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Abstract: Halogens can be very important for active agents as vital parts of their binding mode,
on the one hand, but are on the other hand instrumental in the synthesis of most active agents.
However, the primary halogenating compound is molecular chlorine which has two major drawbacks,
high energy consumption and hazardous handling. Nature bypassed molecular halogens and evolved
at least six halogenating enzymes: Three kind of haloperoxidases, flavin-dependent halogenases as
well as α-ketoglutarate and S-adenosylmethionine (SAM)-dependent halogenases. This review shows
what is known today on these enzymes in terms of biocatalytic usage. The reader may understand
this review as a plea for the usage of halogenating enzymes for fine chemical syntheses, but there
are many steps to take until halogenating enzymes are reliable, flexible, and sustainable catalysts
for halogenation.

Keywords: bromination; chlorination; pharmaceuticals; active agent synthesis; biocatalysis;
haloperoxidase; halogenase

1. Still Up-to-Date—Halogens in Active Agents

For the discovery of new active agents, synthetic chemists frequently look into natural compounds
and deduce lead structures and functionalities for the assembly of active agent libraries. Although most
natural compounds are not halogenated, halogenation is spread over virtually all classes of secondary
metabolites. Most of the halogenated natural compounds are of marine origin, while some are found
in plants and insects as well [1]. Halogens appear in some form in 40% of all drugs being tested
in clinical trials [2–4]. In addition to the fact that halogenations are an important structural motifs
in natural substances and thus also in the resulting active substances, halogenations play a major
role in the synthesis of many active substances. In the following, we want to figure out what is so
special about the simple halogen moieties within molecules and reactions that make them so desirable,
although the synthesis is very energy-demanding and carried out with toxic molecular halogens such
as chlorine gas. In the second half of this review article we would like to show how nature realizes
halogenations enzymatically and where we stand technologically to employ them as tools. In recent
years, these enzymes have become even more prominent and the various scientific advances in this field
have already been presented several times in an overview. These reviews also provide an up-to-date
overview of the different enzymes, their substrate scope and biotechnological developments as well as
the diversity of halo-compounds from all kingdoms of life [5–14]. The aim of this review is—among
other things—to include a further point of view. In addition to the accurate arguments on the toxicity of
elemental halogens and the cost-effectiveness of halide salts, a closer look at the actual costs of chlorine
gas production was included, as well as a clear presentation that chemical halogenating reagents are all
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based on the provision of these halogen gases. In addition, the most recent achievements for industrial
applications e.g., by up-scaling processes, but also the distribution of these enzymes, as well as the
break with assumed dogmas, such as conserved structural motifs, were taken into account.

1.1. Electronical Properties of Halogen Moieties

The presence of a halogen (Cl, Br, I) usually increases the bulkiness of a compound, blocking
for instance active site pockets or increases membrane permeability, relevant for oral absorption, and
blood–brain barrier permeability. Besides their bulkiness, halogens exhibit extraordinary effects on
the polarization of a compound. On the one hand, the halogens of the upper periods (F, Cl, Br) have a
large electronegativity, which leads to a considerable latent polarization in the molecule (see Figure 1A).
On the other hand, the polarizability increases with increasing period, so that interactions with soft
nucleophiles or electrophiles in particular are promoted (see Figure 1B). Although the latent polarization
is depicted in Figure 1A as a homogeneous gradient the model must be refined. Due to the p-orbital
architecture there is a hole in the electron density opposing the binding partner of the halogen which is
called the σ-hole (Figure 1C). Considering this σ-hole, it offers the option to interact with heteroatoms
(O, S, N) by so-called halogen bonds as well as hydrogen bonds [15]. The ability to form halogen bonds
has been the focus of several pharmacologically-oriented groups in the past years, as it can serve as
an alternative non-covalent interaction between atoms (see Figure 1). For a detailed insight into the
nature and characteristics of halogen bonds, as well as their possible impact on drug discovery in the
future, see the corresponding articles [4,15–19]. The importance of halogens for biological activity of
compounds can be profound. Vancomycin (1, Figure 2), an antibiotic, was shown to exhibit 30% to 50%
less activity, based on the chlorine substituents missing, which is remarkable considering how small the
portion of the halogens with respect to the entire vancomycin molecule is [20].
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Figure 1. Schematic representation of electron distribution in halogens. (A): Latent polarization of a 
carbon-halogen bond. (B): Polarizability of large halogens (Br, I) bonded with a carbon. The external 
electrical field, for example, caused by an approaching electrophile/nucleophile leads to the distortion 
of the electron density. (C): Schematic view on the “σ-hole”. The electron density is drawn to the 
carbon-halogen bond, with the strength gradually increasing with the size of the halogen (I > Br > Cl 
>> F). This anisotropic distribution of electrons in the outer orbitals of the halogen creates an area of 
higher electron density around the belt of the halogen, allowing interaction with electrophiles or H-
bonds. Orthogonal to the direction of the bond is an area of electron deficiency, creating a partially 
positively charged area in the halogen, allowing for nucleophilic attacks, commonly called “σ-hole”. 

In terms of drug discovery, halogen substituents are regularly found in promising drug 
candidates with 35% in the discovery stage, while they appear in 36% of the candidates in clinical 
phase II and 26% in the drugs launched into the market (data from 2014) [16]. This trend shows that 

Figure 1. Schematic representation of electron distribution in halogens. (A): Latent polarization of a
carbon-halogen bond. (B): Polarizability of large halogens (Br, I) bonded with a carbon. The external
electrical field, for example, caused by an approaching electrophile/nucleophile leads to the distortion
of the electron density. (C): Schematic view on the “σ-hole”. The electron density is drawn to the
carbon-halogen bond, with the strength gradually increasing with the size of the halogen (I > Br > Cl
>> F). This anisotropic distribution of electrons in the outer orbitals of the halogen creates an area
of higher electron density around the belt of the halogen, allowing interaction with electrophiles or
H-bonds. Orthogonal to the direction of the bond is an area of electron deficiency, creating a partially
positively charged area in the halogen, allowing for nucleophilic attacks, commonly called “σ-hole”.

