodegeneration across many diseases (Juzwik et al., 2019),
including AD (Wang et al., 2019). Circulating cell-free miRNAs
also serve as sensitive markers for changes in neurological
diseases, including AD (Batistela et al., 2017) and TBI (Atif and
Hicks, 2019). Here we focused on analyzing cerebrospinal fluid
(CSF) given that it bathes and reflects the state of the brain,

and that CSF miRNAs have been reported as biomarkers for AD
(Lusardi et al., 2017; Denk and Jahn, 2018; McKeever et al., 2018;
Wiedrick et al., 2019; Sandau et al., 2020b).

The time interval between brain injury and the potential
onset of ADRD symptoms is likely to be years or decades long.
During this interval, confounding influences may complicate
the development of predictive prognostic tools. Thus, to
effectively analyze TBI data we need to be able to identify
diverse multivariable dependencies. We recently introduced an
information theory-based set of measures that allow us to
quantify statistical dependencies among multiple variables. These
measures make no assumption about the functional nature
of the dependence, thus allowing us to detect multivariable
dependencies without defining the underlying function of the
dependence (Galas et al., 2014; Sakhanenko and Galas, 2015;
Sakhanenko et al., 2017). While information measures do
not identify which variables in the dependence are cause or
effect, they are an essential tool in identifying factors that
may either weaken or strengthen the ultimate utility of a
biomarker panel for the early detection of ADRD. Thus, we used
information measures to identify dependencies among miRNAs
and AD characteristics, e.g., ApoE, that contribute to ADRD
risk classification.

In this study, we examined the effect of both blast mTBI
and deployment on miRNA expression in CSF. In order to
understand the biological responses to TBI that may lead to
AD, it is necessary to identify miRNAs that are changed at
post-acute times following injury. We measured CSF miRNA
expression in three groups of participants: (1) community
controls with no lifetime history of deployment or TBI (ComC);
(2) deployed Iraq/Afghanistan veterans with no lifetime history
of TBI (DepC), and (3) deployed Iraq/Afghanistan veterans
with a history of repetitive blast injury (DepTBI). Individuals
in the DepTBI group experienced repeated exposures to blast
mTBI, but had no signs of neurocognitive disorder at the time
of CSF collection, which occurred at least 1.5 years after the
most recent exposure and well past the 0 – 4 week time frame
reported in prior acute TBI studies. We first analyzed CSF
miRNA levels in each of these three groups, and identified
CSF miRNAs that had differential expression levels or were
differentially detected in each group. We then considered the
contribution of the apolipoprotein E e4 (APOE4) gene allele, age,
body mass index (BMI), smoking history, and serum proteins
in combination with miRNA expression using our previously
developed multivariable dependence measures, to demonstrate
dependencies with participant phenotypes and identify potential
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confounding factors in our analysis. To understand the biological
relevance of identified miRNA, we compared the miRNAs
identified in this study with miRNA levels reported in published
studies of humans with acute TBI responses (<4 weeks),
humans with AD, and those demonstrated in model systems
to have a mechanistic role in TBI or dementia. Finally, target
prediction and pathway analysis was used to identify top gene
candidates and signaling networks regulated by the miRNAs.
Together, our results show that CSF miRNA levels reflect
persistent changes associated with TBI as well as changes in
AD-related signaling networks. However, ongoing longitudinal
evaluations are necessary to understand whether specific changes
are indicative of AD risk, or whether they reveal mechanistic
insight into the initiation or progression of AD.

MATERIALS AND METHODS

Study Participants
This study was approved by the Veterans Affairs (VA) Puget
Sound Health Care System and the University of Washington
Institutional Review Boards. All participants provided written
informed consent in accordance with the Declaration of Helsinki
prior to any study procedures (World Medical Association,
2013). One hundred and fifteen participants in this study were
drawn from an ongoing longitudinal multimodal assessment
study of veterans with and without repetitive mTBI that has been
previously described (Petrie et al., 2014). In brief, veterans from
the Iraq and Afghanistan conflicts were recruited from the local
VA medical center and community population (Table 1; complete
data in Supplementary Table 1). Medical and psychiatric history,
including current medications, was obtained both via clinician
interview and review of the medical charts. Lifetime history of
TBI was evaluated by careful clinical history via semi-structured
interview conducted by two expert TBI clinicians simultaneously.
Behavioral health diagnostic assessments for diagnoses, including
substance use disorders, were based on the Structured Clinical
Interview for DSM-IV (First et al., 2002). Inclusion criteria for
veterans included either no lifetime history of TBI (DepC), or
at least one war-zone blast or combined blast/impact exposure
(DepTBI) that resulted in acute symptoms consistent with the
American Congress of Rehabilitation Medicine criteria for mTBI
(Kay et al., 1993). Exclusion criteria included a reported history
of moderate or severe TBI, a penetrating head wound, a seizure
disorder, insulin-dependent diabetes, current or past diagnosis
of primary psychotic or neurodegenerative disorder, a current
or past diagnosis of bipolar disorder, or a diagnosis of active
substance abuse or dependence within the past 6 months. Other
exclusion criteria included contraindication to lumbar puncture,
or taking medications likely to affect cognitive performance.

CSF Collection and CSF AD Biomarker
Measurements
CSF was obtained using a minimally invasive and well-tolerated
protocol with anticipated post-lumbar puncture headache
incidence < 1%, consistent with protocols utilized across AD
centers (Peskind et al., 2005). CSF utilized for these studies was

aliquoted and frozen on dry ice at the bedside, and stored at
−80◦C prior to shipment on dry ice to Oregon Health & Science
University. Three CSF biomarkers reflect central pathogenic
processes of AD in the brain: Abeta42 is a marker for Abeta
metabolism and plaque formation, total tau (tTau) is a marker
for the neuronal degeneration formation, and phosphorylated tau
(pTau) is a marker for tau hyperphosphorylation and formation
of tangles. We measured levels of CSF Abeta42, tTau, and pTau181
using the INNO-BIA AlzBio3 assay (Innogenetics Inc, Ghent,
Belgium), an immunobead-based quantitative, multiplex assay
for the simultaneous quantification of these three markers in
human CSF, according to the manufacturer’s instructions and as
previously described (Mattsson et al., 2011). Early studies that
evaluated CSF levels of Abeta42 alone and in combination with
tTau show that the combined measure of Abeta42:tTau meets the
requirement for discriminating AD from normal aging and other
specific neurologic disorders (Hulstaert et al., 1999). Subsequent
studies supported that combinations of CSF markers improves
diagnostic performance for AD vs. other related neurological
disorders (Blennow, 2004). In addition to increased sensitivity
and specificity for the combination of Abeta42 and tTau over
either CSF marker alone, the combination of pTau:tTau also
increased the sensitivity and specificity of diagnostic performance
over either CSF marker alone (Blennow, 2004). Given that the
combined measures of Abeta42, tTau, and pTau have a high
diagnostic accuracy for AD, the ratio of Abeta42 to tTau and the
ratio of CSF pTau181 to tTau were used for analyses, in addition
to each individual biomarker.

RNA Isolation, Amplification, and
Quantitative PCR (qPCR)
Total RNA was isolated from 500 µL CSF using the mirVanaTM

PARISTM RNA and Native Protein Purification Kit [Thermo
Fisher Scientific (TFS), AM1556], with modifications (Burgos
et al., 2014), as previously reported (Lusardi et al., 2017; Wiedrick
et al., 2019; Sandau et al., 2020b). MiRNAs were measured
using TaqManTM Array Human MicroRNA A Cards v2.1 with
n = 1 technical replicate probe for quantitation of 377 human
miRNAs, plus probes for U6 snRNA, RNU44, and RNU48 (TFS,
4398965). Total RNA was concentrated using the RNA Clean &
ConcentratorTM-5 Kit (Zymo Research, R1013) and eluted into
9 µL of RNase/DNase-free water. 3.2 µL of concentrated RNA
was reverse transcribed using the TaqManTM MicroRNA Reverse
Transcription Kit (TFS, 4366596) in a 7.5 µL final reaction
volume with MegaplexTM Reverse Transcription Primer Pool
Set v2.1 A (TFS, 4444745). 5 µL of cDNA was pre-amplified
with MegaplexTM PreAmp Primer Pool A v2.1 (TFS, 4444748)
using TaqManTM PreAmp Master Mix (TFS, 4391128). The pre-
amplification products were diluted 1:2 into a final volume of
50 µL with water, and stored at −20◦C. 18 µL of diluted pre-
amplification product was combined with 450 µL of TaqManTM

Universal PCR Master Mix II, no UNG (TFS, 4440047) and
432 µL of water, then 100 µL was loaded per port.

For verification studies we generated a Custom TaqManTM

miRNA Array Card with n = 3 technical replicate probes for 47
human miRNAs including our identified positive and negative
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controls, and U6 (TFS, 4449140) (Supplementary Table 2). Total
RNA from n = 10 biological replicates per participant group were
isolated, concentrated to 6 µL, then 4.1 µL of the concentrated
RNA was reverse transcribed with a Custom miRNA RT pool
(TFS, 4459652) in a total volume of 15 µL. 7.5 µL of cDNA
was pre-amplified with the Custom miRNA PreAmp pool (TFS,
4459660) in a total volume of 25 µL, then diluted 1:4 with
RNase-free water and stored at −20◦C. 18 µL of diluted pre-
amplification product was combined with 225 µL of TaqManTM

Universal PCR Master Mix II, no UNG and 207 µL of water, then
100 µL of product was loaded per array card port. All reverse
transcription and pre-amplification reactions were performed
on a VeritiTM 96-Well Thermal Cycler (TFS, 4375786) and the
array cards were run on a QuantStudio 12K Flex Real-Time PCR
System (TFS, 4471134), using the manufacturer’s protocol for
detection of miRNAs with pre-amplification.

