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Abstract

Hyphomonas, a genus of budding, prosthecate bacteria, are primarily found in the marine environment. Seven type strains,
and 35 strains from our collections of Hyphomonas, isolated from the Pacific Ocean, Atlantic Ocean, Arctic Ocean, South
China Sea and the Baltic Sea, were investigated in this study using multilocus sequence analysis (MLSA). The phylogenetic
structure of these bacteria was evaluated using the 16S rRNA gene, and five housekeeping genes (leuA, clpA, pyrH, gatA and
rpoD) as well as their concatenated sequences. Our results showed that each housekeeping gene and the concatenated
gene sequence all yield a higher taxonomic resolution than the 16S rRNA gene. The 42 strains assorted into 12 groups. Each
group represents an independent species, which was confirmed by virtual DNA-DNA hybridization (DDH) estimated from
draft genome sequences. Hyphomonas MLSA interspecies and intraspecies boundaries ranged from 93.3% to 96.3%,
similarity calculated using a combined DDH and MLSA approach. Furthermore, six novel species (groups I, II, III, IV, V and XII)
of the genus Hyphomonas exist, based on sequence similarities of the MLSA and DDH values. Additionally, we propose that
the leuA gene (93.0% sequence similarity across our dataset) alone could be used as a fast and practical means for
identifying species within Hyphomonas. Finally, Hyphomonas’ geographic distribution shows that strains from the same area
tend to cluster together as discrete species. This study provides a framework for the discrimination and phylogenetic
analysis of the genus Hyphomonas for the first time, and will contribute to a more thorough understanding of the biological
and ecological roles of this genus.
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Introduction

Hyphomonas is a genus of budding, prosthecate bacteria that are

primary colonizers of surfaces in the marine environment

[1,2,3,4]. The genus Hyphomonas was first described by Pongratz

[3,5] in the family Hyphomonadaceae of the order Caulobacterales.

Currently, the genus Hyphomonas consists of eight recognized type

strains: Hyphomonas polymorpha and Hyphomonas neptunium [1],

Hyphomonas oceanitis, Hyphomonas hirschiana and Hyphomonas jannaschi-

ana [2], Hyphomonas adhaerens, Hyphomonas johnsonii and Hyphomonas

rosenbergii [3].

We have isolated many strains of Hyphomonas from various

oceanic areas over the last eight years (unpublished). Most were

isolated from the petroleum-degrading microbial community,

indicating that Hyphomonas are likely involved in oil degradation.

For example, one Hyphomonas strain was isolated from a pyrene-

enriched consortium of Western Pacific sediment by our

laboratory [6], and Zhang et al. found others in oil reservoirs

[7]. Hyphomonas has also been reported in coastal regions such as

Heita Bay [8], Milazzo Harbor [9] and the Thames Estuary [10].

However, little is known about the biogeography of the genus

Hyphomonas, or correlations between their genetic differentiation

and geographical distribution.

Hyphomonas species delineation based on 16S rRNA gene is

difficult because of very high sequence similarities amongst the

group [3]. The 16S rRNA gene similarities among type strains of

H. rosenbergii, H. hirschiana, H. polymorpha and H. neptunium are even

at 99.4%. H. adhaerens and H.jannaschiana, and H. oceanitis and H.

johnsonii also share 99.3% and 98.7% similarity, respectively,

between their 16S rRNA gene sequence [3]. According to the

commonly used 97.0% sequence similarity cutoff between 16S
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rRNA gene for species definition [11,12], the current eight type

strains can only be divided into three species.

16S rRNA gene sequence comparison has been the standard for

decades for determining bacterial phylogenetic relationships

[11,12]. The advantage of the 16S rRNA gene lies in its universal

existence and in its slow rate of evolution. However, it is difficult to

differentiate closely related species within some genera such as

Bradyrhizobium [13], Streptomyces [14], Vibrio [15], and within the

Bacillus pumilus group [16]. Various multilocus sequence analysis

(MLSA) schemes have been proposed as an alternative to defining

bacterial species through time-consuming DNA-DNA hybridiza-

tion and applied to delineation of diverse taxonomic issues

[17,18,19,20,21,22,23].