In terms of drug discovery, halogen substituents are regularly found in promising drug candidates
with 35% in the discovery stage, while they appear in 36% of the candidates in clinical phase II and
26% in the drugs launched into the market (data from 2014) [16]. This trend shows that halogens play
an important role in the field of drug design and discovery, and usually find their way to the final
product assigned for treatment. In the following paragraphs, relevant halogens and some associated
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drug candidates containing halogen atoms will be discussed regarding their characteristic effects
on bioactivity.
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The most prominent halogen introduced into active agents is fluorine with 57% [3]. Due to its
similar size compared to hydrogen and the extreme electronegativity, C–F bonds are polarized in
a distinctive manner and render fluorine a weak halogen bond acceptor in contrast to be a good
hydrogen-bond acceptor [21,22]. The covalent fluorine bond is very strong (456 kJ/mol for CF4),
so that these bonds can only be cleaved under extreme and costly conditions in the body, if at all [23].
This increases the half time of active agents within the body (and environment) compared to their
non-fluorinated pendants. Besides the electronic effects of fluorine within a molecule, fluorine also
provides stereochemical properties which is summarized as fluorine gauche effect. Briefly, it can be
described as a non-bonding weak interaction of the fluorine orbitals and other interacting partners.
This reduces the degrees of freedom in rotation and this determines the conformation of a particular
fluorinated molecule or guides reaction pathways. A review concerning this topic can be found in
reference [24]. Apart from altering molecular characteristics, 18F is used as a common radioactive
isotope label for in vivo study of protein function and enzyme catalysis [25]. Of all halogenated active
agents, ledipasvir (2, see Figure 2) is one of the top-selling drugs, administered for the treatment of
hepatitis C. Another important compound is dacomitinib (3), a single-fluorinated drug, which has
been in clinical trials for the treatment of non-small-cell lung cancer [26].

Chlorine is the second prevalent halogen with 38% in halogenated drugs. Due to its increased
size, it is a moderate halogen bond acceptor, while still being stable when being introduced into a
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carbon bond (327 kJ/mol for CCl4) [23]. Its presence in a compound alters volume and shape, allowing
for positioning in deep cavities within proteins. These characteristics make it an interesting option for
the functionalization of heterocycles. One of the most prominent chlorine-based natural compounds is
rebeccamycin (4), a weak topoisomerase I inhibitor, which showed significant antitumor properties [27].

Brominated compounds are rarely found in drugs, making up only 4% of all halogenated
compounds. This seems contradictory at first, as most halogenated compounds originate from marine
organisms and are brominated despite chlorine being the more abundant halogen in water. Due to the
lower polarization of the carbon-bromine bond and the extended bulkiness, bromine usually forms
longer and thereby more labile bonds, not suitable for most drug candidates for a proper inhibition
(272 kJ/mol for CBr4) [23]. These characteristics however allow an easier oxidation of bromine and
consequently an easier incorporation into molecules, compared to chlorine. Although there is a
prevalence of chlorinated and fluorinated active agents in pharmacology, some brominated compounds
are known to display relevant bioactivity like eudistomin K (5), viable for the treatment of polio and
herpes [28].

Iodine is the rarest halogen used (1%), commonly exploited for the synthesis of the active agents.
Having a higher size and lower electronegativity, its bonds formed with carbon atoms are more labile
than those of bromine, being easily cleaved off. Iodine is, therefore, preferably suitable for short-lived
applications. An example of the use of iodine in medicine is radioactively labelled 124I in positron
emission tomography (PET) as a tracer [29].

1.2. Halogens as Synthetic Tools

Both, bromine and iodine, are rare as functional moieties in active agents due to their labile
covalent bonds. But it is precisely these properties that make halogens of higher periods valuable
instruments for the synthesis of active substances.

A patent application for the production of hypohalous acids was applied for in 1944. C. C.
Crawford and T. W. Evans described a process to obtain halide-free solutions of hypochlorous acid.
This halogenating reagents were used in industrial applications to produce e.g., halohydrins from
unsaturated organic compounds [30]. In 1993 another patent to produce concentrated slurries of sodium
hypochlorite [35% (w/v)] was accepted [31]. They describe a process for highly pure hypochlorite
slurry production. All the processes have the same starting materials in common. The first step is the
solvation of molecular chlorine in water to get hypohalous acid (6) or the solution of sodium hydroxide
and chlorine in water to end up with sodium hypochlorite. However, contaminations of sodium
chloride and remaining sodium hydroxide occur in most processes that are carried out in industrial
scale. The chlorine is hereby acquired by the chloralkali process where the electrolysis of sodium
chloride produces molecular chlorine gas. Similar processes are state-of-the-art for the production
of sodium bromate, which has the drawback of being a strong oxidizing agent [32,33], but can be
used for the bromination of aromatic compounds [34]. The production of stable hypobromous acid is
rather difficult because it easily oxidizes to bromate. Here, the production is carried out starting from
hypochlorous acid or a modified chlorite [35].

More common halogenating agents are N-bromo-succinimide (NBS) and N-chloro-succinimide
(NCS). Interestingly, even these reagents are synthesized from molecular halogens or hypohalous
acids [36]. As a conclusion, it is now rather obvious, that all halogenating reagents have their origin in
molecular halogen gases that are produced by cost-intensive procedures like halogen alkali electrolysis
from halide salts (Figure 3).
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Figure 3. Workflow for the provision of halogenating reagents from alkali salts. The electrolysis process
thus produces molecular halogens (X2), as well as hypohalous acids (HOX, 6) and N-halogenated
succinimides (NXS, 8) in further steps.