MicroRNA qPCR Data Processing
The complete data processing and analytic workflow is
summarized in Figure 1. We updated the information for the
377 miRNA primer/probe targets on the TaqManTM Array
Human MicroRNA A Card v2.1 to match miRBase, version
21 (Kozomara and Griffiths-Jones, 2014). 18 primer/probe
pairs targeting sequences identified as miRNAs in previous

miRbase versions were excluded from analysis because they
were confirmed to be other RNA biotypes (tRNA, vault RNA)
and not miRNAs, and subsequently withdrawn from miRbase
(www.mirbase.org). QuantStudioTM 12K Flex Software v1.3 was
used for processing of the qPCR data. For each amplification we
calculated the quantification cycle (Cq) value using automated
baseline and threshold values determined by ExpressionSuite
software v1.1 (TFS). For each miRNA the amplification score
(AmpScore), which measures signal quality in the linear phase,
and Cq confidence (CqConf), which measures confidence in
the Cq value, were also calculated by ExpressionSuite. We
evaluated each amplification based on the ExpressionSuite Cq
quantification and AmpScore values. We flagged quantifications
as “censored” if there was no amplification observed or the
Cq value was ≥ 34. Quantifications were flagged as “excluded”,
considered a technical failure, and excluded from further analysis
if AmpScore < 1.0. The remaining amplifications were flagged
as “good” quantifications. We considered miRNAs with either
“Undetected” or Cq > 34 assignments from ExpressionSuite as
below the detection threshold and censored at Cq = 34. We
exported all data including the Cq, AmpScore, and CqConf out of
ExpressionSuite for further analysis using R scripts. Endogenous
controls (ECs) were determined according to the method of
Vandesompele et al. (2002) as implemented in the NormqPCR

TABLE 1 | Study participant characteristics.

Characteristic ComC DepC DepTBI

Number 52 18 45

Age at CSF Collection 33.4 ± 9.3 31.8 ± 7.1 34.0 ± 10.0

Race White 37 14 32

Black/African American 1 1 2

Asian/Pacific Islander/Native Hawaiian 9 0 3

American Indian/Alaskan Native 2 0 1

Other/NA 3 3 6/1

BMI*** 25.1 ± 3.4 26.9 ± 4.3 28.5 ± 4.4***

Number of mTBIs 0 0 20.5 ± 28.9 [1 – 102]

Years Since Most Recent mTBI N/A N/A 4.7 ± 2.2 [1.5 – 11.5]

Smoking Status (No/Yes/Unknown) 50/2/0 17/1/0 30/14/1

MMSE*** 29.5 ± 0.6 29.1 ± 1.1 28.5 ± 1.6***

Abeta42 321.4 ± 54.2 309.5 ± 70.3 316.0 ± 55.8

tTau 42.9 ± 17.3 35.2 ± 14.1 37.5 ± 13.7

pTau181 27.8 ± 9.3 28.7 ± 8.9 28.2 ± 6.4

Abeta42:tTau 8.2 ± 2.1 9.4 ± 1.9 9.1 ± 2.1

pTau181:tTau*** 0.68 ± 0.15 0.84 ± 0.10** 0.80 ± 0.14**

APOE4 Alleles Count % Count % Count %

0 37 71.1 8 44.4 30 66.7

1 13 25.0 8 44.4 9 20.0

2 1 1.9 1 5.5 1 2.2

Samples not available for genotyping 1 1 5

Summary characteristics for the 115 study participants. Characteristic data were analyzed by ANOVA. For characteristics with significant ANOVA, we then performed
a post hoc Tukey test to assess group differences in DepC or DepTBI as compared to ComC. ANOVA testing showed a significant group effect on BMI (p < 0.001);
post hoc testing showed no difference in the DepC group compared to ComC, but DepTBI BMI values were significantly higher (p < 0.001). ANOVA testing showed a
significant group effect on MMSE (p < 0.001); post hoc testing revealed that MMSE in the DepC group was not different from ComC, but DepTBI MMSE values were
significantly lower (p < 0.001). ANOVA testing showed a significant change in the pTau181:tTau ratio (p < 0.05); post hoc testing showed a significant increase in both
DepC (p < 0.01) and in DepTBI (p < 0.01). Mean ± SD [Range]. Significance indicated by **p < 0.01, ***p < 0.001.

Frontiers in Neuroscience | www.frontiersin.org 4 September 2021 | Volume 15 | Article 720778

http://www.mirbase.org
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-720778 September 7, 2021 Time: 11:57 # 5

Lusardi et al. MiRNA Changes in Veterans’ CSF

package (Perkins et al., 2012). 15 miRNAs were considered as
candidate ECs by the following criteria: (1) annotated in miRbase
V.21 as a human miRNA, and (2) present in 100% of the samples
with AmpScore ≥ 1, Cq < 30, and CqConf > 0.8. Candidate
ECs were then ranked by their expression stability, and their
contribution assessed by pairwise variation. Using the suggested
threshold variation of 0.1527, we identified 3 miRNAs as
ECs (denoted as hsa-miR-X-TFS Probe Number): hsa-miR-222-
002276, hsa-miR-342-3p-002260, and hsa-miR-146a-000468. For
normalization within each card (one study participant), we
calculated 1Cq as the Cq minus the geometric mean of the ECs,
for each amplification on the card. We excluded miRNAs with
failed amplifications in > 20% of samples as technical error with
the primer/probe. Of the remaining miRNAs, we analyzed those
that were detected in at least 10% of the samples (134 miRNAs in
total). For each amplification, we reported the flags, Cq, and 1Cq
values in Supplementary Table 3. Flag status is summarized by
experimental group in Supplementary Table 4.

Analysis of Differentially Expressed
MiRNAs
Differential expression levels of the 1Cq for 134 miRNAs were
evaluated by log-rank test (R packages survival v3.1-8 and
survminer, v0.4.61). Fold changes and confidence intervals were
calculated according to the method 2−11Cq (Applied Biosystems
Guide to Performing Relative Quantitation of Gene Expression
Using Real-Time Quantitative PCR, 4371095 Rev B). False
discovery rates (Benjamini and Hochberg, 1995) were calculated,
and are included in Supplementary Table 5.

Analysis of Differentially Detected
MiRNAs
To determine whether detection of a specific miRNA level differs
significantly across the participant groups, we also assessed
differential detection of the Cq for all 134 miRNAs. We used
Fisher’s exact test, which can determine the odds of detecting
significant differences in a specific miRNA across the groups. The
odds ratios were calculated for the DepTBI vs. ComC, DepC vs.
ComC, and DepTBI vs. DepC groups. Calculations are included
in Supplementary Table 6.

Effect of Biological Variables
For miRNAs that showed significant changes in levels or
detection (Tables 2, 3), we assessed the correlation between
miRNA level changes and biological variables in the participants
including age at CSF collection, Mini-Mental State Examination
(MMSE) scores, BMI, current tobacco use, number of TBIs, years
since most recent TBI, Abeta42:tTau ratio, and pTau181:tTau ratio.
We also assessed biological variables by linear regression with the
miRNA expression as the outcome and the variable of interest
as the predictor (uncorrected p-value and R2 are reported in
Supplementary Table 7).

1https://CRAN.R-project.org/package=survival

Detecting Multivariable Dependencies
Among Biological Variables
We used an information theory-based method to systematically
search through the study variables (such as miRNA expression
levels, TBI status, BMI, etc.) and identify strong pairwise and
3-variable dependencies (Galas et al., 2014; Sakhanenko and
Galas, 2015; Sakhanenko et al., 2017). Using our information
measures, our data analysis pathway consisted of four main
stages: preprocessing, information measure computation, output
evaluation, and miRNA candidate selection (Figure 1).

Preprocessing: Binning and Sample Selection
We began by binning all continuous data such that it was
represented by discrete and positive integers, a perquisite
for calculating information measures. To preprocess miRNA
expression levels we examined the distributions of values and
discretized them into three bins using µ± f × s as thresholds,
where µ is the mean, s is the standard deviation, and f is the
factor, determined for each miRNA individually to ensure that
the number of values in each bin are close to being equal. Each bin
was encoded with an integer. The factor values for each miRNA
are in Supplementary Table 4.

We distinguished between two types of phenotypes, primary
and secondary, and converted them into binned variables as
shown in Supplementary Table 8. For clarity, the binned
variables (the integer-valued phenotypes constructed to carry
out the information theory-based analysis) are in lower case
italics, and we use ptau and abeta (without subscripts) to
refer to the binned version of phenotypes pTau181 and
Abeta42 (Supplementary Table 8). There are three primary
binned variables representing the sample groupings based on
deployment status and TBI history. The 2-value deployment
variable considers ComC vs. combined DepC and DepTBI; the
2-value tbi variable considers combined ComC and DepC vs.
DepTBI; and the 3-value exp_grp considers ComC, DepC, and
DepTBI individually. The per-sample definitions of the three
primary variables are shown in Supplementary Table 1.

