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Abstract: Genome mining has become an increasingly powerful, scalable, and economically accessible
tool for the study of natural product biosynthesis and drug discovery. However, there remain
important biological and practical problems that can complicate or obscure biosynthetic analysis in
genomic and metagenomic sequencing projects. Here, we focus on limitations of available technology
as well as computational and experimental strategies to overcome them. We review the unique
challenges and approaches in the study of symbiotic and uncultured systems, as well as those
associated with biosynthetic gene cluster (BGC) assembly and product prediction. Finally, to explore
sequencing parameters that affect the recovery and contiguity of large and repetitive BGCs assembled
de novo, we simulate Illumina and PacBio sequencing of the Salinispora tropica genome focusing on
assembly of the salinilactam (slm) BGC.
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1. Introduction

As sequencing costs continue to decrease [1], it is now more feasible than ever to sequence the
genome of natural product producing organisms. For isolated strains, the use of long-read PacBio
sequencing combined with short-read Illumina data is now the gold standard, frequently yielding
completely assembled microbial genomes using off the shelf assemblers [1–3]. Such technology
provides access to genomic information that can be readily mined for new biosynthetic pathways,
be they active or silent. However, there are situations when sequencing and assembly are not as readily
accomplished. For instance, it may be difficult to extract large enough quantities of high-quality DNA
from some systems (e.g., the variable cellular rigidities and doubling times of many Actinobacteria [4]);
this limitation particularly impacts applications of culture-independent sequencing (metagenomics).
In this review, we outline biological and practical issues to consider when embarking on a sequencing
project to yield small molecule biosynthetic pathways. We also investigate the factors that contribute
to successful assembly of repeat-laden biosynthetic pathways.

Natural product chemists often desire to sequence biosynthetic pathways for a number of
interconnected reasons. The most basic motivation is perhaps the gleaning of structural information
from sequence data. In particular, absolute stereo-configuration can be predicted from the sequence of
modular pathways such as polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS)
systems [5]. Such analyses can be used to assign probable configurations when they are recalcitrant
to spectroscopic and chemical analyses; this is especially the case with polyketides. The genomic
context of a pathway may also give clues as to the molecular target or mechanism of action of
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a compound, since genes involved in resistance mechanisms are often clustered with natural product
biosynthetic genes [6,7]. Another motivation for sequencing pathways is to establish a renewable
supply of the compound of interest, either through engineering of the producing organism [8,9], or by
heterologous expression [10]. Depending on the structural complexity of the natural product and/or
the biosynthetic machinery driving its synthesis, this approach to production may be more practical
than total organic synthesis.

Notably, shotgun (random) sequencing campaigns generally associated with cluster identification
often unearth much more data besides the sequence of a single pathway. These data can include the
entire genome of the producing organism. In the case of metagenomics projects, the genomes of other
co-localized species often complicate or obscure the specific pathway of interest. Nevertheless, this
information can tie primary [11] and secondary metabolic pathways [12,13] to a specific organism
allowing one to investigate the producing organism’s ecology and/or evolutionary history [14].
For instance, the degree of genome reduction in microbial symbionts [15–17] can suggest approximate
evolutionary age and dependency of the symbiosis, along with the natural products made by the
symbiont. One can also carry out comparative studies to investigate the function and evolution of
natural products in the environment [18], distribution of pathways through horizontal transfer [19],
and the dynamics of pathway expression in the environment [20,21]. Sequencing, therefore, can be
used to study many aspects of chemical ecology, which is often of great interest to natural product
chemists since the evolved target may be related to therapeutically relevant activities [22].

For these and other reasons, there is currently a great deal of interest in the application of “omics”
technologies in the natural products field. Rather than exhaustively covering all “omics” work related
to natural products, we concentrate herein on the limitations of current methods and the caveats in
data analysis that researchers embarking on sequencing projects need to be aware of when designing
experiments and analyzing acquired sequence data. We also discuss some biological, evolutionary,
and ecological factors warranting consideration throughout the course of sequencing projects.

2. Evolution of Biosynthetic Pathways

The genes driving microbial secondary metabolism are typically, but not always, clustered; genes
involved in the biosynthesis, modification, transport, and regulation of a particular metabolite are
generally adjacent to one another on the chromosome. These biosynthetic gene clusters (BGCs) are
often complex and can be larger than 100 kilobases with numerous operons under tight regulatory
control. The evolutionary mechanisms that drive gene clustering observed within BGCs remain unclear.
One prevailing hypothesis suggests that genes conveying a fitness benefit (e.g., via the production of
an antibiotic natural product) will tend to cluster over evolutionary timeframes due to the importance
of their “teamwork” [23] in generating a compound that endows a benefit upon the producing species
and/or any of its symbiotic partners. Biosynthetic potential is a function of the environmental chemical
landscape [24] and species–species interactions [22,25] that define an organism’s niche. However,
the spatial and temporal dynamics of microbial interaction networks and selective forces are largely
unknown and rational discovery strategies that leverage ecological interactions have only begun to be
employed in a few relatively well-defined systems [4,25–27].

BGCs are widely distributed among microbes [4,19,28,29] and approximately 7% of bacteria
dedicate 7.5% or more of their genomes to secondary metabolism [30]. Over 6000 broad BGC
families have been described and their discontinuous presence-absence patterns suggest that gains and
losses occur frequently over evolutionary timescales [30]. BGCs also exhibit high rates of insertions,
deletions, duplications and rearrangements [19], often exchanging multi-gene blocks with primary
metabolism [31] or other BGCs [19]. Shared loci within functional domains, many of which contribute to
metabolite chemistry, are under a wide array of selective pressures both across and within clusters [32].