Having these halogenated building blocks at hand, further synthetic steps can follow to build up
active agents. Not only in academia but also in industry, the synthetic tool in terms of cross-coupling
reactions is one of the most common C–C- and C–Y bond formations (Y is in this case N, O, S). With the
use of different transition metals and activated carbon components, it is possible to generate large
bioactive natural products and their derivatives. One prominent example is the use of palladium for
the selective preparation of arenes and heterocyclic scaffolds with different substitution patterns [37].
However, also non-noble transition metals like copper [38], nickel [39], and nowadays even iron [40–42]
are firmly anchored as suitable catalysts. Besides the high chemoselectivity, a profound functional
group tolerance is a main advantage of these kind of reactions. Therefore, it is not surprising that
industry has established approaches to produce pharmaceuticals and fine chemicals at the kilogram
scale [43,44]. The following Figure 4 gives an overview of the most popular metal catalyzed named
reactions, that slightly differ in their reactive moieties for both products or starting materials [37,45–48].
However, the catalytic cycle and thereby the reaction mechanism is very similar for all (Figure 5).
Finally, conversions such as the Appel reaction and the Hell-Volhard-Zelinsky reaction, in which functional
groups such as alcohols are converted to haloalkanes or carboxylic acids that become acid chlorides,
must also be mentioned here.
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1.3. Halogen Chemistry is Energy-Demanding

It is estimated that about 55% of chemical and 85% of pharmaceutical end products were
processed with key components derived from the chloralkali electrolysis process [49,50]. These include
hydrochloric acid to adjust the pH, or chlorinated solvents as part of the synthesis and subsequent
isolation. However, this results in the production of the active compounds under hazardous conditions
and high costs, due to toxic waste management. Using enzymes to halogenate pharmaceutical active
compounds in a mild way and with a high efficiency is certainly a desirable aim for a greener chemistry.
In general, the production and further processing of chlorine is mostly performed in the very same
geographical region or facility in order to avoid the transportation of toxic and dangerous intermediates.
This was reported for German companies and, presumably, this is also the case for other countries.
The key component for halogenation (chlorine) is produced by electrolysis and is one of the most
energy-consuming processes in the chemical industry. The process is responsible for about 2% of the
total energy consumption yielding 5 million tons per year of chlorine in Germany [50,51]. Obviously, the
energy reduction is an objective of the chloralkali industry, since 50% to 60% of the production costs is
spend for the electrical energy [52].

2. Halogenating Enzymes

Although halogenated natural compounds are rare and only found within the regime of secondary
metabolism, at least six types of halogenating enzymes were evolved. Many were evolved from
monooxygenases, since hypohalous acids are the core intermediate of catalysis in these halogenating
enzymes. As diverse the origins of halogenating enzymes are as diverse is their classification.
In Figure 6 we tried to give an overview on the categories of halogenating enzymes. Although often
used synonymously, it can be differentiated between haloperoxidases and halogenases. The first
group forms hypohalous acid from the respective halide and hydrogen peroxide via heme-iron-,
vanadium-coenzymes, or even without any coenzyme. The hypohalous acid is set free for most
of the enzymes and the very halogenation reaction takes place outside the active site. In contrast,
the halogenases generate or simply use halonium species for the halogenation without the use of
hydrogen peroxide.
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Haloperoxidases

Haloperoxidases were the first group of halogenating enzymes discovered in the past. Enzymes of
this family catalyze the oxidation of a halide anion (X−) in presence of hydrogen peroxide to an
oxidized halide form, usually believed to be the corresponding hypohalous acid. The class is further
subdivided into three subclasses, the heme-iron-dependent, vanadium-dependent, and metal-free
haloperoxidases or perhydrolases. In the following section, each class will be discussed briefly with
biocatalytic examples, if they are known.

3. Heme-Iron-Dependent Haloperoxidases

The heme-iron-dependent haloperoxidases were the first and most intensively studied
haloperoxidases. Back in the 1960s, an enzyme from the fungus Caldariomyces fumago (Leptomyxes
fumago) was shown to be responsible for the halogenation of 1,3-cyclopentadion to the natural
compound caldariomycin (9) [53]. Upon further investigation, it could be shown that it contained a
heme-prosthetic group tethered to the enzyme by a distal cysteine ligand, very similar to the P450
monooxygenases [54].
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The catalytic cycle (Figure 7) displays a key intermediate, the FeIV-oxo-species, to oxidize chlorine
to hypochlorite, which is released and may be attacked by an electron-rich substrate serving as an
electrophile. In presence of excess hydrogen peroxide, this complex can alternatively decompose to
molecular oxygen and chloride.
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Figure 7. Proposed catalytic cycle of heme-iron-dependent haloperoxidases, shown on the example
of CPO from C. fumago. In the resting state (3 o’ clock), water is bound to the heme-iron, which is
subsequently replaced by hydrogen peroxide. After protonation of this complex by a catalytic glutamate
(Glu183), water is eliminated, creating the actual active species, the Fe(IV)-oxo complex. A halide, in
this case chloride, binds to the Fe(IV)-oxo species and is released as hypochloric acid, regenerating the
heme-site by hydrolysis with water. Alternatively, another molecule hydrogen peroxide may attack,
leading to the disproportion of the complex to molecular oxygen, water, and chloride [54,55].

As the enzyme resembled characteristics from peroxidases as well as monooxygenases, it was
classified as a heme-iron-dependent haloperoxidase and due to its ability to oxidize all halides besides
fluorine was named chloroperoxidase. Recently it was revealed that actually two Cf -cpo genes within
the C. fumago genome exist, sharing a high sequence identity and both being present in the secreted
supernatant of its host [56]. Since its discovery, the enzyme was target of many mechanistic and
biocatalytic studies. To much surprise, the formed hypohalous acid does not leave the active site freely,
but is held back by amino acids placed in the halide entrance tunnel of Cf -CPO, allowing for regio- and
enantioselectivity to a certain degree, mainly depending on the nature of the substrate [57]. Its major
drawback, however, was the oxidative inactivation every heme-iron-containing protein suffers after
exposure to oxygen as well as a high sensitivity for high hydrogen peroxide concentrations. As the
genetic modification of the fungus can prove tedious, the application of this enzyme in biocatalysis
might seem limited, however due to the fruitful work of Pickard et al., protocols are available for a
reasonable production and secretion of the enzyme in the native host, C. fumago [58].

As a catalyst, Cf -CPO was shown to be rather robust und allow a variety of different organic
transformations, where some are not always bound to a halogenating step. It could be applied in cascade
reactions with oxidases leading to halocyclization reactions of allenes (10) and even be immobilized for
(semi-)continuous-flow bioreactors [59–61] (see Figure 8). It was used for the halogenation of phenolic
monoterpenes like thymol (12) and carvacrol, excelling with drastically lower catalyst loadings (by five
orders of magnitude) compared to chemical alternatives like CuII-catalysis [59]. Furthermore, it was
shown to be capable of halogenating trans-cinnamic acid and other unsaturated carboxylic acids,
as well as catalyze enantioselective epoxidation of alkenes [62,63]. One bottleneck observed was the
low substrate loading, impairing possible preparative applicability.
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Besides chloroperoxidase from C. fumago, not many members of this subclass have been dealt
with. The bromoperoxidases from Pseudomonas aureofaciens and Penicillus capitatus are other examples
of such heme-iron-dependent enzymes [64,65]. However, beside classic characterization experiments,
revealing similar properties to Cf -CPO such as high thermal stability and sensitivity to high hydrogen
peroxide concentrations, no complex biotransformations were investigated with these enzymes,
yet (see Table 1) [66].