All other phenotypes were considered secondary
(Supplementary Table 8). Of the continuous phenotypes,
Age and BMI were each assigned to three bins as for the miRNAs,
resulting in binned variables age and bmi. The remaining
continuous variables were discretized into two bins by splitting
on the mean value to increase the number of samples per bin.
Categorical phenotypes (APOE genotype, smoking status, race)
were encoded using a 1-to-1 mapping into integers. In cases
when the number of categories was more than 3, categories were
merged to raise the number of samples in each bin. For example,
the APOE genotypes (e2, e3, e4) in our data set were represented
with a binary variable apoe4 indicating whether or not the APOE
genotype contains the e4 allele.

Not all phenotypes contained values in every sample (see
‘Number of Samples’ column in Supplementary Table 8). To
avoid limiting the computation with missing data or dropped
samples, we assembled data into individual input files for
each type of dependency computation, therefore increasing the
number of samples available for each computation.
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FIGURE 1 | Study Workflow. The study included CSF collected from 115 veteran and community participants, with or without TBI. TaqMan array cards were used to
assay 377 unique miRNAs. 134 miRNAs passed quality control (QC) metrics and were used for statistical analysis (differential expression, differential detection) and
information theory (correlation to biological variables). The miRNAs with significant differential expression between each group comparison where then used for
miRNA target prediction and pathway analysis. All assayed miRNA were used in the information theory dependency models, with results filtered to those that passed
the initial QC step.

Information Measurement: Calculating Mutual
Information and Delta Scores
We next aimed to identify which of the 377 miRNAs on the
array card were strongly dependent on the primary phenotypes
(deployment, tbi, or exp_group) and secondary phenotypes (age,
bmi, mmse, abeta, ttau, ptau, abeta-ttau, abeta-ptau, ptau-
ttau, apoe, apoe4, smoke, and race) of study participants. We
systematically searched for pairwise dependencies of the type〈
m, p

〉
and for 3-variable dependencies of the type

〈
m, p, s

〉
, where

m represents an miRNA, p represents a primary phenotype, and s
represents a secondary phenotype. For each given combination of
p and s phenotypes, we calculated an information and delta score
for each miRNA and selected top miRNAs based on their score,
as described below.

First, in order to measure pairwise dependence between two
variables, M and P, we used mutual information I (M, P), defined
as

I (M, P) = H(M)+H(P)−H(M, P),

where H(M) and H(P) are single entropies of variables M and P
and H(M, P) is their joint entropy.

In order to measure dependence between three variables,
M, P, and S, we used symmetric delta, 1̄ (M, P, S). To provide
the definition of symmetric delta we introduce interaction
information, which is a multivariable generalization of mutual

information (McGill, 1954), defined for three variables as

I (M, P, S) = I(M, P)− I(M, P| S).

Given interaction information, we defined differential interaction
information (1) as a difference between values of successive
interaction information arising from adding a variable:

1M = I (M, P, S)− I(P, S),
1p = I (M, P, S)− I(M, S),
1S = I (M, P, S)− I(M, P).

Here 1M is called asymmetric delta for the target variable
M. In order to detect a fully synergistic dependence among a
set of variables, we want a single measure to be symmetric.
Consequently, we defined a general measure 1̄, called symmetric
delta (or simply delta), by multiplying with all possible choices of
the target variable:

1̄ (M, P, S) = 1M ·1p ·1S.

The critical property of the delta measure is that it is zero
whenever any of the three variables is independent of the others.
It is important to note that high absolute values of the delta
measure or mutual information indicate that the corresponding
variables are collectively interdependent. Conversely, small
values of delta and mutual information indicate that variables
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are approximately independent. Note that both measures are
symmetric under permutation of variables. Examples of two
distributions, values of mutual information and delta measures,
are shown in Supplementary Figure 1. By our definition,
values of 3-variable delta are negative, while values of mutual
information are always positive. Mutual information and delta
can detect not only linear correlations, but any nonlinear
relationships among variables.

Output Evaluation: Pairwise and 3-Variable
Dependencies
We searched for dependencies between miRNA and participant
phenotypes in two ways: firstly through pairwise dependencies〈
m, p

〉
between a miRNA m and a primary phenotype p; and

secondly through 3-way dependencies
〈
m, p, s

〉
of an miRNA m, a

primary phenotype p, and a secondary phenotype s.
In the first search strategy, we used mutual information scores

to identify miRNAs with the largest amount of information,
which reduces uncertainty about the corresponding primary
phenotype (e.g., when a miRNA and the phenotype are
correlated). In the second search strategy, we used delta
scores to identify miRNAs with the largest amount of 3-
way information, which is shared with a primary and a
secondary phenotype (knowing the secondary phenotype reduces
uncertainty about the corresponding primary phenotype). In
this strategy, the secondary phenotype can be viewed as a
confounding factor affecting the dependency between an miRNA
and a primary phenotype. Additionally, to capture the collective
3-way dependence between a miRNA, deployment, and tbi,
we also searched for dependencies

〈
miRNA, deployment, tbi

〉
,

focusing only on the 3-way collective component of the
relationship between these three variables.

During every search, we scored all 377 assayed miRNAs
to provide a background signal for the analysis. We used an
information measure (either mutual information or 3-variable
delta) and selected up to 20 top-scoring miRNAs, whose
scores were greater than one standard deviation away from
the mean (see Supplementary Figure 1 for examples of score
distributions). This resulted in 43 lists of pairwise and 3-way
dependencies. 224 miRNAs (of the 377 assayed) appeared in at
least one list of strong dependencies. Z-scores of information
measures evaluated here for the 125 miRNAs that also passed the
qPCR quality thresholds are shown in Supplementary Table 9.

Candidate Selection: Composite Scores
The scores between different searches cannot be directly
compared, due to the difference between phenotype value
distributions, a variable and small number of samples in each
search, and the difference between pairwise and 3-variable
measures. Consequently, we converted the raw information
scores into z-scores, in order to compare them and to offer
evidence of significance of the results. To narrow down
the list of implicated miRNAs, we computed 3 composite
scores corresponding to each of the three primary phenotypes
(Supplementary Table 9). The composite score aggregates the
evidence about a miRNA across all phenotypes of interest to
measure the potential importance of that miRNA to that primary

phenotypic grouping. For example, the tbi composite score is
defined as:

cs(tbi, m) = MI(tbi, m)+
1
2

(
max

(
1̄

(
tbi, ptau-ttau, m

)
,

1̄
(
tbi, abeta-ttau, m

)
, 1̄

(
tbi, abeta-ptau, m

))
+

1
(
tbi, apoe4, m)

)
+

1
3

(
1̄

(
tbi, age, m

)
+ 1̄

(
tbi, bmi, m

)
+1̄

(
tbi, smoke, m

))
Here, m is a miRNA, MI and 1̄ are z-scores of the corresponding
mutual information and delta values, and tbi, ptau-ttau,
abeta-ttau, abeta-ptau, apoe4, age, bmi, smoke are variables
corresponding to the binned phenotypes TBI, pTau181:tTau,
Abeta42:tTau, Abeta42:pTau181 ratios, binary APOE, age, BMI,
and current tobacco use (see Supplementary Table 8). Since
phenotypes ptau-ttau, abeta-ttau, and abeta-ptau are correlated,
only the maximal z-score was selected. Since the mutual
information scores have less statistical fluctuation on a small
sample set when compared to the delta scores, and since the delta
scores tend to be more extremely distributed than the mutual
information scores, we downgraded the delta scores by a factor
of 2. This factor was further increased to 3 for the phenotypes
age, bmi, and smoke, since the effects of these phenotypes on TBI
is anticipated to be small.

Target Prediction
To predict biological targets of differentially expressed miRNAs,
we used our previously published bioinformatics pipeline
(Sandau et al., 2020a) that utilizes the online prediction tools
TargetScan v.7.2 and miRDB, followed by QIAGEN Ingenuity
Pathway Analysis2. In order to specifically examine the effect
of TBI on miRNA signaling, we analyzed the 10 miRNAs
whose expression levels were significantly different in DepTBI
vs. ComC (Table 2A). We also analyzed the 7 miRNAs
whose expression levels were significantly different in DepC
vs. ComC (Table 2B), and the 8 miRNAs whose expression
levels were significantly different between DepTBI vs. DepC
(Table 2C). We used TargetScan (Agarwal et al., 2015) and
miRDB (Liu and Wang, 2019; Chen and Wang, 2020) to generate
a list of mRNAs that are predicted targets of these miRNAs.
These tools were chosen as they are both commonly used
and frequently updated. In order to limit our list to targets
that have been either experimentally validated or predicted
with a high degree of confidence, targets were excluded if
they had a Cumulative Weighted Context Score > −0.3 in
TargetScan, or a Target Score < 80 in miRDB. The lists of
mRNAs predicted by TargetScan (Supplementary Table 12) and
miRDB (Supplementary Table 13) for all 3 datasets were then
used in separate IPA analyses to identify putatively affected
canonical pathways based on either TargetScan (Supplementary
Table 14) or miRDB (Supplementary Table 15). Significant
canonical pathways were based on adjusted p-values using
a Benjamini-Hochberg false discovery rate threshold of 0.1

2www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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(Supplementary Table 16). In order to avoid the knowledge bias
towards cancer in IPA, we excluded cancer-related tissues, cell
lines, and diseases from this analysis.