The modular biosynthetic logic, high GC content, and high extents of repetition within polyketide
synthase (PKS) and nonribosomal peptide synthetase (NRPS) BGCs further results in distinct module
and domain level exchanges that influence metabolite chemistry [19,28,33–36]. In the type 1 PKS
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avermectin cluster from Streptomyces sp., BGC variations from strain to strain include functional
domain exchanges (dehydratase-ketoreductase units) as well as losses and gains (ketoreductases) [36].
These rearrangements are thought to stem from homologous sequences within interdomain linkers [36].
Across type 1 PKSs, the sequences of ketosynthase domains tend to group phylogenetically based
on the BGC in which they are contained [36] suggesting that intracluster duplication of domains is
an important mechanism of type 1 PKS evolution. In contrast, the phylogeny of the ketosynthase
domains from trans-acting acyltransferase PKSs tends to group on the basis of accepted substrate
structures [37], suggesting that lateral gene transfers are important in the evolution of domain
chemistry within these BGCs. Subtle mutations within adenylation domains have led to substrate shifts
within evolutionarily-related NRPS BGCs [27]. Notable in this regard is the isoleucine to valine shift
between massetolide, orfamide, and viscosin (Ile-9, Val-10, and Ile-9, respectively) described recently
in Pseudomonas [38]. Similarly, nonsynonymous point mutations in the precursor peptide regions
of ribosomally synthesized and post-translationally modified peptides (RiPPs) can have significant
structural consequences within the final product [39] that can impact the producing organism’s
fitness. As a result of high substrate promiscuity within the supporting biosynthetic machinery, RiPP
families, such as the cyanobactins, can exist in nature as “combinatorial libraries”, where hypervariable
precursor peptide genes are deployed across the fitness landscape, while relaxed-specificity tailoring
enzymes are conserved [40]. Although the vast majority of microbial biosynthesis remains to be
described [28,41], work to date suggests that the diverse mechanisms underlying BGC evolution are
both cluster- and context-dependent.

3. Pathways from Symbiotic and Uncultured Sources

It has long been known that culture-based studies vastly underestimate microbial diversity in the
environment, a phenomenon known as the “great plate anomaly” [42]. The exact fraction of microbial
biodiversity amenable to laboratory culture is still being debated [43], especially in light of efforts
using novel culturing techniques [44–46]. However, from culture-independent sequencing efforts, it is
estimated that there are over 1000 bacterial phyla [47,48], and only a small fraction have ever been
cultured. We cannot know how much microbial biodiversity remains undiscovered, but much of this
“microbial dark matter” [49] is likely to only be detectable through culture-independent sequencing
with so called “meta-omics” [50] techniques, including metagenomics and metatranscriptomics.
Our view of the extent of “microbial dark matter” was first shaped by amplicon studies where
16S ribosomal RNA genes were amplified directly from the environment [51]. Used as a phylogenetic
marker, 16S amplicon sequences give a measure of bacterial biodiversity and allow the species
composition of different environments to be compared. However, large metabolic differences can be
seen between strains with near identical 16S sequences [52,53], highlighting that 16S amplicon-based
studies lack the genomic resolution necessary to elucidate the ecology and lifestyle of microbes in their
natural systems. Additionally, it has recently been shown that a significant portion of the bacterial tree
of life is inaccessible to standard 16S primers [48].

Shotgun (random) sequencing technology has now progressed to the point where whole genomes
of uncultured bacteria can be extracted from complex metagenomes [48,54]. In nature, microbes
do not generally live as monocultures and mixed communities can be quite complex, leading to
several challenges in meta-omics. Because such communities can contain many microbial genomes
(and perhaps the genome of a eukaryotic host), high sequencing depth is required in order to obtain
adequate read coverage for individual genomes. Assembling large sequencing datasets can be
demanding of computational hardware and assembly algorithms, which generally scale to the number
of unique “k-mers” (where k is the sequence length) in the dataset [55–58]. This phenomenon is
especially true for complex metagenomes [58]. Finally, after assembly is achieved, deconvolution of
larger assembled genome fragments, known as “contigs”, into discrete genomes (often referred to as
“bins”) remains a challenging bioinformatics problem (see below).
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The biosynthetic diversity of uncultured “microbial dark matter” has been explored using
two major culture-independent approaches. The first approach entails random functional screens
of metagenomic clone libraries to find novel heterologously expressed natural products [59,60].
The second approach involves targeted sequencing of systems known to produce interesting natural
products [50,61–64]. There are relatively few examples of natural product discovery solely through
sequencing of a pathway from an uncultured microbe. Notably, diaphorin [65] and nosperin [66]
were characterized after their respective pathways were uncovered and found to be related to those
of pederin [67,68], psymberin [69] and onnamide A [70]. A number of natural products have also
been identified through genome mining of the human microbiome [71,72]. Recently, the Brady group
has synthesized 288 peptide structures predicted from NRPS pathways found in publicly available
bacterial genomes; several were active against ESKAPE pathogens [73]. As the fields of metagenomics,
bioinformatics, and synthetic biology [74,75] continue to advance, this sequence-driven route of natural
product discovery is likely to become more prominent.

Random functional screens (i.e., “functional metagenomics” [76]) generally focus on environments
such as soil that contain very complex microbial communities. Recent findings suggest that this
complexity is mediated by opposing forces of production, resistance, and degradation of the diverse
antibiotics produced by soil microorganisms [77,78]. Functional screens attempt to capitalize on
this biosynthetic diversity by cloning and expressing genes taken directly from environmental
samples. In a functional screen, DNA is extracted from an environmental sample and a library
of clones is made and transformed into some sort of heterologous host such as Escherichia coli [79],
Streptomyces lividans [80], or fungal expression systems [81]. Transformed colonies are screened for
the effects of expressed compounds, such as pigmentation of colonies [76] or antibiotic effects on
a target organism [82]. There are a number of limitations to this approach: pathways must be smaller
than the clone insert size and clustered into a discrete chromosomal region, they must be functionally
expressed in the heterologous host, and their products must not kill this host. Nevertheless, functional
metagenomics screening has yielded small molecules, such as the terragines [80], antibiotic long-chain
N-acyl amino acids [82], and commendamide [83].

Targeted sequencing efforts tend to focus on systems where microbes live in a symbiotic
relationship with a eukaryotic host. This interest is fueled both by the many known natural product
isolations from eukaryotes and by the fact that these hosts can harbor stable symbiotic communities,
the genomes and secondary metabolites of which can be more reproducibly obtained, compared to
those of their free-living microbial counterparts [84]. Microbial communities not associated with
a higher organism pose a problem for recollection, except perhaps for certain lichens [66] and
cyanobacterial assemblages [85]. Although the focus on symbiotic microbes is, on some level, practical,
there is an ecological rationale to study small molecules made by symbionts. Very often compounds
isolated from these systems have bioactivities suggestive of a defensive function, such as cytotoxicity,
that has presumably been honed through millions of years of evolution and selective pressures.
This phenomenon implies that for a symbiotic relationship to be established and maintained across
evolutionary timescales, the natural products produced by symbionts must have ecologically important
bioactivities. Following this line of thought, the level of “importance” of a natural product could be
suggested by determining the interdependence of the symbiotic partners.