In this study five housekeeping genes, leuA (2-isopropylmalate

synthase), clpA (ATP-dependent Clp protease), pyrH (uridylate

kinase), gatA (glutamyl-tRNA(Gln) amidotransferase, A subunit)

and rpoD (RNA polymerase sigma factor), in addition to the 16S

rRNA gene, were chosen to analyze the phylogeny of Hyphomonas

isolates. These housekeeping genes are distributed throughout the

chromosome of H. neptunium DSM 5154T. The phylogenetic

diversity based on these genes, and the geographic distribution of

Hyphomonas bacteria from diverse marine environments was

explored, and combined with a MLSA and virtual DNA-DNA

hybridization (DDH) analysis evaluated from draft genome

sequence.

Materials and Methods

Ethics Statement
Detailed information regarding the 42 strains of Hyphomonas

used in this study is listed in Table 1. Of them, 35 strains were

isolated by our laboratory in the past eight years from surface

seawater, deep seawater, and deep sediment, with 216L [24] or

M2 agar medium [25], sometimes enriching the culture with crude

oil prior to isolation. In brief, 25 Hyphomonas strains were collected

from crude oil enrichment culture according to our previous

method [24]. Strain Hyphomonas sp. 25B14_1 was isolated from the

1-Chlorohexadecane-degradating bacterial community [26]. Nine

strains were obtained through directly plating dilutions of samples

without prior enrichment [25]. All isolates have been deposited at

the Marine Culture Collection of China (MCCC). Their isolation

locations are all in the international sea area (no specific

permissions are required), as shown in Figure S1. The eight type

strains were purchased from American Type Culture Collection

(ATCC) and Deutsche Sammlung von Mikroorganismen und

Zellkulturen GmbH (DSMZ).

Cultivation and DNA extraction
All strains were grown on marine agar 2216 medium (BD Difco)

at 28uC for 48 h. Genomic DNA was isolated using SBS

extraction kit (SBS Genetech Co., Ltd. in Shanghai, China). We

note that our re-sequencing of the H. rosenbergii ATCC 43869T 16S

rRNA gene sequence (under GenBank accession code KF880383)

did not match its supposed GenBank accession code (AF082795),

and demonstrates that this strain was misidentified in ATCC, and,

furthermore, is not deposited in any other culture collection

center. Thus, H. rosenbergii ATCC 43869T was not included in our

study.

PCR primers and primer design
The universal primers 27F and 1492R were used for

amplification of the 16S rRNA gene. The primers for rpoD were

obtained from a previous study [27]. We designed the leuA, clpA,

pyrH and gatA primers based on the genome sequences of the
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thirteen Hyphomonas strains. The software package Primer premier

5.0 was used to design and evaluate each pair of primers. Detailed

information about the primers used in our study is presented in

Table S1.

PCR amplification and sequencing
PCR amplification of these genes was performed in 50 mL

reaction volumes. Each PCR mixture contained 0.5 mL genomic

DNA, 2.5 U EasyTaq DNA Polymerase (TransGen Biotech Co.,

Ltd. in Beijing, China), 4 mL dNTP mixture (2.5 mM of each

dNTP), 1 mL each primer (10 mM), 5 mL 106EasyTaq buffer

(Mg2+ Plus). The PCR reaction was done in a Biometra T-

Professional thermocycler (Biometra; Goettingen, Germany) as

follows: an initial denaturation at 95uC for 5 min, 30 cycles of

denaturation at 95uC for 30 s, annealing for 30 s at 48uC and

extension at 72uC for 50 s, followed by a final extension at 72uC
for 10 min. Target PCR products were screened by electropho-

resis on a 1% agarose gel and then sequenced using the ABI3730xl

platform (Shanghai Majorbio Bio- Pharm Technology Co., Ltd.,

China). For amplification of pyrH and gatA genes, primers pyrHf

and pyrHr1, gatAf1 and gatAr1 were used to obtain the required

fragments from strains H18, H27, H32, H41, H42 and H43. The

primers pyrHf and pyrHr, gatAf and gatAr were used to amplify

the pyrH and gatA genes from the remaining strains.