Table 1. Enzymological properties of heme-dependent haloperoxidases (* original host).

Enzyme Expression Kinetic
Parameters

Substrates
Host Yield [mg/L]

Cf -CPO
C. fumago * 430

[67] 0.78 mm h−1

[59]
aromatic,
alkenes

E. coli BL21(DE3) n.a.
[68]

Aspergillus niger 10
[68]

BPO
Pseudomonas aureofaciens

[65] n.a. n.a.
partial

diastereo-selectivity
[69]

aromatic,
N-hetero-cycles,

alkenesPenicillus capitatus
[64,65] n.a.

4. Vanadium-Dependent Haloperoxidases

For several years after the discovery of heme-iron-dependent haloperoxidases, it was assumed
that they are the only enzymes able to oxidize halides for the subsequent halogenation reaction.
However, a new halogenating enzyme class was discovered in 1993 by van Schijndel et al.
from Curvularia inaequalis using ortho-vanadate cofactor for the oxidation of halides [70,71].
Just two years later, a vanadate-dependent homolog from Corallina officinalis was crystallized [72].
These vanadium-dependent haloperoxidases became a popular research target as they were shown to
exhibit high turnover numbers without suffering an oxidative inactivation and displaying a higher
tolerance against hydrogen peroxide [73], In contrast to the heme-iron-dependent ones, however, they
usually do not retain the formed hypohalous acid within the active site, leading to a freely diffusible
strong oxidant. Resulting from this mechanistic aspect, random halogenations occur, even in the
protein itself, leading to its destabilization and inactivation. Because of this free hypohalous species,
the selectivity of the subsequent halogenation reaction is independent of the enzyme but from the
electronic properties of the substrate. Most of the vanadium-dependent haloperoxidases originate
from marine fungi and marine macroalgae (seaweeds) [74].

It is proposed that the catalytic cycle (Figure 9) forms a VV-peroxo-species as the key intermediate,
where the halide is added and subsequently hydrolyzed to hypohalous acid. Identically to
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heme-iron-dependent haloperoxidases, the presence of hydrogen peroxide may lead to the disproportion
to singlet oxygen and the halide [55].
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Figure 9. Proposed catalytic cycle of vanadium-dependent haloperoxidases. In its resting state (3 ‘o
clock), vanadium contains four oxygen ligands, while the free coordination site is occupied by a catalytic
histidine residue, resulting in a dative bond. In presence of hydrogen peroxide, a hydroxyl group is
substituted by peroxide. Upon elimination of a hydroxide ion, a cycloperoxo-species is generated, which is
stabilized by a catalytic lysine residue. This cyclic intermediate is opened by addition of a halide, in this
case bromide, which can then be hydrolyzed by water, leading to the release of hypobromic acid, or in
presence of another hydrogen peroxide molecule, be disproportioned to molecular oxygen and bromide.
During catalysis, the vanadium does not alter its oxidation state (V) [55].

One of the best-investigated representatives of this class is the vanadium-dependent
chloroperoxidase from the phytopathogenic fungus Curvularia inaequalis [70,71,75–77]. Even in
absence of the vanadium-cofactor, the enzyme is stable in its apo-form and can easily be transformed to
the holo-form by external addition of ortho-vanadate [70]. Although the gene can be heterologously
expressed in E. coli and activated with vanadate, it was reported that the amount of enzyme obtained
was very low. As an alternative, Saccharomyces cerevisiae was used as a host, yielding 100 mg/l

apo-enzyme [75]. Kinetic experiments lead to a kcat/KM of 2.6 × 106 m−1 s−1 for hydrogen peroxide and
5.1 × 107 m−1 s−1 for bromide at pH 4.2, the optimal pH for bromoperoxidase activity [75].

It showed stability at high temperatures (TM of 90 ◦C) and tolerance against organic solvents
like methanol, ethanol, and propan-2-ol (up to 40% v/v) [71]. Ci-VClPO was used as a hypohalogenite
catalyst for the halogenation of phenols like thymol, while showing excellent stability towards hydrogen
peroxide and organic solvents like methanol and ethyl acetate [76]. Furthermore, it was used for the
mediation of (Aza-)Achmatowicz reactions in combination with cascades [78] and halofunctionalization
reactions of aromatic and aliphatic alkenes like styrene and hexanol [77,79] (see Figure 10).
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In contrast to the usually scarce selection of vanadium-dependent chloroperoxidases, many
representatives of bromoperoxidases were researched in the past. One of the most prominent members
of this group is the VBrPO from Corralina officinalis, a marine red algae. Similarly to the homolog from
C. inaequalis, it excels with a high stability towards high temperatures up to 90 ◦C and in presence
of organic solvents like ethanol, propanol, and acetone (up to 40% v/v) [72]. However, recombinant
expression of the gene in E. coli BL21(DE3) proved difficult, as the amount of protein formed is high,
but insoluble. Coupe et al. notably showed that by using a refolding procedure, 40 mg/L of active
enzyme can be retrieved after expression and isolation [80].

The haloperoxidase was shown to accept a variety of substrates, like nitrogen-containing
heterocycles, cyclic β-diketones, phenol, o-hydroxybenzyl alcohols, anisole (19), 1-methoxynaphthalene
and thiophene in addition to alkene halogenations with styrene (16), cyclohexene (22) among others to
yield various bromohydrins [81] (see Figure 11 and Table 2).

In most of the cases, no diastereoselectivity for the bromohydrin formation could be
observed, except for the formation of bromohydrin from (E)-4-phenyl-buten-2-ol (24) [69].
Besides bromination reactions, haloperoxidases like the Co-VBrPO are able to catalyze sulfoxidations
with 2,3-dihydrobenzothiopene (26), as well [82].

Table 2. Enzymological properties of vanadium-dependent haloperoxidases.