There is a continuous spectrum of dependency on both sides of a symbiotic relationship, roughly
proportional to evolutionary timeframe as well as exclusivity. For instance, the relationship between
eukaryotic cells and mitochondria, believed to be ~1.2 billion years old [86], is completely exclusive,
and is essential to both parties. On the other end of the scale, symbiotic relationships can be more
transient or the degree of dependency can be unequal (commensal or even parasitic) for the different
partners. For example, arbuscular mycorrhizal (AM) fungi associate with plant roots, facilitating water
and nutrient uptake [87]. Although AM fungi are dependent on plants for growth, the presence of AM
fungi is beneficial but not essential for plant growth, and there are whole plant lineages that appear
to have diverged from this kind of symbiosis. Co-evolution of symbiont and host can lead to a state
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where the symbiont is exclusive to and dependent on the host [15,16]. This process is driven by the
loss of genes that are not required for life outside the host. Such a scenario precludes independent life
or culture in the laboratory and implies that any biosynthetic pathway maintained throughout the
process of genome reduction and gene loss, is under strong selective pressure and has been ecologically
important across evolutionary timescales. Ecologically important natural products from long-term
symbionts, therefore, are likely to have evolved specific biological activities that may also be useful in
therapeutic settings [22,88]. Many of the examples outlined below have cytotoxic activities suggesting
defensive roles in the environment as well as anti-cancer drug potential.

Although biosynthetic pathways in free-living bacteria are generally clustered, there are some
notable exceptions. An early example of a non-clustered pathway came with the discovery of two discrete
gene clusters that are both required for the biosynthesis of ansamitocin in Actinosynnema pretiosum [89].
Similar fragmentation has been reported in a number of symbiotic systems. For example, the biosynthetic
pathway for the defensive compound pederin is split into at least two loci [67] in the genome of
a Pseudomonas sp. symbiont of blister beetles. Intriguingly, related compounds and pathways have been
found in other insects, marine sponges, and a lichen [37], suggesting that these pathways were originally
acquired horizontally. The presence of decayed insertion sequences flanking the pederin biosynthetic
loci suggest that the fragmentation of the pathway resulted from genome rearrangements following
horizontal acquisition [90]. Another pederin variant, diaphorin, is biosynthesized by a bacterial symbiont
of a psyllid pest of citrus crops, Diaphorina citri [65]. The symbiont, “Candidatus Profftella armatura”,
has a highly reduced genome less than 500 kbp in size, yet the diaphorin pathway occupies 15% of
the genome in two loci [65]. Intracellular symbionts, such as “Ca. P. armatura”, are especially prone to
extensive genome reduction, which eventually leads to an inability to rearrange their genome or accept
horizontally transferred genes. A similarly-reduced intracellular symbiont, Buchnera aphidicola, has been
associated with aphids for an estimated 160–280 million years [91], and for the past 50–70 million years
no rearrangements or gene acquisitions have occurred [92]. Therefore, the diaphorin pathway was likely
acquired horizontally early in the evolution of the symbiotic relationship between “Ca. P. armatura”
and D. citri.

There are a number of other examples of pathway fragmentation in symbionts. The bryostatins
are cytotoxic polyketides known to protect the vulnerable larvae of the bryozoan Bugula neritina from
predation [93], and these compounds are made by a bacterial symbiont, “Candidatus Endobugula
sertula”. The bacterium is disseminated vertically with released larvae, and there are a number of
genetically isolated populations of B. neritina that harbor distinct genotypes of “Ca. E. setula” [93–95].
The bryostatin BGC (bry) was sequenced through clone library methods by the Haygood and Sherman
groups [96,97]. Interestingly, the described bry BGC exists as a continuous locus in the “shallow”
sibling species of B. neritina, but is fragmented into two loci in the “deep” genotype. More recently,
the entire genome of “Ca. E. sertula” was sequenced and two additional bry genes were found in
a distal locus in the “shallow” genotype [17]. Likewise, a core locus of the ET-743 pathway was
determined through shotgun sequencing [50], but the genome of the bacterial symbiont “Candidatus
Endoecteinascidia frumentensis” had to be completed in order to identify all genes in the pathway,
found across multiple loci [62]. A similar level of fragmentation is observed in the patellazoles
pathway, found in the intracellular tunicate symbiont “Candidatus Endolissoclinum faulkneri”, where
ptz genes are distributed between seven distinct loci in the genome [63]. Fragmentation has also been
found in a terrestrial fungus-growing ant system, where several bacterial symbionts produce related
compounds dentigerumycin and the gerumycins, some of which have significant antifungal activity
against the microfungal pathogen Escovopsis sp.; this activity spares the fungal crop grown for food by
the ants [98]. The pathways for dentigerumycin and the gerumycins have apparently been acquired
recently through horizontal transfer. However, in one strain of Pseudonocardia sp., the gerumycin
pathway is split into two loci on a plasmid, whereas this pathway occurs as a contiguous cluster in
another strain. The related dentigerumycin cluster is also a contiguous cluster in a third strain. Thus,
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the fragmentation may have occurred recently. Alternatively, the fragmented version may represent
the origin of the contiguous pathway from simpler components.

The above examples underscore the importance of both metagenomic assembly and binning
when attempting to extract biosynthetic pathways from symbiotic systems. Because biosynthetic
pathways in symbiont genomes tend to be fragmented, it is important to accurately identify all
contigs belonging to the symbiont genome of interest. The challenges of assembling and binning may
also vary with the age and/or host-restriction of the symbiosis. Symbionts with reduced genomes
that have been vertically transmitted and host-restricted for millions of years tend to accumulate
mutations due to frequent population bottlenecks, weak purifying selection and eventual loss of DNA
repair mechanisms [16]. Consequently, previously repetitious regions tend to diverge. For example,
the complete chromosome of two strains of the patellazole-producing symbiont “Ca. E. faulkneri” was
assembled twice relatively easily and independently from two complex tunicate metagenomes [18,63].
Both of these strains have low coding density, with intergenic regions showing significantly different
GC content than protein and RNA coding genes. The distinct intergenic sequence composition
suggested by different GC content and lack of DNA repair pathways with consequent sequence drift
likely led to unique and unambiguous k-mer paths (de Bruijn graphs [55]), allowing the assembler to
yield more contiguous and near complete genome assemblies, free of interference from other species.
In contrast, the bryostatin-producing symbiont “Candidatus Endobugula sertula” is likely to be less
host-restricted because its genome shows few signs of genome reduction [17], and horizontal transfer
may be possible in addition to the vertical mode [99]. Consequently, the symbiont’s genome was
more of a challenge to assemble. The bry cluster exhibits a more challenging repeat structure, because
its functional DNA repair pathways and perhaps the relatively short time since bry acquisition have
prevented these repeats from significantly diverging [17,97]. One additional consideration is that,
as symbiont genomes contract, annotation of fragmented biosynthetic pathways can become less
challenging and less ambiguous. For instance, when there is clearly only one surviving secondary
metabolite pathway and few primary metabolic pathways present, it is easier to determine which distal
genes are likely to work together to make a particular natural product, even if they are fragmented
across the genome.