Sequence analysis
Sequences were examined and assembled using DNAMAN 5.0

software, and then submitted to National Center for Biotechnol-

ogy Information (NCBI). GenBank accession codes are listed in

Table S2. MEGA version 5.05 [28] was used to align and

manually trim the sequences and for subsequent phylogenetic

analyses, including number of polymorphic sites per gene, and

genetic distances using a P-distance model. Phylogenetic trees

were constructed in MEGA using the neighbor-joining, maximum

parsimony, and maximum likelihood algorithms, all with a 1000

replicate bootstrap resampling. The concatenated sequences of all

five protein-coding genes were joined in the following order: leuA

(774 bp), clpA (648 bp), pyrH (504 bp), gatA (657 bp) and rpoD

(855 bp).

Genome sequencing
Twelve representative strains of unique lineages within the

genus Hyphomonas were selected based on our phylogenetic

analysis. Their genomes were sequenced by Shanghai Majorbio

Bio-pharm Technology Co., Ltd. (Shanghai, China), using Solexa

paired-end (500 bp library) sequencing technology. About

500 Mbp of clean data were generated with an Illumina/Solexa

Genome Analyzer IIx (Illumina, SanDiego, CA), reaching

approximately 100-fold coverage depth, for each strain. The

clean data was assembled using SOAPdenovo2 [29]. GenBank

accession codes for these strains genomes are listed in Table S3.

The complete genome sequence of H. neptunium DSMZ5154T

(CP000158.1) was downloaded from NCBI.

Correlation analysis between similarities of the MLSA and
DDH

DNA-DNA hybridization (DDH) estimate values among these

13 genomes were calculated using the genome-to-genome distance

calculator website service (GGDC2.0) [30,31]. Correlation anal-

ysis between the similarities of the MLSA and DDH values were

performed using the R language, version 3.0.1.

Results

16S rRNA gene analysis
A sequence similarity cutoff of 97%, according to an often-held

species boundary definition [11,12], segregates our 42 Hyphomonas

strains into three species, represented by Group A, B and C in the

16S rRNA gene phylogenetic tree presented in Figure 1. Group A

was the largest and contained 36 strains, but showed low bootstrap

values among the members. The other two groups, B and C,

contained three strains each.

Further analysis indicated that genetic distance of the 16S

rRNA gene ranged from 0 to 0.042 (Table 2). Intraspecies and

interspecies sequence similarities were 100.0% to 100.0%, and

95.8% to 100%, respectively (Table S4). The range of sequence

similarities within interspecies comparisons and the crossover of

sequence similarities within interspecies and intraspecies compar-

isons indicate that the 16S rRNA gene is not a suitable

phylogenetic marker for Hyphomonas. The 16S rRNA gene had

11 alleles. The sequences contained 81 polymorphic sites total,

which only comprises 5.7% of all sites in the alignment (Table 2),

further demonstrating the high conservation among 16S rRNA

genes in Hyphomonas.

Multilocus sequence analysis
Another phylogenetic tree was constructed based on the

concatenated gene sequences of leuA-clpA-pyrH-gatA-rpoD

(3438 bp) (Figure 2). The topology of this tree demonstrated that

these 42 strains could be divided into 12 groups (I–XII). Among

these groups, Group I contained 20 strains, which was the largest

one. Both Group III and IV contained five apiece, while Group

XII contained 3 strains. Interestingly, the two type strains, H.

neptunium DSM 5154T and H. hirschiana DSM 5152T, formed

Group VIII, implying that they may actually belong to the same

species. The remaining groups each consisted of only one strain

each. All of these group delineations had relatively high bootstrap

values (Figure 2).