RESULTS

Participant Characteristics
Of the 115 participants in this study, 52 were in the ComC
group, 18 were in the DepC group, and 45 were in the
DepTBI group (Table 1 and Supplementary Table 1). All
participants were male. The average age at CSF collection of
the ComC group was 33.4 ± 9.3, of the DepC group was
31.8 ± 7.1, and the DepTBI group was 34.0 ± 10.0 (ANOVA
p = 0.71). BMI of the ComC group was 25.1 ± 3.4, of the
DepC group was 26.9 ± 4.3, and the DepTBI group was
28.5 ± 4.4 (ANOVA p < 0.001); post hoc testing showed that
the DepTBI group had significantly higher BMI than ComC
(p < 0.001). MMSE of the ComC group was 29.5 ± 0.6, of
the DepC group was 29.1 ± 1.1, and the DepTBI group was
28.5 ± 1.6 (ANOVA p = 0.0003); post hoc testing showed that
the DepTBI group had significantly lower MMSE than ComC
(p < 0.001). The number of reported mTBIs in the DepTBI
group was 20.5 ± 28.9 [1 – 102]. The average time since
the last blast mTBI experienced was 4.7 ± 2.2 years [1.5 –
11.5]. The CSF Abeta42:tTau measures in the ComC group
were 8.2 ± 2.1, of the DepC group was 9.4 ± 1.9, and the
DepTBI group was 9.1 ± 2.1 (ANOVA p = 0.067). The CSF
pTau181:tTau measures in the ComC group were 0.68 ± 0.15,

of the DepC group were 0.84 ± 0.10, and in the DepTBI group
were 0.80 ± 0.14 (ANOVA p < 0.001); post hoc testing showed
that the DepC and the DepTBI groups each had significantly
higher pTau181:tTau ratios than ComC (DepC p < 0.01, DepTBI
p < 0.01).

Differential Expression Levels of MiRNAs
in CSF by TBI and Deployment Status
We identified 134 miRNAs in CSF that passed our quality control
criteria (see section “MATERIALS AND METHODS”). Of these
we compared the levels between groups to identify miRNAs
that are differentially expressed in DepTBI vs. ComC, DepC vs.
ComC, and DepTBI vs. DepC. All results for the differential
levels of miRNA by experimental group comparisons are listed
in Supplementary Table 5. These analyses revealed that there
was an effect of both TBI and deployment status on CSF miRNA
levels. Fold changes were considered significant if they had a
p-value < 0.025. We identified a total of 18 differential miRNAs.
Ten were significantly different between DepTBI and ComC
(Table 2A); 7 between DepC and ComC (Table 2B); and 8
between DepTBI and DepC (Table 2C). Table 2 shows that 2
miRNAs were differentially expressed in both DepTBI and DepC
vs. ComC (miR-548-3p, miR20b-5p); 1 miRNA was differentially
expressed in DepTBI vs. ComC and DepTBI vs. DepC (miR-191-
5p); and 4 miRNAs were differentially expressed in both DepC
vs. ComC and DepTBI vs. DepC (miR-152-3p, miR-132-3p,
miR-362-5p, miR-548c-3p). Figure 2A shows that miR-20b-5p
has significantly lower expression in DepC (p < 0.01), and in

TABLE 2 | Differential Expression Levels of CSF MiRNAs by TBI and Deployment Status.

A. DepTBI vs. ComC B. DepC vs. ComC C. DepTBI vs. DepC

miRNA FC (CI) p-value FC (CI) p-value FC (CI) p-value

502-3p 1.01 (0.33 - 3.08) 0.0141 0.56 (0.22 - 1.40) 0.6821 1.80 (0.59 - 5.50) 0.0552

362-3p 0.80 (0.32 - 2.01) 0.0102 0.59 (0.26 - 1.31) 0.5661 1.37 (0.55 - 3.42) 0.1017

191-5p 0.76 (0.25 - 2.28) 0.0046 0.88 (0.30 - 2.59) 0.9084 0.86 (0.28 - 2.58) 0.0226

197-3p 0.66 (0.19 - 2.32) 0.0013 0.71 (0.24 - 2.10) 0.1119 0.93 (0.26 - 3.25) 0.2927

30c-5p 0.66 (0.16 - 2.69) 0.0239 0.81 (0.23 - 2.84) 0.5724 0.81 (0.20 - 3.33) 0.2247

140-5p 0.65 (0.15 - 2.88) 0.0038 0.89 (0.27 - 2.93) 0.7016 0.73 (0.17 - 3.25) 0.0972

30b-5p 0.63 (0.14 - 2.82) 0.0187 0.76 (0.22 - 2.60) 0.4784 0.82 (0.18 - 3.70) 0.2218

20a-5p 0.55 (0.13 - 2.41) 0.0040 0.60 (0.16 - 2.32) 0.0787 0.91 (0.21 - 4.00) 0.6109

548a-3p 0.50 (0.15 - 1.73) 0.0011 0.39 (0.12 - 1.30) 0.0149 1.29 (0.38 - 4.44) 0.7829

20b-5p 0.50 (0.11 - 2.19) 0.0007 0.43 (0.13 - 1.46) 0.0065 1.15 (0.26 - 5.03) 0.7461

152-3p 1.28 (0.24 - 6.80) 0.1885 2.47 (0.76 - 8.06) 0.0180 0.52 (0.10 - 2.75) 0.0106

132-3p 0.88 (0.13 - 6.07) 0.9995 2.19 (0.48 - 9.91) 0.0083 0.40 (0.06 - 2.77) 0.0067

362-5p 0.68 (0.26 - 1.78) 0.3353 1.02 (0.31 - 3.41) 0.0155 0.66 (0.25 - 1.74) 0.0010

518d-3p 0.67 (0.26 - 1.76) 0.1063 0.51 (0.22 - 1.16) 0.0175 1.33 (0.51 - 3.48) 0.1295

548c-3p 0.83 (0.22 - 3.09) 0.7281 0.34 (0.10 - 1.12) 0.0003 2.42 (0.65 - 9.01) 0.0011

125a-5p 0.90 (0.22 - 3.67) 0.9223 1.30 (0.37 - 4.51) 0.0261 0.69 (0.17 - 2.83) 0.0152

130a-3p 0.79 (0.13 - 4.98) 0.8177 1.78 (0.36 - 8.77) 0.0994 0.45 (0.07 - 2.81) 0.0234

411-5p 0.66 (0.24 - 1.80) 0.2191 0.82 (0.25 - 2.74) 0.2116 0.81 (0.30 - 2.19) 0.0242

MiRNAs with differential levels in each participant group were determined by log-rank testing of 1Cq values, and then fold changes calculated according to the −11Cq
method (Methods). (A). Bold font indicates miRNAs significantly altered by TBI when comparing the DepTBI vs. ComC groups. (B). Bold font indicates the miRNAs
significantly altered by deployment when comparing the DepC vs. ComC groups. (C). Bold font indicates the miRNAs significantly altered by TBI when comparing the
DepTBI vs. DepC groups. Results include the fold change (FC) with 95% confidence interval (CI), and p-value.
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DepTBI (p < 0.001) vs. ComC. Figure 2B shows that miR-191-
5p is significantly lower in DepTBI (p < 0.01) vs. ComC, and
in DepTBI vs. DepC, and Figure 2C shows that miR-132-3p is
significantly increased in DepC (p < 0.01) vs. ComC.

Differential Detection of CSF MiRNAs by
TBI and Deployment Status
Since several miRNAs were detected at different rates in a
subset of samples, we utilized Fisher’s exact test to determine
whether the detection rates might be useful to classify TBI
status. All results for the differential detection rates of the 134
miRNAs found in CSF by experimental group comparisons are
listed in Supplementary Table 6. For each miRNA differentially
detected between groups, we calculated odds ratios and p-values;
significance was set as p < 0.025 (Table 3). This analysis revealed
that both TBI and deployment status are associated with the
expression of miRNAs not commonly measured in the ComC
group. Table 3 lists the 8 miRNAs with significant differentially
detection in the group comparisons: 5 miRNAs were differentially
detected in DepTBI vs. ComC (3A) (miR-127-3p, miR-362-
3p, miR-152-3p, miR-502-3p, miR-548a-3p); 3 miRNAs were
differentially detected in DepC vs. ComC (3B) (miR-125a-5p,
miR-362-5p, miR-548c-3p); and 2 miRNAs were differentially
detected in DepTBI vs. DepC (3C) (miR-362-5p, miR-548c-
3p). Figure 3 shows representative time to amplification plots
showing differential detection rates for (A) miR-502-3p that
increased in DepTBI vs. ComC, (B) miR-362-5p that increased
in DepC vs. ComC and DepTBI, and (C) miR-548c-3p that was
decreased in DepC with respect to ComC and DepTBI.

Effects of Participant Characteristics on
Differential Expressed or Detected
MiRNAs
For the miRNAs differentially expressed and/or detected, we
examined correlations with age at CSF collection, MMSE
scores, BMI, current tobacco use, number of TBIs, years since
most recent TBI, Abeta42:tTau ratio, and pTau181:tTau ratio,
Abeta42, tTau, and pTau181 levels to miRNA expression level for

each participant (Supplementary Table 7). Using uncorrected
p-values, we found correlations in each of the groups. For the
DepTBI samples, we found a correlation with MMSE for miR-
132-3p (p = 0.016), with current tobacco use and miR-127-3p
(p = 0.006), and with Abeta42:tTau for miR-140-5p (p = 0.011). In
the DepC samples, we found a correlation with age at sampling
and miR-140-5p (p = 0.010). In the ComC samples, we found a
correlation with age at sampling and miR-191-5p (p = 0.023) and
pTau levels and miR-30b-5p (p = 0.011).