4. Challenges in Biosynthetic Pathway Assembly and Product Prediction

4.1. Capabilities and Limitations of Current Sequencing Technologies

There are a number of sequencing technologies currently available, generally characterized
by tradeoffs involving possible read lengths and coverage depths. These technologies have
been extensively reviewed elsewhere [1,100]. Accordingly, we will only cover selected practical
considerations herein. The current standard short-read (~50–250 bp), high-coverage technique used
for both genomics and metagenomics is Illumina sequencing. Due to the PCR amplification step
within Illumina workflows, and the ease of generating small-insert libraries from low amounts of
input material, Illumina is well-suited for shotgun metagenomic and metatranscriptomic sequencing.
It is challenging to extract large amounts of DNA from metagenomic samples; often such efforts
yield highly sheared molecules. The primary disadvantages of short-insert, short-read data is that
the connectivity across repetitive regions is challenging, if not impossible, to resolve. Long-read
technologies (such as PacBio and Oxford Nanopore) are generally single-molecule techniques, meaning
that PCR amplification is not employed during sequencing. Thus, these techniques generally
require much higher DNA input amounts (often up to tens of micrograms) and higher quality
(high molecular weight fragments) as only a subset of extracted DNA is sufficiently long to take
advantage of reads ≥50 kbp in length. Another distinct disadvantage of long-read technologies
is the lack of coverage. Whereas Illumina is capable of producing ~200 M paired-end reads from
a single lane, PacBio Sequel instruments can yield ~1 M reads from each Single Molecule Real Time
(SMRT) cell. Consequently, current long-read technologies are unlikely to yield enough sequence
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information to assemble the genomes of low-abundance species in a metagenome. This issue is
compounded by the fact that long-read technologies typically have higher per-base error rates than
their short-read counterparts, making high coverage or multi-technology approaches necessary for
single-base resolution of microbial genomes [1,101]. Single-cell sequencing has been used to target
specific species within a complex community [102,103]. In this technique, single cells are separated
from a mixture by micromanipulations. To generate adequate DNA from a single genome copy, it is
necessary to amplify the initial sample by a highly processive polymerase in a process called multiple
displacement amplification (MDA) [104]. Although this technique is useful for targeted sequencing
of specific low abundance organisms, it is inherently low throughput and therefore not suitable for
untargeted searches. MDA also tends to produce amplification artifacts causing uneven genome
coverage [56]. Moreover, because the amount of input template for MDA is very low, the technique is
highly vulnerable to contamination from extracellular DNA originating from other species [105,106].

4.2. Metagenomic Binning and Practical Considerations for BGC Analysis

Given the practical limitations of sequencing technologies available for metagenomic studies,
de novo assemblies are often unable to reconstruct complete microbial chromosomes from metagenomic
samples. However, strain-level resolution of complex metagenomes is an important goal for the greater
understanding of microbial ecology, including the inter-species interactions mediated by natural products.
For instance, understanding which uncultured species produces a given natural product can facilitate
attempts to target this species for axenic culture [107–111]. Alternatively, such knowledge enables one to
recreate a BGC of interest using synthetic biology and heterologous expression [59,112,113], particularly
when a BGC and/or its regulatory elements and resistance genes are fragmented throughout the
genome. Thus, access to genome-level resolution motivates the practice of “binning”, or assigning
contigs assembled from a metagenomic assembly to discrete genomic entities. Indeed, many groups
have devised creative approaches that involve grouping contigs based on sequence composition,
coverage, and homology or combinations thereof [114–132]. However, to accurately interpret the
results of metagenomic binning, it is important to be aware of the assumptions and limitations of each
of these strategies.

Binning programs that rely heavily or entirely on taxonomic classification [126,133] suffer
from their inability to characterize bacteria that diverge significantly from reference genomes [134].
Given that most uncultured bacteria lack high quality reference genome sequences [49], this represents
a major limitation. Composition-based binning relies on the principle that the frequency of short
oligonucleotide sequences (i.e., “k-mers”) throughout a given microbial genome differs between
microbial species [135–137]. Thus, this method of separating metagenomic sequences into discrete
genome bins does not require any previous knowledge of taxonomy, and therefore does not rely on
reference databases. However, composition-based binning is only effective with high quality genome
assemblies with relatively long contigs (>1000 bp). It is also fundamentally based on the assumption
that sequence composition is consistent throughout a given genome, which, of course, is not always the
case. Large portions of bacterial genomes, including BGCs, can be transmitted horizontally, and thus
can have sequence characteristics that diverge substantially from certain conserved core sequences,
such as those associated with protein synthesis or DNA repair. In the case of “Ca. E. faulkneri”,
the patellazoles producer [18,63], intergenic regions were found to have vastly different GC content
compared to coding and RNA genes, meaning that binning would have been challenging if assembly
quality had been lower. In general, bacteria are well known to have “flexible” genome regions that
can vary dramatically even between strains [138,139]. Finally, differential abundance-based binning
uses abundance patterns across a given set of samples to assign groups of contigs to genome bins [124].
Although this method may be particularly useful in identifying sequences shared by the same genome
that diverge in nucleotide composition (such as a BGC that was acquired via horizontal transmission),
it can break down when a co-varying organism’s genome contains significant sequence variants or
other types of genetic heterogeneity across multiple samples [140]. The technique also relies on species
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being present in multiple samples and does not directly help bin genomes unique to single samples,
except for allowing the subtraction of shared contigs. An obvious practical limitation of the differential
abundance method is the higher cost associated with sequencing multiple samples. As we are often
quite sample limited in the natural products field, collecting multiple samples that contain a targeted
organism or natural product may not be feasible, depending on the system at hand.