Enzyme Expression Kinetic
Parameters

Substrates
Host Yield [mg/L]

Ci-VClPO
C. inaequalis 10 [70]

5.1 × 107 M−1 s−1

for Br− [75]
aromatic,
alkenesE. coli BL21(DE3) 15 [76]

S. cerevisiae 100 [75]

Co-VBrPO C. officinalis 200 U/mg for MCD
[83]

aromatic,
N-hetero-cycles,

alkenesE. coli BL21(DE3)
(insoluble) 40
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metal-free haloperoxidases or perhydrolases were found to require hydrogen peroxide and halides 
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5. Metal-Free Haloperoxidases/Perhydrolases

Although oxidative halogenation reactions are dominated by (transition) metal catalysis in nature, a
group of enzymes was identified catalyzing halogenation without any metal cofactor. These metal-free
haloperoxidases or perhydrolases were found to require hydrogen peroxide and halides as well,
while forming percarboxylic acids from carboxylic acids using a catalytic triad of serine, histidine,
and aspartate [84,85]. Their striking resemblance to lipases has initiated a general debate over the
nature of these enzymes, as their characteristics resemble hydrolases with a halogenating sub-activity.
This has led to controversies whether the metal-free haloperoxidases are not simply lipase-like enzymes
moonshining as haloperoxidases. In fact, several lipases were tested positively for haloperoxidase
activity despite low turnover numbers [81].

The key-step in catalysis is the formation of a peroxo-acid from a carboxylic acid by hydrogen
peroxide, which subsequently forms an acylhypohalide acting as the halogenating agent (Figure 12) [86].

Many examples for metal-free HPOs in biotransformations are not known. The majority of
investigations of this enzyme class were focused on determining and expanding the tolerance of these
enzymes to organic solvents and temperatures. One recent example of a bioorganic application was
the halogenation of nucleobases and analogues [87] (see Figure 13).
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Figure 12. Proposed catalytic cycle of metal-free haloperoxidases/perhydrolases. This mechanism was
compiled from several sources [81,85]. The catalytic cycle is adopted from the common hydrolase
catalysis encountered in lipases and esterases, for instance. In presence of a carboxylic acid, in
this case acetic acid, an ester is formed with the catalytic serin residue upon elimination of water
(3 ‘o clock). In presence of hydrogen peroxide, the ester is cleaved, forming a percarboxylic acid. In the
following step, a halide binds to the peroxoacid, which is hydrolyzed to the hypohalous acid, while the
characteristic Ser-His-Asp triad is already regenerated.Molecules 2019, 24, x FOR PEER REVIEW 15 of 34 
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dependent phenol halogenases (see Figure 14) [8]. The fact, that each and every position can be 
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a two-component electron transport chain and therefore require a suitable flavin reductase [90–92]. 
In addition to the reductases that naturally belong to the biosynthesis clusters e.g., PrnF [93], 
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5.1. Flavin-Dependent Halogenases

In addition to the long-known haloperoxidases, another class of enzymes has aroused much
interest. It is suspected that flavin-dependent halogenases (FHals, Fl-Hals, or FDHs) evolved from
monooxygenases that require flavin cofactors as well and, therefore, belong to the superfamily of
flavin-dependent monooxygenases [88,89].

According to what is known so far, there are three natural target structures that can be addressed by
FHals. The most studied and best understood group are the flavin-dependent tryptophan halogenases.
In nature, there is the possibility to halogenate every position of the indole ring. Similar to this structure
there is the group of flavin-dependent pyrrole halogenases and finally the flavin-dependent phenol
halogenases (see Figure 14) [8]. The fact, that each and every position can be addressed by an individual
enzyme demonstrates that FHals are selective halogenating catalysts in contrast to the majority of
haloperoxidases. FHals must be differentiated according to the accessibility of their substrates. While a
large number of these halogenases are involved in biosynthesis clusters of polyketides (PKS) and
non-ribosomal protein synthesis (NRPS), some, such as tryptophan halogenases, can convert freely
diffusible substrates and are not dependent on carrier proteins that activate or merely tether the
substrate (Figure 14) [13].

For the application of this enzyme group, it is important to keep in mind that they need at least
a two-component electron transport chain and therefore require a suitable flavin reductase [90–92].
In addition to the reductases that naturally belong to the biosynthesis clusters e.g., PrnF [93], applications
with other reductases such as SsuE [91,94,95] or Fre [96,97] from E. coli have also been reported. To
avoid the necessity of a second enzyme—the flavin reductase—or even a third enzyme for cofactor
recycling, photochemical approaches are in the focus of current research in this field as well [98].Molecules 2019, 24, x FOR PEER REVIEW 16 of 34 
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Figure 14. Regioselectivity of flavin-dependent halogenases and their dependency on carrier
proteins. * Natural products with halogenations are known, but so far, no enzyme is characterized.
ˆ This tryptophan halogenase is one of the few examples that is carrier protein-dependent [99].

Figure 14 shows some representatives for the halogenation of the different positions of the different
substrates (indoles [92,95,100–102], pyrroles [103] and phenols [104–107]), each with reference to the
halogenating enzyme, the dependence on carrier proteins and the corresponding publication [108].
The halogenation of position four of indoles, as for example in 4-chloroindole-3-acetic acid, is known to
date only from plants (Pisum sativum, Lens culinaris, Vicia sp., and in particular Vicia faba), as a growth
hormone but no enzyme has yet been characterized responsible for its formation [7]. The publications
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e.g., by Shepherd et al., the review of Latham et al. and other publications also show various mutants
that led to changes in regioselectivity and substrate scope [8,96,100,109,110].

A lot of these enzymes that are dependent on carrier proteins produce well-known secondary
metabolites like rebeccamycin (4) and vancomycin (1) but also a plethora of less investigated biosynthetic
pathways [133]. The most important difference in the mechanism between flavin-dependent
monooxygenases and halogenases is the conserved motif of two tryptophanes, one isoleucine
and proline. This 10 Å long tunnel [89], first found in PrnA, serves to spatially separate
the activated peroxy-flavin FAD(C4α)–OOH from the substrate binding site and thus prevents
oxygenation [114,116,128]. After generating the hypohalides, a conserved lysine transfers the
electrophilic chlorine as chloramine from the former peroxy-flavin to the substrate (Figure 15) [134].Molecules 2019, 24, x FOR PEER REVIEW 19 of 34 
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For the phenol halogenase the mechanism is proposed to be slightly altered. The phenolic
hydroxyl group is deprotonated by an aspartate within the active site increasing the nucleophilicity of
the enol α-carbon [130]. Based on these conserved motifs and the assumed reaction mechanism some
putative halogenases have already been found and annotated. Recently even a viral halogenase VirX1
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from cyanophages was discovered, which is the first FHal capable of in vitro iodination and stands out
due to its broad substrate spectrum and preferred iodination [135].