MiRNA Verification Study
The initial “discovery” studies were performed on a commercially
available card with n = 1 technical replicate probe per miRNA.
For the verification studies we generated custom miRNA cards,
with n = 3 technical replicate probes per miRNA, to examine
miRNA expression in 30 CSF samples used in the initial studies
(n = 10 / experimental group). We first assessed whether the
measurements for each individual were well correlated across
the discovery and verification assays. We found strong within
participant correlation (relative expression of each miRNA in
each individual) between miRNAs expressed in both the initial
and verification study, i.e., median correlation 0.789; range
0.574 to 0.887 (Supplementary Table 10). We then assessed the
1Cq correlation for each miRNA between the discovery and
verification assays (Supplementary Table 11). Here we focused
on the miRNAs that were considered in the differential expression
and detection analyses, to ensure they were well represented in
each participant group. Two miRNAs (miR-518-3p and miR-92a)
did not perform optimally in the verification study. Firstly, miR-
518-3p, a miRNA differentially expressed in DepC vs. ComC,
failed to amplify in the verification. Secondly, miR-92a, a positive
control expressed in CSF that was not differently expressed
between the groups, had a low correlation of 0.142 between the
discovery and verification. The failed amplification for miR-518-
3p and low correlation for miR-92a may reflect differences in
probe performance between array lots, as we have observed in
previous studies. Of the remaining miRNAs, 7 had correlation
estimates ranging from 0.506 to 0.811 between the discovery and

TABLE 3 | Differential Detection of CSF MiRNAs by TBI and Deployment Status.

A. DepTBI vs. ComC B. DepC vs. ComC C. DepTBI vs. DepC

miRNA OR (CI) p-value OR (CI) p-value OR (CI) p-value

127-3p 2.35 (0.97 - 5.84) 0.0431 3.41 (0.99 - 13.02) 0.0317 0.69 (0.18 - 2.43) 0.5790

362-3p 8.90 (1.81 - 87.10) 0.0026 3.06 (0.21 - 45.48) 0.2709 2.87 (0.54 - 29.42) 0.3143

152-3p 5.68 (1.14 - 55.76) 0.0182 Inf (0.96 - Inf) 0.0547 0.00 (0.00 - 13.46) 1.0000

502-3p 3.62 (1.28 - 11.03) 0.0107 1.10 (0.17 - 5.39) 1.0000 3.28 (0.76 - 20.17) 0.1375

548a-3p 0.32 (0.12 - 0.80) 0.0107 0.35 (0.10 - 1.22) 0.0781 0.91 (0.26 - 3.16) 1.0000

125a-5p 1.46 (0.59 - 3.67) 0.4068 5.74 (1.16 - 56.57) 0.0207 0.25 (0.03 - 1.32) 0.1155

362-5p 0.93 (0.30 - 2.80) 1.0000 5.68 (1.59 - 22.00) 0.0029 0.16 (0.04 - 0.61) 0.0027

548c-3p 1.21 (0.42 - 3.67) 0.8073 0.18 (0.04 - 0.63) 0.0036 6.83 (1.79 - 29.36) 0.0024

MiRNAs with significant changes in detection in each group. (A). Bold font indicates miRNAs significantly differentially detected by TBI when comparing the DepTBI vs.
ComC groups. (B). Bold font indicates miRNAs significantly differentially detected by deployment when comparing the DepC vs. ComC groups. (C). Bold font indicates
miRNAs significantly differentially detected by TBI when comparing the DepTBI vs. DepC groups. Results include odds ratio (OR) with 95% confidence interval (CI), and
p-value.
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FIGURE 2 | Distribution of –11Cq Values for Representative MiRNAs in Each Group. Box plots show the distribution of the –11Cq values for representative
miRNAs differentially expressed with respect to ComC in Table 2. The plots show that (A) miR-20b-5p is significantly altered in the DepC and DepTBI groups (B)
miR-191-5p is significantly altered in the DepTBI group, and (C) miR-132-3p is significantly altered in the DepC group. Significance: **p < 0.01, ***p < 0.001 with
respect to ComC, † p < 0.025, †† p < 0.01 with respect to DepC.

FIGURE 3 | Time to Amplification Plots for CSF MiRNAs Differentially Detected in Each Group. The figures depict representative time to amplification plots for
miRNAs with statistically significant changes in detection, p < 0.025. Representative plots show differential detection rates for (A) miR-502-3p that increased in the
DepTBI vs. ComC and DepC group, (B) miR-362-5p that increased in the DepC group relative to both ComC and DepTBI, and (C) miR-548c-3p was decreased in
DepC relative to both ComC and DepTBI.

verification studies. MiR-152-3p showed a significant change in
expression in the discovery study, and a correlation of 0.488
(p = 0.006) in the verification study. Furthermore, the negative
control miR-409-5p (not expressed in CSF) was not detected in
any of the 30 samples, while the positive control miR-204 had a
correlation of 0.677. Together these results indicate that overall,
data generated in the discovery study were reproducible.

Multi Variable Dependence
For the information theory-based analysis we considered three
primary phenotypes: (i) deployment, which considers ComC vs.
combined DepC and DepTBI; (ii) tbi, which considers combined
ComC and DepC vs. DepTBI; and (iii) exp_grp which considers
ComC, DepC, and DepTBI individually. We further considered
13 secondary phenotypes: age, bmi, mmse, abeta, ttau, ptau,
abeta-ttau, abeta-ptau, ptau-ttau, apoe, apoe4, smoke, race. Using
information theory-based dependency analysis (Supplementary
Figure 1) we searched for dependencies between 377 miRNAs
and the phenotypes. The analysis resulted in 125 miRNAs
that are involved in strong dependencies and passed the

qPCR quality thresholds. The list of these miRNAs with their
corresponding dependency scores, represented as z-scores, are
in Supplementary Table 9. It is critical to recall that low
z-scores of mutual information and delta measures indicate
that variables are approximately independent, whereas high
z-scores indicate that the corresponding variables are collectively
interdependent. Furthermore, mutual information and delta
can detect not only linear correlations, but any nonlinear
relationships among variables.

To assess how informative a miRNA is about the primary
phenotype, we derived a composite score from the mutual
information and delta z-scores for each primary phenotype-
miRNA pair. We then selected the secondary phenotypes that
play important role in the development of AD, namely apoe4,
age, bmi, smoke, ptau-ttau, abeta-ttau, abeta-ptau, and for
each miRNA calculated three composite scores, one for each
primary phenotype. Based on the distribution of all composite
scores, we derived stringent filtering (Supplementary Table 9)
focusing our attention only on miRNAs with the strongest
dependencies (Figure 4).
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FIGURE 4 | The stringent filtering of dependencies. The figure shows 13 miRNAs that passed the stringent filtering based on their composite scores. The 6 miRNAs
in bold were also identified using differential levels and/or differential detection. The values in the cells are the z-scores of the corresponding pairwise dependencies
(Dep) [based on mutual information (MI)] or 3-way (based on delta measures) dependencies. Empty cells indicate that the corresponding dependency was not a top
dependency. Colors highlight the ranking of the dependency in each of the original lists of strong dependencies: red indicates the top dependency in the list,
orange – the dependency ranked 2, yellow – 3, green – 4, and blue – 5. Note that the columns correspond to individual distributions of information scores, which are
based on different phenotypes, and therefore the z-scores of the dependencies with the same rank across the columns are not similar.

To better understand the composite information scores
(Figure 4), we need a closer look at the primary phenotypes.
If we look at the primary phenotypes as vectors of values,
assuming a certain order of samples, then deployment, tbi, and
exp_grp are identical for all the samples from ComC and all
the samples from DepTBI (see Supplementary Table 1). The
difference between these three phenotypes comes from the way
the samples from DepC were handled: in deployment samples
were merged with the samples from DepTBI, in tbi samples were
merged with the samples from ComC, and in exp_grp samples
were left as a separate group resulting in 3-valued phenotype.
Clearly these three phenotypes are correlated, but only partially,
and the differences between these phenotypes could explain why
there are miRNAs whose dependencies are stronger with one
phenotype, but not with the other. For example, miR-17-5p is the
strongest miRNA based on the strength of pairwise dependence
with the primary phenotype deployment (rank = 1). Although still
relatively strong, the miR-17-5p dependence with tbi is weaker
(rank = 7). Additionally, the dependence of miR-17-5p with
exp_grp (rank = 3) is between tbi and deployment rank wise. This
suggests that miR-17-5p behavior in civilians is very different
from that in veterans. Furthermore, it is the deployment and not
the status of TBI that is the “driver” of this dependence.

A similar example is miR-520b, but this time it is strongly
connected with tbi (the highest rank among all considered
miRNAs) and weakly connected with deployment and exp_grp
(ranked 15 and 8 correspondingly). This suggests that miR-520b
behavior changes considerably when we go from the DepTBI
samples to the remaining samples.