From the standpoint of BGC analysis, the advantages and disadvantages of each type of
binning method have a number of practical ramifications. For instance, considering the possibility
that a BGC could be fragmented across a chromosome [17,62,63], correctly identifying all of
the associated components of such a fragmented BGC can be very challenging without accurate
genome binning. Additionally, if BGCs are acquired through recent horizontal transmissions, their
nucleotide compositions may diverge from the rest of a given microorganism’s genomic content.
Accordingly, BGCs may be mis-assigned or unassigned to genome bins by automated binning programs.
These mis-assignments are especially likely if the BGCs in question are fragmented over their repeat
regions by de novo genome assembly and are not flanked by any other sequences containing stronger
phylogenetic markers. Thus, a hybrid binning approach leveraging sequence composition, abundance,
and homology is likely to yield the best results for the analysis of BGCs from shotgun metagenomes.

4.3. Strategies to Test and Improve the Accuracy and Contiguity of Assemblies and Pathways

The more contiguous a genomic assembly is, the easier it is to bin and analyze any assembled
BGCs. However, for de novo assembly algorithms, there is typically a trade-off between increased
contiguity and rates of misassembly [141,142]. The same extensive repeat regions in some BGCs that
can lead to fragmented assemblies can alternatively lead to misassemblies. These misassemblies can,
in turn, skew the interpretation of the biosynthetic logic and, by extension, any attempts to interrogate,
recreate, or engineer their biochemistry through heterologous expression efforts or synthetic biology.
Thus, it is important to critically assess the outputs of these tools and to be aware of appropriate
validation techniques. For short read sequencing, manual examination of differential genomic read
coverage, for instance, can provide clues into possible misassemblies. For instance, areas of vastly
different or abruptly different coverage regions on the same contig might suggest either the joining
of a repeat to a non-repeat region of the same genome, or else the chimeric assembly of sequence
regions from two genomes with different abundances. A number of open source programs, such as
QUAST [141,142], REAPR [143], and Pilon [144], aim to automate the task of identifying misassemblies.
REAPR, for instance, can leverage information provided by paired-end reads and large insert sizes
(≥1000 bp) to predict assembly errors without the use of a reference genome. These predictions are
achieved using the alignments of paired-end reads to de novo assemblies and base-by-base statistical
analysis (fragment coverage distribution) to predict substitutions, insertions, and deletions, as well
as structural errors (e.g., scaffolding errors) [143]. However, it is notable that, depending on their
assumptions regarding sequence evolution, these programs (particularly those that require a reference
genome) can mistake true re-arrangements or sequence variants as misassemblies [58]. Furthermore,
these programs may falsely report misassemblies if the reference genomes in currently available
databases are, themselves, originally misassembled.

In conjunction with automated computational tools, the paired-end information provided by
Illumina sequencing and alignment of reads to contigs enables network analysis to suggest possible
connections in genome assemblies fragmented over repeat regions [124]. These suggested connections
can then be used to guide the design of PCR experiments (and Sanger sequencing of resulting
amplicons) to validate the organization of highly repetitive pathways [17]. However, careful attention
must be paid to ensure that any custom-designed PCR primers do not unintentionally fall within
the repeat regions. If so, positive amplification results can be ambiguous and misleading. Rather,
such primers should be designed to flank the perimeters of these repeats, which can be identified
based on the number of times reads align back to the de novo assembly [17]. The sequence of resulting
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PCR amplicons can be validated using a complementary, high-accuracy and/or long read form of
sequencing, such as Sanger sequencing.

Another experimental consideration for improving the contiguity and general quality of de novo
assemblies from environmental samples deals with sampling strategy [145]. Although pooling samples
prior to sequencing can theoretically improve the sequence coverage of a shared species, it may
further complicate de novo assembly efforts by introducing genetic microdiversity resulting from subtle
genomic changes in species common to all pooled samples. Such was the case in the metagenomic
deconvolution of the Bugula neritina metagenome [140]. Whereas pooled samples of B. neritina larvae
appeared to harbor the highest level of the bryostatin-producing symbiont, “Ca. Endobugula sertula”,
the pooled sample resulted in a very poor assembly compared to the larval brooding chambers
(ovicells) taken from a single colony of B. neritina. Furthermore, whereas differential coverage binning,
as described above, is a popular means of metagenomic deconvolution [116,118,119,121,124], this
technique may increase the population summing effect of direct metagenomic sequencing [146]
while also overlooking the most interesting organisms in a metagenome if they only appear in one
sample [140], and, by the same principle, an interesting biosynthetic pathway if it appears in only
one strain.

Another approach to improve the contiguity of de novo assemblies is to use combinations of high
accuracy short-read technology, with lower accuracy long-read technology. In fact, even with cultured
isolates for which PacBio sequencing is tractable, Illumina sequencing is often included for error
correction and variant calling (to detect SNPs, for instance) [1,2]. This hybrid methodological approach
is becoming increasingly popular for metagenomic studies as well [101,147]. A similar approach has
been achieved using TruSeq Synthetic Long Reads, which employs a special Illumina sequencing
method to achieve multi-kbp reads that can then be complemented with standard paired-end short-read
lengths [148]. In addition to scaffolding with sequencing technologies, there are other complementary
technologies that have been applied to achieve strain-level resolution from shotgun metagenomes
using spatial co-localization techniques, collectively termed Chromosomal Conformation Capture
(3C) [149–154]. Such approaches may offer a viable option for connecting a BGC that is fragmented by
de novo genome assembly and unable to be confidently assigned to a genome with automated binning
algorithms. Another option is the use of multiple length insert libraries to improve contiguity, which
assembly algorithms and downstream bioinformatics tools, such as Pilon [144], can use to refine and
correct de novo assemblies.

Ultimately, there are many challenges associated with the metagenomic analysis of BGCs.
However, understanding the available computational resources and experimental techniques behind
these analyses can dramatically improve the chances for successfully and accurately assembling long
and repetitive BGCs de novo. Leveraging the paired end information of Illumina sequencing to guide
experimental validation efforts, using hybrid library preparation techniques, using physical linkage
information, complementing short read with long read technologies, and refining sampling strategy
can all play important roles in achieving successful de novo assembly of genomes and biosynthetic
pathways from uncultured bacteria.