Although the community has so far agreed that the preserved motif of separation tunnel and anchor
lysine seems to be essential for the activity, current research shows a further class of flavin-dependent
halogenases which lack these structural elements completely. One of these examples is the halogenase
KerK that is under investigation by Piel and coworkers but has not yet been published except as a
poster presentation on Biotrans 2019 in Groningen, the Netherlands [136].

In addition to the advantages of high regioselectivity and thus only few by-products, there are also
some disadvantages in the use of this enzyme group. The low conversion rates speak against large-scale
application and expression problems often occur. Many of the proteins produced in E. coli BL21(DE3)
end up in the insoluble fraction as inclusion bodies. To deal with this issue, strains with co-expression
of chaperones are used regularly (Table 3). The overall stability of these proteins also needs further
optimization to be applicable in biocatalysis. As a promising result Kemker et al. the tryptophan
halogenases were successfully scaled up in terms of a biocatalytic process employing immobilizing the
enzymes by cross-linked enzyme aggregates (CLEAs). This yielded l-7-bromotryptophan on the gram
scale [137].

Table 3. Examples of flavin-dependent tryptophan, pyrrole and phenol halogenases that can be
carrier-dependent or independent.

Enzyme Origin Heterologous Expression
Host 1 Product Miscellaneous

PrnA
[96]

Pseudomonas
fluorescens BL915 E. coli ArcticExpress (DE3)
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Table 3. Cont.

Enzyme Origin Heterologous Expression
Host 1 Product Miscellaneous

MibH
[99,113]

Microbispora
coralline NRRL

30420
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Xcc-B
B100XXXX

[115]

Xanthomonas
campestris pv.

campestris strain
B100

E. coli BL21(DE3) with pGro7
plasmid

(Takara) for chaperone
co-expression

Various substituted
indoles and thereby

differing
regio-selectivity

BrvH
[116]

Brevundimonas
BAL3

E. coli BL21(DE3) with pGro7
plasmid

(Takara) for chaperone
co-expression
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SgcC3
[124]

Streptomyces
globisporus

E. coli BL21(DE3)
pET-30Xa/LIC
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CmlS 
[128] 

Streptomyces 
venezuelae 

 
 

Flavin covalently 
bound to aspartate 

via CH3-Group 

CndH 
[129] 

Chondromyces crocatus  NRPS-dependent 

RadH 
[107,130] 

Chaetomium chiversii E. coli Rosetta 2(DE3) monocillin II  

Rdc2 
[107,131] 

Pochonia 
chlamydosporia 

S. cerevisiae 
strain BJ5464-Npg 
E. coli BL21(DE3) 

monocillin II  

TiaM 
[132] 

Dactylosporangium 
aurantiacum NRRL 

18085 
E. coli BL21(DE3) 

tiacumicin B 
intermediate 

NRPS-dependent 

1 if not stated otherwise, the expression took place in the origin host. 

A lot of these enzymes that are dependent on carrier proteins produce well-known secondary 
metabolites like rebeccamycin (4) and vancomycin (1) but also a plethora of less investigated 
biosynthetic pathways [133]. The most important difference in the mechanism between flavin-
dependent monooxygenases and halogenases is the conserved motif of two tryptophanes, one 
isoleucine and proline. This 10 Å long tunnel [89], first found in PrnA, serves to spatially separate the 
activated peroxy-flavin FAD(C4α)–OOH from the substrate binding site and thus prevents 
oxygenation [114,116,128]. After generating the hypohalides, a conserved lysine transfers the 
electrophilic chlorine as chloramine from the former peroxy-flavin to the substrate (Figure 15) [134]. 
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Table 3. Cont.

Enzyme Origin Heterologous Expression
Host 1 Product Miscellaneous

HalB
[125]

Actinoplanes sp.
ATCC 33002

Pseudomonas aureofaciens
ACN
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PltM
[126]
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fluorescens Pf-5 E. coli BL21 (DE3)
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biosynthetic pathways [133]. The most important difference in the mechanism between flavin-
dependent monooxygenases and halogenases is the conserved motif of two tryptophanes, one 
isoleucine and proline. This 10 Å long tunnel [89], first found in PrnA, serves to spatially separate the 
activated peroxy-flavin FAD(C4α)–OOH from the substrate binding site and thus prevents 
oxygenation [114,116,128]. After generating the hypohalides, a conserved lysine transfers the 
electrophilic chlorine as chloramine from the former peroxy-flavin to the substrate (Figure 15) [134]. 
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5.2. α-Ketoglutarate-Dependent Halogenases

Table 4 shows different natural products that are formed by the iron(II)-α-ketoglutarate-dependent
(Fe/αKG)-halogenases. Despite the huge variety in the product structures they share one common
feature, which is the halogen at a sp3-carbon centre. Hence, the Fe/αKG-halogenase is not
limited to nucleophilic substrates like the previous described enzymes. They belong to the
Fe/αKG-dependent oxygenase superfamily. The superfamily is known for different transformations
such as hydroxylation [138], halogenation [139], desaturation [140], or can be used for the production
of ethylene [141]. They all share a structurally conserved metal-binding motif, which in the case of the
halogenase developed an active centre that is eventually able to bind a haloge n [139]. The proposed
catalytic mechanism of Fe(II)/α-KG-dependent-halogenase is illustrated in Figure 16.
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Table 4. Examples of heterologously expressed Fe(II)/αKG-dependent halogenases.