Although miR-548c-3p is not ranked in either deployment or
tbi, it is ranked the highest in exp_grp. This suggests a collective
dependence among these 3 variables, which is further validated
from the 3-way analysis of miRNAs together with deployment
and tbi, where miR-548c-3p ranked the highest. This means
that knowing the level of miR-548c-3p alone is not enough
to significantly reduce our uncertainty about tbi, but knowing
both the miRNA level and deployment together reduces the
largest amount of uncertainty about tbi. MiR-345-5p, miR-20b-
5p, and miR-518d-3p have a similar collective 3-way dependence
with deployment and tbi. There are also strong collective, 3-way
dependencies among miRNAs, the primary phenotypes, and the
secondary phenotypes, involving both miRNAs that have strong
pairwise dependence on the primary phenotype (such as miR-
196b-5p and miR-548a-3p). Neither miR-331-3p nor miR-20a-5p
depend on any primary phenotypes, but both demonstrate strong
dependence on apoe4.
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MiRNA Target Prediction
We specifically investigated the effect of TBI alone on miRNA
signaling by focusing target prediction analysis on 10 miRNAs
that showed significantly different expression levels between
the DepTBI and ComC groups (Table 2A): miR-20b-5p, miR-
548a-3p, miR-197-3p, miR-140-5p, miR-20a-5p, miR-191-5p,
miR-362-3p, miR-502-3p, miR-30b-5p, miR-30c-5p. We also
analyzed the 7 miRNAs whose expression levels were significantly
different between DepC and ComC (Table 2B): miR-548a-
3p, miR-20b-5p, miR-152-3p, miR-132-3p, miR-362-5p, miR-
518d-3p, miR-548c-3p, and the 8 miRNAs whose expression
levels were significantly different between DepTBI and DepC
(Table 2C): miR-191-5p, miR-152-3p, miR-132-3p, miR-362-
5p, miR-548c-3p, miR-125a-5p, miR-130a-3p, miR-411-5p. For
the miRNAs in DepTBI vs. ComC (Table 2A), TargetScan
predicted 684 mRNA targets, while miRDB predicted 2035
mRNAs (Supplementary Tables 12, 13). We then used the two
lists of predicted mRNAs in separate IPA analyses to identify
canonical pathways. For the miRNAs identified in DepTBI vs.
ComC, the predicted mRNA targets were implicated in 13 and
266 canonical pathways, in TargetScan and miRDB, respectively
(Supplementary Tables 14, 15), with an overlap of 11 canonical
pathways (Figure 5A; Supplementary Table 16). Four of these
pathways have been implicated in TBI: ephrin receptor signaling,
axonal guidance, BMP (bone morphogenetic protein), and RhoA
signaling. For the miRNAs in DepC vs. ComC (Table 2B),
TargetScan predicted 196 mRNA targets, while miRDB predicted
1550 mRNAs (Supplementary Tables 12, 13). We again used
the two lists of predicted mRNAs in separate IPA analyses to
identify canonical pathways. The predicted mRNA targets were
implicated in 8 and 267 canonical pathways, in TargetScan and
miRDB, respectively (Supplementary Tables 14, 15) with an
overlap of 6 canonical pathways (Figure 5B; Supplementary
Table 16). Two of these pathways have been implicated in chronic
stress: ERK/MAPK signaling and protein ubiquitination. For the
miRNAs in DepTBI vs. DepC (Table 2C), TargetScan predicted
481 mRNA targets, while miRDB predicted 1279 mRNAs
(Supplementary Tables 12, 13). We then used the two lists of
predicted mRNAs in separate IPA analyses to identify canonical
pathways. The predicted mRNA targets were implicated in 22 and
238 canonical pathways, in TargetScan and miRDB, respectively
(Supplementary Tables 14, 15) with an overlap of 20 pathways
(Figure 5C; Supplementary Table 16). Eight of these pathways
have been implicated in TBI: ERK/MAPK, TGF-β, senescence,
reelin signaling in neurons, Wnt/β-catenin, eIF4 and p70S6K,
PAK, and cyclins and cell cycle regulation.

DISCUSSION

The overall goal of this study was to identify whether CSF
miRNA levels might reflect a history of mTBI in otherwise healthy
individuals. We hypothesized that these altered miRNAs may
reflect biological changes in the brain that lead to increased
risk for developing AD later in life. We assayed miRNA
levels in three groups: community controls (ComC), deployed
controls (DepC), and deployed TBI (DepTBI). Individuals in the

control groups had no lifetime history of TBI. We used three
approaches to assess changes in miRNA levels in this study:
one based on statistics, one based on information theory, and
another based on miRNA target prediction. Using the statistics
approach we identified miRNAs in CSF that exhibited either
differential expression levels (Table 2) or were differentially
detected (Table 3) across the three groups. Most of the miRNAs
showing differential levels were decreased in the deployed groups;
7 decreased in DepTBI, 2 decreased in both DepTBI and
DepC, and 2 decreased in only DepC. However, there was
1 miRNA increased in DepTBI, and 3 miRNAs increased in
DepC. Since a large fraction of miRNAs were not detected in
all of the samples, we performed a differential detection analysis
that identified 4 miRNAs preferentially expressed in DepTBI
vs. ComC, and 3 miRNAs between DepC and ComC groups.
Using information theory, we identified 13 miRNAs that vary
with deployment and/or TBI history alone, or in combination
with serum proteins, APOE genotype, age, BMI, or smoking.
These additional phenotypes are potential confounding factors
that may influence miRNA measurements in this study. Six
miRNAs were identified in both the statistics and information
theory analyses. We performed target prediction analysis on the
miRNAs that showed significantly different levels between the
three groups (Table 2) using TargetScan and miRDB, followed
by IPA analyses of each target prediction. The motivation for
this study was the hypothesis that miRNAs in the TBI group
would be most distinct from the other two groups. Consistent
with this, in the statistical analysis we found miRNAs that
were significantly increased in expression in the DepTBI vs.
ComC and DepTBI vs. DepC groups, but not in DepC vs.
ComC, that reflect changes specific to TBI (e.g., miR-191-5p).
However, we also found miRNAs that were changed in both
the DepTBI and DepC groups that likely represent deployment-
sensitive miRNAs (e.g., miR-548a-3p, miR-20b-5p). The effect of
deployment upon miRNA expression was not unexpected, and
may reflect environmental stressors and exposures specific to
deployment. For example, both the DepC and DepTBI groups
were exposed to environmental toxins from burn pits, and
commonly used insecticides in the war zone (Dalgard et al., 2016;
Woeller et al., 2016). Of the 6 overlapping canonical pathways
identified by IPA in DepC vs. ComC, 2 of these pathways have
been associated with the neurological effects of chronic stress:
ERK/MAPK signaling and protein ubiquitination (Figure 5B;
Ferland et al., 2014; Yuen et al., 2017).

It is important to note that previous studies of CSF miRNAs
in TBI and in AD have largely examined participants at acute
times after TBI (<4 weeks), or participants with AD, whereas
our study captures a chronic post-TBI time in participants
who were cognitively normal at the time. Thus, many of the
previously reported miRNAs for TBI or AD would not be
expected to be altered in the healthy participants studied here.
For example, acute changes in blood miR-146a levels are detected
in patients with severe TBI after injury at high altitude, and
downstream gene targets including regulators of inflammatory
responses, apoptosis, and DNA damage/repair (Ma et al., 2019).
In our previous studies we identified miR-146a, a marker of
neuroinflammation (Gaudet et al., 2018; Slota and Booth, 2019),
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FIGURE 5 | Top Canonical Pathways for Predicted mRNA Targets of MiRNAs with Differential Levels. Venn diagrams report the number of significant canonical
pathways identified by IPA for mRNA targets predicted by TargetScan v.7.2 (TS) and miRDB (left) and the significant canonical pathways identified by both the TS
(gray bars) and miRDB (white bars) mRNAs (right). (A) Target prediction and pathways analysis for miRNAs differentially expressed in DepTBI vs. ComC. Four of the
significant pathways implicated in TBI are indicated by bold font. (B) Target prediction and pathways analysis for miRNAs differentially expressed in DepC vs. ComC.
Two of the significant pathways implicated with the neurological effects of chronic stress are indicated by bold font. (C) Target prediction and pathways analysis for
miRNAs differentially expressed in DepTBI vs. DepC. Eight of the significant pathways implicated in TBI and/or chronic stress are indicated by bold font. Significant
canonical pathways identified by IPA were based on adjusted p-values using a Benjamini-Hochberg false discovery rate threshold of 0.1.

as a potential biomarker for AD (Lusardi et al., 2017; Wiedrick
et al., 2019). However, in the current study miR-146a showed no
sensitivity for deployment or TBI, which may be due to the TBI
severity for individuals in this study, or may reflect the transient
nature of a miR-146a response to TBI.

Heterogeneity of the participants in this study may have
affected the outcome of the differential levels and detection
analyses. Although the study population was carefully defined as
neurologically normal without significant cognitive impairment
at the time of CSF collection, with strict exclusion criteria (history
of moderate or severe TBI, substance abuse, or medications that
may alter cognitive performance), we relied on self-reported
history of TBI using careful clinical semi-structured interview
performed by two expert TBI clinicians simultaneously. As this
interview covered both the deployment and pre-deployment
time frames, the data may suffer from a recall bias, which is
unavoidable for the era prior to widespread use of electronic
medical records. While the TBI-related inclusion characteristics
were stringently applied, there was significant heterogeneity in

associated participant characteristics. For example, in the TBI
group, age at CSF collection varied across a 20 year span,
the number of reported injuries varied from 1 to 102, and
the time between most recent TBI and CSF collection varied
from 1.5 to 11.5 years. In addition, approximately half of the
DepC group served in combat military occupational specialties,
while the rest were administrative or support personnel. Thus,
significant differences in the miRNAs of the DepC group
may reflect the small DepC sample size, or other factors not
captured in this study.