4.4. Challenges, Opportunities, and Parallels to Chemical Analysis in Product Structure Prediction
through Bioinformatics

Once genomes have been binned and further scaffolded, there remain a number of challenges
associated with biosynthetic analysis, and different types of BGCs present different assembly and
analysis challenges. For instance, although NRPS and PKS pathways are co-linear with the backbone
structure of the small molecules they encode [155], they can contain repeat regions that are orders
of magnitude larger than the short read lengths of Illumina sequencing. As described above, these
repeat regions often result in fragmentation of de novo assemblies. Shorter, less repetitive BGCs that
do assemble well de novo, such as aminoglycoside (AMG) pathways, often have substrate specificities
and products that are difficult to predict bioinformatically, due, in large part, to the lack of sufficient



Mar. Drugs 2017, 15, 165 10 of 24

experimental characterization data. For example, little is known about the substrate specificities and
tolerances of glycosyltransferases [156], which can complicate or prevent rational structure prediction
of AMGs from sequence information. Thus, the sequence characteristics of BGCs present an interesting
paradox for BGC assembly and analysis: BGCs that are more difficult to assemble can offer more
predictive information of chemical structure, whereas pathways that are easier to assemble offer less
information on the structure of the NPs they encode.

The process of assembling pathways or genomes, and resolving repeats, can be thought of as
a structure elucidation problem for a linear (DNA) molecule. One must weigh multiple sources of
information about local connections to devise an overall solution consistent with all datasets, and be
aware of the limitations of each data point. As with structure determination, the true structure
is proposed only when all alternate structures are excluded. The general workflow is much like
that of characterizing a linear peptide. Genomic read coverage is a marker for abundance, much
like integration on a proton NMR spectrum, which can distinguish unique proton signals from
multiple overlapping ones (or repeats, in DNA assembly). Paired-end read alignment between
contigs is similar to nuclear Overhauser effect spectroscopy/rotating frame nuclear Overhauser effect
spectroscopy (NOESY/ROESY) information—indicating that two substructures might be close together.
However, just as a ROESY crosspeak does not necessarily suggest a direct short bonding between two
substructures, paired-end alignment is based upon the alignment of very short reads, which may or
may not be unique to the region of interest. PCR amplification between contigs and subsequent Sanger
sequencing can be thought of as direct evidence of connection (similar to a heteronuclear multiple bond
correlation [HMBC] experiment). However, as mentioned above, one must carefully design the PCR
experiment to give a unique and diagnostic amplicon, lest the result be unwittingly ambiguous, similar
to an HMBC peak where both carbon and proton signals overlap with other parts of the molecule.

Although more repetitive in their sequence composition, if NRPS and type I PKS pathways
can be adequately (and accurately) assembled, certain useful aspects of product structure can be
predicted from these modular pathways. Both of these types of pathways contain large proteins
with multiple enzymatic domains, which act like assembly lines and have been extensively reviewed
elsewhere [157,158]. In essence, the order of chemical transformations can be deduced from the modular
configuration of both NRPS and type 1 cis-AT PKS systems, enabling facile prediction of the 2D structure
of intermediates that are covalently attached to the PKS/NRPS. The structures of starter and extender
units can be predicted from sequence analysis of acyltransferase (AT) [159–161] and adenylation
(A) [162] domains for PKS and NRPS systems, respectively. The nature of tailoring reactions on these
units can be predicted by the presence of certain optional domains in each “module” responsible
for adding a unit and elaborating it. This task is somewhat complicated in certain pathways that
deviate from co-linearity. The trans-AT PKS pathways, where inactive domains, module “skipping”
and noncanonical domain orders and locations are common [37,163] present great cases in point.
The configuration of some stereocenters can be predicted in both NRPS and PKS systems, and
these predictions yield absolute rather than relative configurations, potentially aiding chemical and
spectroscopic methods which could elucidate the relative configuration to other centers [5].

Despite the useful information provided by genomic analysis and the interesting parallels to
chemical analysis, there remain key limitations of structural prediction from biosynthetic pathways.
Therefore, it is much easier to assign a biosynthetic pathway (from a list of possible candidates) to
a known natural product rather than to predict natural product structures de novo from pathways.
For instance, the identification of a RiPP pathway for the biosynthesis of the patellamides was inspired
by the discovery of a precursor peptide gene containing amino acids in an order consistent with the
generation of biosynthetic precursors for patellamides A and C [64]. Conversely, when sequencing
a new RiPP pathway, the types of modifications in the final structure can be proposed from the
presence of certain genes, but the regiospecificity of these genes cannot typically be predicted, nor
can a single, absolute structure be proposed. In modular pathways, although the linear structure
(with some stereocenters) produced by a PKS or NRPS system can be predicted, the final structure is
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often elusive for a number of reasons. Many NRPS and PKS pathways end with a thioesterase
(TE) domain that liberates either a linear or cyclic product from the assembly line machinery.
The linear/cyclic nature or the site of cyclization cannot be predicted with current sequence-based
methods. As with RiPPs, we can often predict the type of post-PKS or post-NRPS tailoring reactions
that occur from the presence of certain genes in the pathway, but the nature and location of these
reactions are often elusive.

4.5. Successful Examples of Repetitive BGCs Analyzed by De Novo Assembly

Despite the many challenges associated with de novo BGC analysis, there are a number of studies
in the natural products realm demonstrating the balance of computational analysis and experimental
design to overcome such challenges. For the purposes of brevity and clarity, we highlight here two
studies relevant to marine natural products.

One such recent example was the targeted assembly of the genome of the uncultured,
bryostatin-producing symbiont, “Ca. E. sertula”, from the metagenome of its bryozoan host, B. neritina.
A large section of the bry pathway for the biosynthesis of bryostatins had been sequenced through
clone library methods by the Sherman and Haygood groups [96,97]. This was a painstaking task as
multiple nearly exact, long repeats in the pathway made clones unstable to homologous recombination.
The 16S rRNA gene sequence of “Ca. E. sertula” was separately found to co-localize with the bry
pathway, suggesting that the pathway belonged to this symbiont [164]. Later, Illumina shotgun
sequencing was used to recover the symbiont’s genome directly from the host tissue in order to glean
information on its primary metabolism and to recover missing components of the biosynthetic pathway
encoding the bryostatins [17].