Analysis of the correlation between the estimated DDH data

and sequence similarities demonstrated that each group likely

represents a separate species. The concatenated sequences

contained 1358 polymorphic sites, which comprised of 39.5% of

all sites in the alignment. The MLSA genetic distance ranged from

0 to 0.217 (Table 2). Furthermore, intraspecies and interspecies

sequence similarity comparisons ranged from 96.3% to 100.0%

and from 78.3% to 93.3%, respectively, showing an apparent gap

between between the intraspecific and interspecific levels (Table

S4).

Figure 1. Neighbour-joining tree showing the phylogeny of 42 Hyphomonas strains, based on the 16S rRNA gene sequences.
Percentage bootstrap values over 50% (1000 replicates) are indicated on internal branches. Filled circles show nodes that were also recovered in
maximum-likelihood and maximum-parsimony trees based on the same sequences. Bar, 0.01 nucleotide substitution rate (Knuc) units. Hirschia beltica
ATCC 49814T (NR_074121) was used as the outgroup.
doi:10.1371/journal.pone.0101394.g001
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DDH values and their relationship to the 16S rRNA and
housekeeping gene sequence similarity

The draft genome sequences of 12 strains representing each

group revealed in our phylogenetic analysis, based on the

housekeeping genes and MLSA, were determined. With these

genomic data and the complete genome sequence of H. neptunium

DSM 5154T from GenBank [32], we determined virtual DDH

values by pair-wise comparisons among the 13 strains using the

website service of GGDC2.0. Estimated DDH values among each

group were below the accepted species boundary of 70% [33]

(Table S5). Thus, the calculated DDH values confirmed that each

group represents an independent species. Furthermore, the high

DDH value (100%) between H. neptunium DSM 5154T and H.

hirschiana DSM 5152T also suggests that they belong to the same

species, in spite of having different type strain designations.

By plotting the sequence similarities for the 16S rRNA gene,

each housekeeping gene and concatenated genes sequence

similarities against the estimated DDH values, the sequence

similarities threshold relating to species boundary (corresponding

to a value of less than 70% DDH relatedness) were obtained

(Figure S2). Correlating 16S rRNA gene sequence similarities

against DNA2DNA relatedness reconfirmed that the 16S rRNA

gene was not an appropriate marker for Hyphomonas, as the 70%

DDH relatedness corresponds to 100% sequence similarities of the

16S rRNA gene. The sequence similarity delimiting the species

boundaries for the housekeeping genes (leuA, clpA, pyrH, gatA and

rpoD) and for the concatenated gene sequences were 93.0%,

96.0%, 93.5%, 91.5%, 95.6% and 93.3%, respectively, which all

demonstrated higher taxonomic resolution than the 16S rRNA

gene sequence. Moreover, gatA possesses the highest resolving

power of the five housekeeping genes, followed by leuA and then

pryH. Thus, Hyphomonas species discrimination based on MLSA is

more reliable and effective than that based on 16S rRNA gene

sequence. Based on the sequence similarities of MLSA and DDH

values, Group I, II, III, IV, V and XII were allocated to six

different novel species.

Phylogenetic diversity revealed by individual
housekeeping genes

Phylogenetic trees based on individual housekeeping genes were

also constructed (Figure S3–S7). Although the topologies of these

trees are not all identical, the strains within each group in the

different trees are the same, and the same as the groups delimited

by the concatenated gene sequence. These results imply that these

housekeeping genes are adequate for clearly circumscribing species

within the genus Hyphomonas.