Beyond simply measuring miRNA levels, biomedical data
is filled with various dependencies since it is obtained from
complex systems with many interactions. Hence, we used more
sophisticated methods to detect multivariable dependencies of
diverse kinds in order to effectively analyze the biological data.
We recently introduced an information theory-based set of
dependency measures and an approach to discover multivariable
dependencies in a large set of variables capitalizing on a distinct
advantage of separating the detection of the dependence from

Frontiers in Neuroscience | www.frontiersin.org 13 September 2021 | Volume 15 | Article 720778

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-720778 September 7, 2021 Time: 11:57 # 14

Lusardi et al. MiRNA Changes in Veterans’ CSF

defining the nature of the dependence (Galas et al., 2014;
Sakhanenko and Galas, 2015; Sakhanenko et al., 2017). In general,
information theory measures have several advantages: they are
inherently model-free and non-parametric in nature, and they
exhibit only modest sensitivity to undersampling (McGill, 1954).
Therefore, this method is a good fit for the present study, where
the data set is relatively modest, and is quite variable in the
phenotypes that might be expected to influence CSF miRNA
levels such as age, BMI, or smoking.

While our methods can analyze any number of interacting
variables, we are limited by sample numbers and, thus,
considered only pairwise and three-way dependencies. We used
the three-way dependence method to discover miRNAs that were
simultaneously interdependent with two phenotype variables,
one each from the primary and secondary phenotype sets. The
use of our three-variable dependency measure has been shown
to yield a number of interesting results that could not be
detected using only two-way methods (Sakhanenko and Galas,
2015), which has significant implications for the way in which
human biomedical data are analyzed. As a result, some miRNAs
are implicated in three-way dependencies only and are not
discovered by any pairwise dependence.

Although information measures do not give us insight
into cause or effect of relative abundance changes, they are
useful for identification of confounding or contributing factors
to an outcome. Using information measures, we identified
phenotypes that might be either positively or negatively reflected
in the miRNA levels. We show that several miRNAs have
high information scores with known AD-relevant CSF protein
biomarkers Abeta42, tTau, and pTau181 (miR-191-5p, miR-20a-
5p, miR-140-5p, miR-30c-5p, and miR-362-5p), though this
analysis cannot demonstrate how or whether these miRNAs are
functionally related to these protein biomarkers. In addition,
age has high information scores with miR-30c-5p, BMI with
miR-20a-5p, and smoking with miR-161-5p, suggesting that
these are all relevant phenotypic information that should be
collected and evaluated in follow up studies. Notably, none of
these relationships were identified in the isolated correlation
analyses (e.g., miRNA correlation to an individual phenotype in
Supplementary Table 7).

The current study was done to examine whether there were
changes in miRNAs in the chronic post-TBI state that might
underlie progression to ADRD. Several published studies have
reported a link between a history of brain injury and ADRD
risk in civilian settings such as in professional football players
(Guskiewicz et al., 2005), which led the National Football
League to warn players of possible long-term health effects of
concussions (DeKosky et al., 2010). Relevant to the current
study, retrospective cohort studies have demonstrated increased
risk of dementia in veterans, including two which represented
large cohorts of veterans. One study that included 188,764
United States veterans aged 55 years or older, who had at least one
inpatient or outpatient visit during both the baseline (2000-2003)
and follow-up (2003-2012) periods and no dementia diagnosis
at baseline, revealed that TBI in older veterans was associated
with a 60% increase in the risk of developing dementia over
the 9 year study period, after accounting for competing risks

and potential confounders (Barnes et al., 2014). Another study
on >350,000 United States Iraq/Afghanistan Veterans revealed
that even mTBI without loss of consciousness was associated with
>2 fold increase in risk for dementia diagnosis (Barnes et al.,
2018). A smaller study evaluated the association between early
adult head injury (documented by military records) and dementia
in late life in World War II United States Navy or Marine male
veterans who served during 1944 to 1945. Of 548 veterans with
head injury and 1228 without head injury, the authors found
that both moderate and severe head injury were associated with
increased risk of AD (Plassman et al., 2000).

The first population-based study that investigated the
association between TBI and the risk of young onset dementia
(dementia before 65 years of age) focused on a cohort comprised
811,622 Swedish men (mean age 5-18 years) conscripted for
military service between 1969 and 1986 (Nordstrom et al.,
2014). The study revealed strong associations between young
onset dementia of non-AD forms and TBIs of different severity.
However, these associations were markedly attenuated after
multivariate adjustment for low socioeconomic status, alcohol
intoxication, physical fitness, blood pressure, and low premorbid
cognitive function (Nordstrom et al., 2014). A follow-up study on
all inhabitants living in Sweden over 50 years of age examined
three cohorts for dementia: (1) 164,334 individuals with TBI
matched with controls; (2) 136,233 individuals with dementia
matched with controls; and (3) 46,970 full sibling pairs discordant
for TBI. The risk of dementia was increased by four to six
times the first year after TBI, but thereafter the risk decreased
rapidly and was still significant more than 30 years after the TBI.
Furthermore, the risk of dementia was higher for those with a
severe TBI or multiple TBIs, compared to those with one mTBI
(Nordstrom and Nordstrom, 2018). While the Nordstrom studies
above focused on men (2014) as well as men and women (2018),
one study reported that women with military-related risk factors
had an ∼50% to 80% increase in developing dementia, and that
female veterans with multiple risk factors had a >2-fold risk of
developing dementia (Yaffe et al., 2019).

It is important to note that not all studies have demonstrated
a strong link between mTBI and risk for dementia. In 2013,
members of the Departments of Defense and Veterans Affairs
joined a meeting hosted by the Alzheimer’s Association in
order to strategize about research partnerships to move the field
forward and address these discrepancies (Weiner et al., 2013).
Participants at the “Military Risk Factors for AD” meeting had
not traditionally collaborated or considered related mechanisms
and markers of disease, but they did agree that coordinated
efforts were required as a first step toward fully understanding
the relationship of TBI (and post-traumatic stress disorder) to
AD. A subsequent report stressed that epidemiologic studies of
the relationship between TBI and AD suffered from two major
limitations: (1) most used self-report information to determine a
history of TBI exposure; and (2) most relied on billing codes for
clinical diagnosis of AD dementia rather than using an array of
recently developed biomarkers or neuropathologic examination
(Weiner et al., 2017a). The report, titled “Traumatic brain injury
may not increase the risk of Alzheimer disease” cites three
large, well-powered, and carefully conducted studies that cast
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substantial doubt on the association between TBI exposure and
AD outcomes, both overall and among men and carriers of
APOE4 alleles (Gardner et al., 2015; Crane et al., 2016; Weiner
et al., 2017b). Thus, these studies highlight the complexity of
the issue in question: Does head injury (TBI) initiate events that
lead to increased risk of dementia (ADRD), which may now be
resolved by studies that include newer and more sophisticated
clinical measures (imaging, biomarkers) of TBI and ADRD?

To put the present findings from this study into context,
we compared the miRNAs identified in this study to primary
studies in patients that had a recent TBI (Kulbe and Geddes,
2016; Pan et al., 2017; Di Pietro et al., 2018; Atif and Hicks,
2019), or to confirmed human AD cases (Dorval et al., 2013;
Zafari et al., 2015; Kumar and Reddy, 2016; Putteeraj et al.,
2017; Herrera-Espejo et al., 2019). Of the miRNAs identified in
this study that show differential levels (Table 2) or differential
detection (Table 3) at a post-acute time following TBI, most have
been linked to acute TBI and/or AD in previously published
studies. Table 4 includes the primary references for each of
these studies, to maintain ease of reading here. In short, we

found that: (1) only miR-502-3p had been previously implicated
in acute TBI, but not AD; (2) miR-132-3p, miR-152-3p, miR-
191-5p, miR-20a-5p, miR-30b-5p, miR-362-3p, and miR-345-5p
had previously been implicated in both acute TBI and AD, and
(3) miR-125a-5p, miR-140-5p, miR-197-3p, miR-20b-5p, miR-
30c-5p, miR-362-5p, miR-331-3p, miR-142-5p, miR-17-5p, and
miR-374b-5p had previously been implicated in AD only. Our
findings also overlap with a published meta-analysis, which
integrated data from 107 publications on miRNA expression in
AD brain, serum, saliva using various methods (TLDA, RNASeq,
NanoString, etc.) which found 57 miRNAs with study-wide
significance (Takousis et al., 2019). Of these 57, miR-191-5p
(Table 2), miR-127-3p (Table 3), and miR-152-3p (Table 3) are
in common with miRNAs identified in previously published
AD studies (Takousis et al., 2019). In addition, a recent study
measured miRNAs in plasma from a subset of participants from
the CSF cohort herein, both studies drew CSF samples from an
ongoing longitudinal multimodal assessment study of veterans
with and without repetitive mTBI (Petrie et al., 2014). The plasma
study identified 32 miRNAs that were significantly increased

TABLE 4 | Evidence Linking MiRNAs Altered by Post-Acute TBI to Acute TBI and/or AD.

miRNA Acute TBI Post-Acute TBI AD

502-3p Down Serum (Di Pietro et al., 2017) Up vs. ComC

132-3p Up Serum (Di Pietro et al., 2017) Down vs. DepC Up serum (Denk and Jahn, 2018) Down HP, MFG (Cogswell et al.,
2008) Down HP, PFC (Lau et al., 2013) Up CSF (Burgos et al., 2014)

152-3p Up Serum (Di Pietro et al., 2017) Up vs. ComC; Down vs. DepC Down Plasma Exosomes (Lugli et al., 2015)

191-5p Up Serum (Yang et al., 2016) Down TBI vs. ComC, DepC; tbi × ptau-ttau Up, CSF (Cogswell et al., 2008) Up Plasma (Kumar et al., 2013) Down
Serum (Tan et al., 2014)

20a-5p Up Serum (Bhomia et al., 2016); Up
Saliva, (LaRocca et al., 2019)