Due to the large exact repeats in the bry pathway, it was similarly challenging to reconstruct with
de novo assembly using Illumina reads [17]. The first iteration of de novo assembly from the shotgun
sequencing of B. neritina ovicells produced a different arrangement of the bry pathway than was
reported by Sudek et al. [97]. However, this re-arrangement was ultimately identified as a misassembly
resulting from non-optimal assembler parameters, rather than a bona fide re-arrangement or sequence
variant, and the original structure of the bry pathway suggested by the Sanger sequencing of individual
clones [96,97] was validated using a combination of computational and experimental techniques
leveraging paired-end read information using a method adapted from Albertsen et al. [17,124].
Both putative arrangements were tested extensively with PCR and Sanger sequencing [17], and only
the originally proposed arrangement yielded unambiguous PCR amplification. This work showed
that Illumina data could be used to correctly reconstruct a repeat-laden pathway, but it also suggested
that vigilance should be applied during assembly, especially where the true sequence is unknown.

This experience highlights the importance of implementing both computational and experimental
methods to scrutinize and validate the arrangement of biosynthetic pathways generated via de novo
assembly. Although untargeted sequencing and de novo assembly can present ambiguous or misleading
results without proper scrutiny, they also have the potential to uncover new genomic content that
would be unseen in reference-based methods and difficult to identify using traditional clone-library
methods, due to fragmentation across the chromosome. In addition, because a shotgun sequencing
and de novo assembly approach was employed in the study of “Ca. E. sertula”, previously missing
components of the bry pathway, as well as a number of deficiencies in the symbiont’s primary
metabolism, were successfully identified [17].

The slm pathway, in the Salinispora tropica genome, represents an early and exemplary case
of integrating genomic and chemical analysis to simultaneously resolve repeat-laden biosynthetic
architecture and its encoded chemical structure. In 2007, Udwary et al. assembled the S. tropica genome
and discovered the broad array of biosynthetic potential it contained [165]. One major challenge,
however, was resolving the genome into a single circular chromosome due to the highly repetitive
nature of the slm pathway [165,166]. Elucidation of the salinilactam structure generated by this BGC
also proved challenging. After extensive efforts, it was determined that salinilactam is a macrocyclic
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polyketide bearing one amino acid unit. Often, the configuration of polyketides is challenging to
elucidate—relative configurations of adjacent centers can be determined by J-based NMR analysis [167],
but the relative configurations of separated regions [168] and isolated centers are often elusive. In
salinilactam, the exact placement of the methyl group in the southern portion of the molecule was also
likely challenging. It is situated in the middle of six unadorned trans-double bonds likely to have very
similar proton and carbon chemical shifts.

In the end, the authors were able to integrate spectroscopic and bioinformatic analyses to elucidate
both the chemical structure of the salinilactams and the arrangement of the lengthy BGC encoding
them [165,166]. The molecular formula, obtained through mass spectrometry, likely helped in the
resolution of contigs and repeats in the pathway by unambiguously determining how many PKS and
NRPS modules were required for construction of the compound. Likewise, the placement of a module
incorporating methylmalonate among four other modules incorporating malonate unambiguously
determined the placement of the methyl group in the final molecule. Additionally, bioinformatics was
used to propose the absolute configuration of three hydroxyl groups in the molecule. Considering the
nature of the salinilactam structure and the sequence characteristics of the slm BGC, this resolution
represents an impressive achievement. However, such genomic analysis would likely not have
been possible if the S. tropica had not been isolated and cultured in laboratory settings. This caveat
invites an interesting question: is it possible to assemble de novo a BGC of slm’s length and sequence
composition using current short read technology available for metagenomic analysis? How could
various sequencing parameters be tuned to improve the de novo assembly of such a BGC?

4.6. Analysis of Sequencing Parameters on slm Pathway Fragmentation in Salinispora tropica

In addressing questions such as those posed above in Section 4.5, we have endeavored to evaluate
the impact of various sequencing parameters on the fragmentation of de novo assemblies and BGCs in
particular. To explore these effects, we simulated Illumina HiSeq shotgun sequencing data with Art
Illumina (available at http://www.niehs.nih.gov/research/resources/software/art [169]) and PacBio
data with PBSIM (available at https://github.com/pfaucon/PBSIM-PacBio-Simulator [170]), focusing
mostly on the effects of read length and depth of sequencing coverage on the fragmentation of BGCs and
the genomic assemblies as a whole (see Supplemental Information for more details on the simulation
and assembly methods). We chose to use the Salinospora tropica genome as it represents the first available
genome from a marine-derived natural product producer and it houses a broad diversity of biosynthetic
pathways. Additionally, the authors who reported this genome sequence noted significant difficulties
during the assembly of the long and highly repetitive salinilactam biosynthetic pathway, which could
only be resolved using both computational and chemical data [165,166] (see above).

We found that, even with longer read lengths (125 bp) and higher depths of sequencing (100×),
the S. tropica genome was heavily fragmented (Table S1), especially in the region containing the
slm pathway (Figure 1). Thus, we wondered if even greater depths or longer fragment sizes could
alleviate the shortcomings of short-read Illumina technology. We postulated that such an approach
may also allow scaffolding of the slm pathway into fewer contigs than could be achieved with a 100×
coverage and an insert size of 275 bp (Figure 2). However, even with 1000× sequence coverage and
a longer insert size (1000 bp vs. 275 bp), we were unable to further scaffold the repetitive slm pathway
(Figure S1 and Table S1). Furthermore, we found that increased sequencing depth correlated to greater
genome assembly fragmentation in some cases; this was especially pronounced for certain shorter read
lengths (50 bp), particularly inside of the slm BGC (Figures 1 and 2). Interestingly, for the simulations
of the sequencing with the shortest read length (50 bp), the low-intermediate (10×) coverage provided
the best assembly in terms of percent of the slm BGC recovered (Figure 2), but not general genome
statistics such as N50 and contiguity (Figure S2 and Table S1).

Scientists may assume that greater sequencing coverage typically provides higher quality
assemblies, and thus, may end up paying more to achieve greater sequencing depth. However, consistent
with our exploratory analysis here, some studies suggest that greater depth does not necessarily

http://www.niehs.nih.gov/research/resources/software/art
https://github.com/pfaucon/PBSIM-PacBio-Simulator
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afford more contiguous assemblies and that ultra-deep sequencing (>1000× coverage) may actually
be counterproductive if not explicitly handled using specialized assembly algorithms [171,172], due,
in part, to the amplification of read duplication events and other sequencing errors [56]. From a practical
standpoint, even if pre-processing steps successfully address the issues associated with ultra-deep
sequencing, the significantly compounded cost of 10× more sequencing depth may not translate to
greater information.Mar. Drugs 2017, 15, 165  13 of 24 
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Figure 1. Circular genome map of de novo assemblies mapped back to the Salinospora tropica CNB-440
reference genome (GCA_0016425.1). Simulated Illumina HiSeq 2500 sequencing data show assembly
fragmentation (indicated by black bars) throughout the chromosome, including in BGCs (annotated as
green boxes in the outermost ring; the slm pathway is annotated in red) using a mean insert size of
275 bp and different combinations of read length (50–125 bp) and sequencing depth (1–100×).