The results of the genetic distance, polymorphic sites were

summarized in Table2. Among the five housekeeping genes, pyrH

had the broadest range of genetic distance range (0–0.270) and the

highest percentage of polymorphic sites (41.9%). leuA also had a

relatively wide genetic distance range (0–0.224) and high

percentage of polymorphic sites (40.8%). However, gatA exhibited

the best taxonomic resolution with genetic distance from 0 to

0.239, and 41.1% polymorphic sites. The remaining housekeeping

genes also had a relatively higher percentage of polymorphic sites

(.36.9%) than the 16S rRNA gene (5.7%). An apparent gap also

existed between the interspecies and intraspecies boundaries in

leuA, pryH and gatA (Figure 3). The size of this gap reconfirmed that

gatA exhibited the highest resolution, and followed by leuA and

then pyrH. We should mention that leuA is easier to obtain than

gatA and pryH through PCR amplification.
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Correlation between phylogenetic and geographic
distribution

The strains in this study were isolated from various locations

across global marine environments, including the Pacific Ocean,

Atlantic Ocean, Arctic Ocean, South China Sea, Baltic Sea and

the Mediterranean Sea. Twenty strains within Group I were

isolated from the Pacific Ocean ( ) (Figure 2). Two other strains,

strain DSM 5152T and strain DSM 5153T, from the Pacific Ocean

formed two independent groups, with strain DSM 5154T

segregating along with strain DSM 5153T. Four strains from the

Atlantic Ocean (g) formed Group IV. All strains clustered in

Group III and XII, except for strain H32, were retrieved from the

South China Sea (%). Strains H29 and H30 are the only members

of Group II and Group V, respectively, and both were from Arctic

Ocean (h). The others from various sites, including the Baltic Sea,

and unknown sources, correspond to different groups (VI, VII, IX,

X). Strains from the same area tended to cluster together, and

strains from different areas tended to form independent groups,

indicating that members of this genus inhabiting different

geographical areas and evolved independently.

Furthermore, Figure 2 delineates the strains in our phylogenetic

tree by different colors according to water depth (0–1000 m, blue;

.1000 m, black; unknown depth, red.). However, the distribution

of strains in each group presented no obvious pattern regarding

water depth. For example, the strains from the upper layer and the

deeper layer, in Group I and Group III, clustered together in our

analysis. Except for Group XII, as for the remaining groups, the

number of strains was not enough to give a persuasive conclusion.

Figure 2. Phylogenetic tree based on concatenated housekeeping genes. Percentage bootstrap values over 50% (1000 replicates) are
indicated on internal branches. Blank circles show nodes that were also recovered in maximum-likelihood and maximum-parsimony trees based on
the same sequences. Bar, 0.05 nucleotide substitution rate (Knuc) units. Hirschia beltica ATCC 49814T (NC_012982) was used as the outgroup. Water
depth is represented by color (0–1000 m, blue color; .1000 m, black color; unknown depth, red color.). No symbol: no detailed information about
the source. Bold font strain names indicate their genomes are available.
doi:10.1371/journal.pone.0101394.g002

Figure 3. Intraspecies and interspecies similarity ranges of 16S rDNA and housekeeping genes in Hyphomonas.
doi:10.1371/journal.pone.0101394.g003
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Discussion

A traditional, wet-lab DDH similarity of $70% has been a

‘Gold standard’ for circumscribing species delineation in bacteria

for the last several decades [11,34,35]. Recent reports have

demonstrated that the virtual DDH values calculated by the

GGDC web server can adequately mimic wet-lab DDH analysis

[30,36,37]. Indeed, other computational genome-based methods

for replacing wet-lab DDH exist, such as average nucleotide

identity (ANI) implementations [38,39], and the currently

accepted ANI threshold for species definition is 95% or higher

[39]. However, virtual DDH values are presented on the same

scale as wet-lab DDH values. Moreover, virtual DDH analysis has

a higher correlation with conventionally determined wet-lab

DDH, than do ANI implementations [30,36,37]. Furthermore,

virtual DDH has been widely applied over many bacterial groups

[40,41,42,43]. Previous studies on Bacillus subtilis group [44], Vibrio

[45], Streptomyces [46], Kribbella [20], indicate that housekeeping

genes are a suitable supplement, or an adequate replacement to

DNA–DNA hybridization. MLSA has also been successfully

applied to several other bacteria, including Borrelia [47],

Chlamydiales [48], Corynebacterium [49], Vibrio [15] and Treponema

[50].