Enzyme Origin/Expression Host
and Yield Features Product/Biosynthesis

SyrB2
[139]

Pseudomonas syringae pv.
syringae B301D/

E. coli strain B834(DE3)
[139]
n.a.

total turnover: 7 ± 2
[144]
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fragment

Based on the proposed radical C-H functionalization two classes of enzymes have so far been
identified. The first such reported Fe/αKG-dependent halogenase is the tailoring domain SyrB2 of
the multimodular nonribosomal peptidsynthetase (NRPS) from Pseudomonas syringae pv. syringae
B301D [133,144]. These NRPS-associated halogenases produce a diversity of secondary metabolites
such as the chlorinated biosurfactant syringomycin E (31), which is characterized by a selective
monochlorinated threonine in its structure [128,139]. Another example is the highly selective di-
and trichlorination of solely one of the diastereotopic methyl groups of leucine by a combination of
BarB1 and BarB2, which serves as a precursor for the natural compound barbamid (32) in the marine
cyanobacteria Lyngbya majuscula [142,153].



Molecules 2019, 24, 4008 21 of 34

Molecules 2019, 24, x FOR PEER REVIEW 20 of 34 

 

needs further optimization to be applicable in biocatalysis. As a promising result Kemker et al. the 
tryptophan halogenases were successfully scaled up in terms of a biocatalytic process employing 
immobilizing the enzymes by cross-linked enzyme aggregates (CLEAs). This yielded L-7-
bromotryptophan on the gram scale [137]. 

5.2. α-Ketoglutarate-Dependent Halogenases 

Table 4 shows different natural products that are formed by the iron(II)-α-ketoglutarate-
dependent (Fe/αKG)-halogenases. Despite the huge variety in the product structures they share one 
common feature, which is the halogen at a sp3-carbon centre. Hence, the Fe/αKG-halogenase is not 
limited to nucleophilic substrates like the previous described enzymes. They belong to the Fe/αKG-
dependent oxygenase superfamily. The superfamily is known for different transformations such as 
hydroxylation [138], halogenation [139], desaturation [140], or can be used for the production of 
ethylene [141]. They all share a structurally conserved metal-binding motif, which in the case of the 
halogenase developed an active centre that is eventually able to bind a haloge n [139]. The proposed 
catalytic mechanism of Fe(II)/α-KG-dependent-halogenase is illustrated in Figure 16. 

 

Figure 16. Proposed mechanism for halogenation reaction by Fe(II)/αKG-dependent halogenase via a 
radical C-H functionalization [142]. The highly reactive Fe(IV)-oxo (haloferryl) intermediate is 
produced by decarboxylation of αKG to succinate through an oxygen attack. Subsequently 
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water molecules, chloride and histidine. 

Table 4. Examples of heterologously expressed Fe(II)/αKG-dependent halogenases. 

Figure 16. Proposed mechanism for halogenation reaction by Fe(II)/αKG-dependent halogenase via
a radical C-H functionalization [142]. The highly reactive Fe(IV)-oxo (haloferryl) intermediate is
produced by decarboxylation of αKG to succinate through an oxygen attack. Subsequently abstraction
of a hydrogen-atom from the substrate leads to an energetically favourable rearrangement towards
Fe(III). Rebound reaction with chloride was shown to depend on the distance and orientation of the
substrate [143]. The catalytically cycle is re-established by the hexa-coordinated Fe(II) with water
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substrates. With the discovery of a new Fe(II)/αKG-dependent halogenase (WelO5) by Hillwig and
Liu, it was possible to expand the class towards unbound substrates. WelO5 is capable of late stage
halogenation in a regio- and stereoselective manner of different derived isoprenoid-indole alkaloids
in the cyanobacterium Hapalosiphon welwitschii (see Table 4) [137,148]. WelO5 showed also a higher
robustness and catalysis of approximately 75 turnovers in total [137,148]. Strategies such as adding the
cosubstrates consecutively or adding antioxidants like catalases or DTT could increase the turnover
number. The narrow substrate scope of WelO5 was tailored in order to have an increased substrate scope
like the homolog AmbO5 [138,149]. Most modifications were at the external helix, which is responsible
for closing the entry of the active site upon binding of the substrate. It can be assumed that the helix
is partially involved in the substrate recognition and specificity [138,149]. A recent publication from
Hayashi et al. showed a WelO5 variant with a reshaped active site that led to improved kinetics and an
expanded substrate scope, which applies beyond the native indole alkaloid-type substrates [141,152].
This provides the possibility for targeted enzyme-engineering and a basis for further improvements
in substrate scope. One possibility is the establishment of nitration and azidation as already shown
for SyrB2 [157]. In this regard, it has been shown that WelO5 is able to incorporate the unnatural
halide Br− [158]. One drawback of engineering Fe/αKG-dependent halogenases is the hydroxylation
as a competitive side reaction [155]. Mitchell et al. used this approach backwards and modified
a monooxygenase SadA towards a halogenase [159]. This serves as a proof of concept that with
increasing understanding of the reaction mechanism and the involved amino acids the superfamily
of monooxygenase can be used as a versatile toolbox in biotechnology. In the future, this may
lead to the use of different variants of the very same enzyme for different transformations. Table 4
shows an overview of different characterized Fe/αKG halogenases and their main published features.
Excluded are, for example, halogenase modules of NRPS, where the halogenation is necessary for the
subsequently formation of cyclopropane such as in case of CurA [160] or CmaB (see Figure 17) [161].
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Figure 17. Schematically example for formation of cyclopropane initiated by CmaB through halogenation.