The simulations and analysis approaches presented here are not meant to be exhaustive nor
are they intended to suggest fundamental principles. Rather, our discussion of them is intended to
encourage other natural product scientists to think carefully about the most appropriate sampling
strategy, sequencing parameters or platforms, as well as to remain wary of the potential pitfalls
surrounding the de novo assembly process. The perspectives outlined here are intended to highlight
the importance of leveraging all available tools, be they computational or experimental, at researchers’
disposal to interrogate the results of this process. Ultimately, we were not able to assemble the slm
BGC using any feasible combination of read length, sequencing depth, or fragment size on a simulated
Illumina HiSeq platform, which remains the most relevant platform for de novo metagenomic assembly.
The best combination of parameters for Illumina simulation alone was a read length of 125 bp, 100×
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coverage, and a fragment size of 275 bp (Figure 2). This set of parameters recovered 82.9% of the
pathway in 29 contigs (Figure 2). We were only able to resolve the pathway into a single contiguous
sequence using 30× coverage with PacBio sequencing (in addition to Illumina sequencing), which is
not practically feasible for most metagenomic applications, due to cost and difficulties involved in
obtaining DNA of high enough quality (see above). However, these simulations further suggest the
value of using multiple sequencing technologies and the importance of integrating chemical and
computational techniques, as exemplified by Udwary et al. [165], to resolve challenging problems in
BGC analysis.Mar. Drugs 2017, 15, 165  14 of 24 
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Figure 2. (a) Alignment of de novo contigs to the reference slm pathway. De novo contigs colored in
green, yellow, and red mapped to the reference slm pathway sequence one, two, and three times,
respectively. In other words, contigs colored in red mapped to three different locations in the slm BGC,
due to exact repeats. (b) Fragmentation and percent (in length) recovery of the salinilactam biosynthetic
gene cluster based on combinations of read length and depth of sequencing on a simulated Illumina
HiSeq 2500 platform run with and without PacBio CLR sequencing. An insert size of 275 bp was used
for all of 12 simulated sequencing runs displayed here (the results obtained using a longer fragment
size and greater sequencing depths are also explored in Figure S1). Notably, 30× PacBio coverage was
required to fully scaffold the Illumina-based assembly with a read length of 125 bp and 100× coverage
(len125_cov100_pb30×, where the numbers following “len” describes the Illumina read length, “cov”
the depth of Illumina read coverage, and “pb” the depth of PacBio coverage).

Sequencing [1] and bioinformatics [54,173–177] have come a long way and continue to
revolutionize the field of natural products drug discovery. However, the information offered by
these techniques is not infallible and should not be unequivocally interpreted in the vacuum of purely
computational analysis. Although long read technology platforms are currently not economically
feasible for generating the sequencing depth required for metagenomic de novo assembly, we anticipate
that as the throughput, accuracy, and price continue to improve, the contiguity of these difficult
to assemble BGCs could be dramatically improved. For now, however, it remains crucial to be
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cautious and skeptical [178,179] when assembling and interpreting large and repetitive biosynthetic
pathways. Any assembly of a BGC pathway should be examined and validated experimentally or
with complementary sequencing technologies, such as Sanger, PacBio, or Oxford Nanopore, where
possible. To do otherwise, could result in misleading and inaccurate interpretations of the mechanics
and evolutionary history of these pathways that offer great promise in providing a continuing supply
of novel, bioactive compounds.

5. Conclusions

Current sequencing, assembly, and binning methods used to investigate BGCs have a number of
notable strengths and weaknesses. Although these methods are powerful, allowing the investigation of
BGCs even from uncultured sources, it should be apparent from this article that potential complications
need to be taken into account and are context dependent. Consequently, there are no bioinformatic
panaceas for BGC assembly and analysis. Researchers should therefore treat the output of bioinformatic
applications with healthy skepticism, just as they should question and independently verify the results
of instrumental measurements (e.g., complementing NMR with mass spectrometry analysis). There are
a number of problems that do not yet have completely generalizable solutions in BGC analysis and
metagenomics. A fundamental problem is that total structure prediction from cluster sequence is not
yet possible; this clearly complicates the task of genome mining. Efforts have been made to collate
and standardize the annotation of BGCs [180], which could aid future efforts to improve structure
prediction. Another problem is that metagenomic binning is still difficult, often requiring much
manual data processing and effort, a significant barrier for entry for groups interested in shotgun
metagenomic sequencing. On the experimental side, there are two roadblocks contributing to the
supply problem for any natural product made by an uncultured organism. The first of these entails
the difficulty in culturing the majority of environmental microbes. It may well be possible to culture
more environmental microbes than previously thought [44,46], but finding appropriate culturing
conditions that are both selective and specific is a significant challenge. A potential solution to this
challenge may lie in improved automatic annotation and metabolic modeling [181,182] of genomes
obtained through metagenomics to predict growth rates and conditions. The other major problem is
that heterologous expression is challenging, especially for large pathways, such as PKS and NRPS
systems, and for pathways originating from uncultured organisms. Such pathways will likely not be
suited to heterologous hosts, requiring de novo synthesis and refactoring [74] to provide optimal codon
usage and compatible promoters, respectively. Advances in synthetic biology may ultimately alleviate
this challenge but rational methods to identify and correct expression problems will still be needed.
Ultimately, much has been achieved in developing tools to accurately correlate genomic information to
structural information when it comes to natural products biosynthesis. However, this area of study
continues to be heavily investigated and promises to provide challenging and rewarding work for
years to come.

Supplementary Materials: The following are available online at www.mdpi.com/1660-3397/15/6/165/s1,
Supplemental Methods, Figure S1: Fragmentation (no. contigs) and percent recovery of the salinilactm (slm)
biosynthetic gene cluster based on expanded set of simulated Illumina and PacBio sequencing parameters,
Figure S2: (a) Nx (where x is 0–100% of the assembly length) and (b) cumulative length plots for assemblies using
a read length of 50 bp, insert size of 275 bp and ranges of sequencing depth (1–1000×), Table S1: Quantitative data
on Salinispora tropica genome statistics based on simulated sequencing parameters.
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