Down TBI vs. ComC; tbi × abeta-ttau;
dep × apoe4

Down, Serum (Denk and Jahn, 2018) Up Serum Exosomes (Cheng
et al., 2015)

30b-5p Up CSF (You et al., 2016); Up Saliva
and Serum (LaRocca et al., 2019)

Down TBI vs. ComC Up Serum (Denk and Jahn, 2018) Increase CSF (Cogswell et al., 2008)
Correlations: CSF and Tangles, Serum and Plaques (Burgos et al.,
2014)

362-3p Up Serum (Bhomia et al., 2016) Mixed vs. ComC Down HP (Lau et al., 2013)

125a-5p Down vs. DepC Up CSF (Denk and Jahn, 2018)

140-5p Down vs. ComC Down CSF (Lusardi et al., 2017; Wiedrick et al., 2019; Sandau et al.,
2020b)

197-3p Down vs. ComC Up Serum (Denk and Jahn, 2018) Up CSF (Cogswell et al., 2008)

20b-5p Down vs. ComC; exp_grp; dep × tbi Up HP APPswe/PS1E9 Mouse (Tian et al., 2021)

30c-5p Down vs. ComC Up CSF (Cogswell et al., 2008)

362-5p Down vs. DepC Up CSF (Cogswell et al., 2008)

127-3p Up vs. ComC Down CSF (Cogswell et al., 2008) Down PFC (Lau et al., 2013) Up CSF,
Down Serum (Burgos et al., 2014)

345-5p Up Serum (Di Pietro et al., 2017) dep × tbi; dep × bmi Up CSF (Cogswell et al., 2008)

331-3p dep × apoe4; exp_grp × apoe4;
exp_grp × bmi

2021 Down Serum (Liu and Lei, 2021)

142-5p dep × abeta-ttau; tbi × abeta-ttau;
exp_grp × abeta-ttau; tbi × abeta-ptau;
exp_grp × abeta-ptau

Down CSF (Cogswell et al., 2008) Up PFC (Lau et al., 2013)

17-5p dep; exp_grp; dep × abeta-ptau;
tbi × abeta-ptau; exp_grp × abeta-ptau

Down PFC (Lau et al., 2013)

374b-5p dep × abeta-ptau; exp_grp × abeta- ptau;
dep × age; dep × smoke; tbi × smoke;
exp_grp × smoke

Up PFC (Lau et al., 2013) Up Serum (Burgos et al., 2014)

CSF miRNAs identified in post-acute TBI with significant differential levels or differential detection with respect to ComC or DepC, or in the top 5 ranked Information Theory
dependencies that have been reported in primary publications on human miRNA expression in acute TBI (<4 weeks) and/or in AD. miR-362-3p is designated “mixed” as
it is detected in more DepTBI samples than in ComC, but at lower levels. HP, hippocampus; MFG, Medial Frontal Gyrus; PFC, Prefrontal Cortex.
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in mTBI vs. community controls and deployed controls (Ghai
et al., 2020). Of the 32 plasma miRNAs increased in TBI, only
miR-20a-5p and miR-20b-5p (Table 2) were altered in CSF,
but were significantly decreased in TBI. These differences in
study outcomes likely represent the differences in plasma vs.
CSF miRNAs, or in the number of overlapping CSF vs. plasma
participants in each study: ComC 52 vs. 25, DepC 18 vs. 11;
DepTBI 45 vs. 24.

We also examined the potential mechanistic implications of
the miRNAs in Table 4 by reference to previously published
studies. A recent comprehensive review by Wang et al., reported
the mechanistic effects of miRNAs on proteins involved in
different pathological processes of AD progression, including
Abeta, beta-secretase (BACE), amyloid precursor protein (APP),
and tau (Wang et al., 2019). Studies show that miR-132/212
(miR-132-3p; Table 2) indirectly regulate Abeta40 and Abeta42
(Hernandez-Rapp et al., 2016) and tau (Smith et al., 2015;
Wang et al., 2017; El Fatimy et al., 2018) metabolism through
modulation of regulatory proteins. Previous studies show that
miR-20a-5p, which decreased in the TBI group (Table 2), is
a negative regulator of APP (Hebert et al., 2009). In addition,
a recent study showed that miR-20b-5p targeting of RhoC
disturbed AD progression by regulating cell apoptosis, cleaved
caspase-3 expression, and cell viability, suggesting that miR-20b-
5p might be a curative target for AD (Tian et al., 2021). Further,
a recent study showed that a decrease in serum miR-331-3p is
correlated with the MMSE scores and proinflammatory cytokine
levels in AD patients (Liu and Lei, 2021). The study also showed
that miR-331-3p can regulate cell viability and the expression
of pro-inflammatory cytokines in Abeta40 treated SH-SY5Y
cells, supporting a potential neuroprotective role of miR-331-
3p. In addition, Burgos et al. considered the correlation between
serum and CSF miRNA levels and the extent of plaque and
tangle formation in post mortem human brain, i.e. miR-30b-5p,
miR-30c-5p, miR-17-5p, miR-374b-5 (Burgos et al., 2014), and
additional studies have demonstrated altered levels of miR 30b-
5p in post mortem brain (Cogswell et al., 2008; Lau et al., 2013).
Together these studies support a potentially mechanistic role for
miRNAs in AD pathology, and warrant further investigation into
how miRNAs altered in TBI may contribute to AD development.

To understand the signaling networks that may be targeted
by the miRNAs identified in each of the group comparisons,
we first identified the canonical pathways of the predicted
mRNA targets of miRNAs that were significantly different
in each group (Table 2). To increase rigor, we used two
distinct mRNA target algorithms, TargetScan and miRDB, to
identify significant canonical pathways common to both. For
the miRNAs differentially expressed in DepTBI vs. ComC
(Table 2A) there were 11 overlapping canonical pathways
(Figure 5A), 4 of which are relevant to TBI: ephrin receptor,
axonal guidance, BMP, and RhoA signaling (Frugier et al.,
2012; Patel et al., 2017; Bi et al., 2019; Divolis et al.,
2019; Zhao et al., 2019; Greer et al., 2020; Mulherkar and
Tolias, 2020; Duman et al., 2021). Likewise, for the miRNAs
differentially expressed in DepTBI vs. DepC (Table 2C) there
were 20 overlapping canonical pathways (Figure 5C), 8 of
which are relevant to TBI: ERK/MAPK, TGF-β, senescence,

reelin signaling in neurons, Wnt/β-catenin, eIF4 and p70S6K,
PAK, and cyclins and cell cycle regulation (Di Giovanni
et al., 2005; Chen et al., 2007; Zhao et al., 2011; Salehi et al.,
2018; Divolis et al., 2019; Sen, 2019; Dal Pozzo et al., 2020;
Hascup and Hascup, 2020; Sharma et al., 2020; Tan et al., 2020;
Schwab et al., 2021). Interestingly, many of these pathways
are inter-related. The pro-inflammatory effects of TBI have
been shown to be inhibited by activation of TGF-β and BMP
(Divolis et al., 2019). Decreases in peripheral levels of Eph4A
reduces neuroinflammation and cortical damage of acute TBI
(Kowalski et al., 2019). In addition, in postmortem human
brain from patients that died after acute closed head injury
there is increased Eph4A expression in astrocytes (Frugier
et al., 2012), and in Eph4A knockout mice there is a decrease
in TBI-induced neurogenesis and amelioration of cognitive
impairments compared to wild-type mice (Greer et al., 2020).
Furthermore, neuroinflammation and decreases in neurogenesis
are two hallmarks of cellular senescence, which was another
pathway identified in DepTBI. Furthermore, senescence is a
well-established contributing factor to cognitive decline and
neurodegeneration in both TBI and AD (Arun et al., 2020;
Hascup and Hascup, 2020; Martinez-Cue and Rueda, 2020).
Together, these data demonstrate that the predicted mRNA
targets for the miRNAs that were present at different levels
in DepTBI are relevant to mTBI. The data also suggest that
extracellular miRNAs may play a mechanistic role in the
neuropathological processes that underlie TBI.

In conclusion, these studies measured changes in the levels of
miRNAs in CSF from community and deployed veteran controls
with no lifetime history of TBI and veterans who had experienced
one or more blast mTBI during the course of deployment in
the Iraq/Afghanistan wars. We used complementary measures
to analyze the data. Statistical measures revealed changes in
CSF miRNA levels in individuals who had experienced one
or more mTBI during the course of deployment, as well as
changes in CSF miRNAs in the deployed veterans without a
history of TBI, suggesting that environmental factors associated
with deployment in a war zone may have a durable influence
on CSF composition. We then used information theory to
examine the correlation between miRNA levels and participant
characteristics, and identify potential confounding factors that
could influence miRNA measurements in this study. This
approach identified several miRNAs that have high information
scores with known AD-relevant CSF protein biomarkers
(Abeta42, tTau, and pTau181), age, and smoking, suggesting
that these are relevant phenotypic information that should be
collected and considered in future studies. It is notable that only
some of the relationships identified in the information theory
analysis were identified in the statistical analysis, supporting
that each approach brings new information regarding miRNAs
in TBI and their potential interdependence with phenotypic
characteristics. We then employed target prediction and pathway
analysis to identify potential targets of the miRNAs altered
in each group comparison, and found that a majority of
the significant canonical pathways are neurological and may
contribute to the effects of TBI. Together, these approaches
provide complementary information to support that both
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post-acute TBI and deployment elicit changes in CSF miRNAs,
and that miRNA studies present a means to identify early
responses to TBI and track changes that may lead to AD.
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