5.3. Fluorinase

In contrast to the other described enzymes, the diversity of natural products in case of
the fluorinase stem from only one characterized enzyme class to date. The involved enzymes
are S-adenosylmethionine (SAM) dependent. The first characterized representative was FlA
(5′-fluoro-5′-deoxyadenosine synthase) from [162]. The overall family of this enzymes is also
able to chlorinate or hydroxylate SAM, as described in detail elsewhere [163]. Within the catalytic cycle
fluoride acts as a nucleophile in a SN2-reaction, where it attacks the 5′-carbon of SAM-ribose [164].
In order to act as a nucleophile, fluoride requires to lose its solvation shell. This is achieved in a
two-step desolvation with a combination of electrostatic stabilization and hydrogen bonding. In the
first step, fluoride is binding to the active site and exchanges water molecules of its shell in order
to form hydrogen bonds with the enzyme. Upon binding of SAM the desolvation of fluoride is
complete. The electropositive 5′-carbon attached to the sulfur group in SAM coordinates with the
fluoride [165,166]. This electrostatic stabilization facilitates the nucleophilic attack of the fluoride
and C−F-bond formation of the reactive 5′-fluoro-5′deoxyadenosine (33, 5′-FDA) intermediate [166].
Subsequently, 5′-FDA (33) is further metabolized in order to generate a variety of compounds as shown
in Figure 18A [162]. However, this also represents a major obstacle for the application of these enzymes
to unnatural small organic molecules, since the product formation follows a cascade of enzymatic steps.
Eustáquio et al. tried to use this enzyme for the production of fluorosalinosporamide, an unnatural
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analog of salinosporamide, which is fluorinated rather than chlorinated, however, the yield was
moderate [167]. Nevertheless, different approaches have been implemented to increase the substrate
scope and use the enzyme as rather flexible tool for medical applications. Besides the ability to fluoride
compounds, fluorinase is also able to exchange a chloride at the 5′-carbon of the SAM ribose ring
by a fluoride and form 5′-FDA (33, Figure 18B) [168]. This overall trans-halogenation reaction was
used for late-stage fluorination for the production of radiolabeled imaging reagents. Recently, different
pre-targeting strategies have been developed for treatment and imaging of different diseases. Those
include e.g., radiolabeling of the human A2A adenosine receptor [169], a prostate cancer-related membrane
protein [170] or the combined application of biotin and tetrazine-conjugate with antibodies [171]. In all
cases, it was shown that the fluorinase (FlA) accepts substrates with different moiety at C-2 of the adenine
ring. So far two crystal structures of fluorinase homologs from S. cattleya and Streptomyces sp. MA37 are
known and they both have a high structurally conformity [172]. In general all five known fluorinases
have a high similarity of over 80% and show similar kinetic profiles [173]. Through a directed evolution
approach of FlA1, different crucial amino acids for substrate binding, halide binding and hence activity
were identified [174]. Additionally, the variants were tested with different unnatural substrates [175].
It was shown that the tolerance for the wild type (wt) enzyme is limited to C-2 modified substrates.
However, generated variants of FlA1 also demonstrated an activity for an unnatural substrate, which were
modified at C-6 positions of the adenine ring with a chlorine group [175]. These findings show that
despite a narrow substrate scope of the fluorinase, it was possible to successfully apply different unnatural
substrates and lay a base for directed evolution as means to use small organic compounds as substrates.
However, the dependence of electrophilic substrate structures remains a drawback for the nucleophilic
attack of fluoride. The crystal structure with an unnatural substrate (containing difluoromethyl groups)
confirmed the necessity of geometry for activating the fluorine atom for substitution [176]. This outlines
the challenge to use fluorinases as a versatile tool to generate fluorinated pharmaceutical compounds.
Nevertheless, by means of designing appropriate leaving groups in combination with enzyme engineering,
fluorinases could be used as tool for future generation of fluorinated pharmaceutical compounds. Data of
known fluorinases are displayed in Table 5.

Table 5. Examples for heterologously expressed fluorinase. Kinetic data representing the conversion of
5′-ClDA into S-adenosylmethionine (SAM).

Enzyme Origin/Expression Host and
Yield Kinetic Parameters Special Substrate

Scope

FlA
[165]

Streptomyces cattleya/
E. coli BL21(DE3)

50 mg L−1

[173]

KM: 29.4 ± 5.80 µm

kcat: 0.084 ± 0.005 min−1

[173]
[169–171]

FlA1
Streptomyces sp. MA37/

E. coli BL21(DE3)
n.a.

KM: 8.36 ± 0.82 µm

kcat: 0.13 min−1

[174]

FlA4
Streptomyces xinghaiensis/

E. coli BL21(DE3)
n.a.

KM: 29.87 µm

kcat: 0.69 ± 0.01 min−1

[177]
[177]
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6. Conclusion on Halogens in Active Agent (Syntheses)

As we have seen in the previous paragraphs halogens are very important to many active agents as
a functional moiety per se due to their physico-chemical properties such as bulkiness, latent polarization
and as important binding partners because of halogen bonds. Organic halogen compounds are,
furthermore, instrumental for synthetic purposes in terms of being good leaving groups and facilitating
cross-metatheses by halogen-metal-exchanges. Nevertheless, these indispensable advantages have to
be bought at a high price; namely the energy-intensive production of very toxic and hazardous chlorine
gas. The reduction in energy consumption must mainly be managed by technical improvements
of the chloralkali-process and enzymes are likely not able to make a significant impact. A major
reason is that the majority of chlorinated compounds are necessary for different types of plastic
materials (e.g., PVC) and solvents [51]. Enzymes are limitedly applicable in those areas of bulk
chemicals, but there is a potential for fine chemicals. Even though halogenating enzymes will not
replace conventional chlorine production, it is worth taking a look at this group of enzymes or rather
at these groups of enzymes, because nature has invented these amazing enzymes at least six times.
The expectations of these biocatalysts are that the conversions become environmentally more benign,
the processes skip hazardous compounds such as chlorine gas and that conversions get more selective.
However, the research in the field of halogenating enzymes is still at the beginning. Consistent
enzymologic data such as kinetic data, measurements on stability or even well studied mutant libraries
are rarely available. Many halogenating enzymes from eukaryotic sources suffer from expression
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challenges. Nevertheless, these enzymes open up a wide horizon of possibilities. Enormous genome
data are revealing more and more halogenating enzymes and even new classes of halogenating
enzymes cannot be excluded at present. Thus, there is a need for detailed and systematic research to
employ halogenating enzymes for active agent synthesis, to alter their substrate scopes and enhance
their process stability.
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αKG α-ketoglutarate
BPO bromoperoxidase
CLEA cross-linked enzyme aggregate
CPO chloroperoxidase
FDA 5′-fluoro-5′deoxyadenosine
Fhal, FDH flavin-dependent halogenase
FlA fluorinase A
g gasous
Hal halogen
HOX hypohalous acid
HPO haloperoxidase
MCD monochlorodimedone
Mn elemental metal
MOH metal cation hydroxid salts
NBS N-bromo-succinimde
NCS N-chloro-succinimide
NRPS non-ribosomal protein synthesis
NXS N-halogen-succinimide
PKS polyketide
PVC polyvinyl chlroide
s solid
SAM S-adenosyl methionine
X halide ion
X2 molecular halogen
Y non-halogen heteroatom
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