In this study, the virtual DDH values among 13 representative

strains of the genus Hyphomonas were determined. Correlation

analysis between the estimated DDH values and individual

housekeeping gene (leuA, clpA, pyrH, gatA and rpoD), concatenated

genes sequence similarities demonstrated that the sequence

similarities for delimiting species with this Hyphomonas dataset

range from 91.5% to 96.0%.

The 16S rRNA gene is not an appropriate phylogenetic marker

for Hyphomonas, as it is far too conserved across the genus. This

characteristic has also been observed in other bacteria. The Bacillus

pumilus group was found to have a 16S rRNA gene sequence

similarities among 79 strains ranging from 99.5% to 100% [16].

Other closely related species such as Bacillus subtilis group and

Treponema, were found indistinguishable based on 16S rRNA gene

sequence analysis [44,50]. In this study, some Hyphomonas strains

with 100% sequence similarities between their 16S rRNA genes

shared less than 70% DDH relatedness, reinforcing the conclusion

that the 16S rRNA gene has limited power as a phylogenetic

marker in some bacterial groups.

Previous reports have indicated that Pseudomonas [51], hot spring

cyanobacteria [52], Sulfolobus [53], and Myxococcus xanthus [54]

exhibit endemicity at the genotype level. As shown in our MLSA

based phylogenetic tree (Fig. 2), Hyphomonas strains from the same

area tend to cluster together, and strains from different areas tend

to form independent groups. Many bacteria tend to distribute

similarly, through geographical patterns that parallel lineage

assortment [51,52,54]. Moreover, studies showed that the local

adaptation has been associated with specific environmental

conditions including varying sediment composition, light intensity,

temperature, and salinity and sulfate concentrations [55,56,57,58].

However, the driving factors that result in the restriction of certain

Hyphomonas genotypes to particular regions remain unknown.

The genus Hyphomonas is a dimorphic, prosthecate bacteria,

primarily restricted to, and ubiquitous in the marine environment

[4,59]. Previous reports have shown that Hyphomonas are a

predominant member of the oil-degradation microbial communi-

ties [8,10]. Genomic analysis of H. neptunium DSM 5154T shows

that it possesses genes related to the degradation of aromatic

compounds [32]. A recent study also reports that an isolate

belonging to the genus Hyphomonas can degrade carbazole [60].

However, we found that all Hyphomonas isolates in our study cannot

grow in the presence of oil (unpublished data). Furthermore, we

did not find any alkane hydroxylase genes, those responsible for

alkane degradation, in the Hyphomonas genome sequences that we

analyzed. However, three genes are annotated as hydroxylating

dioxygenase for polycyclic aromatic hydrocarbons, including two

potential naphthalene-degrading hydroxylating dioxygenase

(HOC_18389 and HOC_18394,) and one pyrene-degrading

related hydroxylating dioxygenase (HOC_16925), in strain H.

oceanitis DSM 5155T. The roles of Hyphomonas in oil-degrading

communities remain complex and are worthy of further investi-

gation.

In conclusion, a systematic study of Hyphomonas diversity was

carried out in this study. Using MLSA, based on the leuA-clpA-

pyrH-gatA-rpoD concatenated gene dataset, 42 strains were divided

into 12 distinct groups. Furthermore, a MLSA sequence similarity

of 93.3% was deemed an appropriate cutoff value for the

interspecies Hyphomonas boundary using these genes. Among these

genes, gatA showed the highest taxonomic resolution, followed by

leuA and pyrH. The leuA gene, which is the easiest among the three

genes to amplify, can be used to identify species within the genus

Hyphomonas using a 93.0% sequence similarity cutoff, which

corresponding to a virtual DDH value of less than 70%. This

study should help increase the understanding of the phylogeny,

evolutionary history and ecological roles of bacteria in the

Hyphomonas genus. Polyphasic characterization and comparative

genomic analysis among the 12 representative strains used for full

genome sequencing await further study.
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