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Abstract
In recent years we have witnessed a growth in sequencing yield, the number of samples

sequenced, and as a result–the growth of publicly maintained sequence databases. The

increase of data present all around has put high requirements on protein similarity search

algorithms with two ever-opposite goals: how to keep the running times acceptable while

maintaining a high-enough level of sensitivity. The most time consuming step of similarity

search are the local alignments between query and database sequences. This step is usu-

ally performed using exact local alignment algorithms such as Smith-Waterman. Due to its

quadratic time complexity, alignments of a query to the whole database are usually too

slow. Therefore, the majority of the protein similarity search methods prior to doing the

exact local alignment apply heuristics to reduce the number of possible candidate

sequences in the database. However, there is still a need for the alignment of a query

sequence to a reduced database. In this paper we present the SW#db tool and a library for

fast exact similarity search. Although its running times, as a standalone tool, are compara-

ble to the running times of BLAST, it is primarily intended to be used for exact local align-

ment phase in which the database of sequences has already been reduced. It uses both

GPU and CPU parallelization and was 4–5 times faster than SSEARCH, 6–25 times faster

than CUDASW++ and more than 20 times faster than SSW at the time of writing, using mul-

tiple queries on Swiss-prot and Uniref90 databases

Introduction
Searching for protein homologues has become a daily routine for many biologists. Popular
BLAST tools (PSI/DELTA/BLASTP) [1–3] produce search results for a single query in less
than a second and many bioinformatical tools have come to depend upon the BLAST tool fam-
ily to find matches in the database of sequences. However, protein sequence databases are
growing at an unprecedented pace and we would often like to find homologous of not one, but
hundreds, thousands, or more queries. When using existing tools, the extensive time cost of
such a search can hinder the research. BLAST family of tools, not being naturally parallelisable,
is unable to utilize the development of new hardware focused on low level parallelism (inter-
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core and many-core architectures). What characterizes dynamic programming algorithms
such as Smith-Waterman [4] is that they provide maximum sensitivity at the cost of long run-
ning times (due to their quadratic time complexity). The initial heuristic tools were developed
for this purpose precisely–to sacrifice some sensitivity, and achieve shorter running times.

One major feature of these initial heuristic tools, such as BLAST, is that they perform the
alignments not on the original, but on a reduced database which gets heuristically determined
in the first step of every search. Sizes of queries and databases today have rendered even such
an optimization insufficient, with the main bottleneck usually being the second, alignment
step. For this reason we propose SW#DB–a standalone tool and a library that perform efficient
exact alignment step using dynamic programming algorithms on a reduced database utilizing
both NVIDIA CUDA (Compute Unified Device Architecture) and CPU SIMD (Single Instruc-
tion Multiple Data) instructions. Although the Sw#db tool enables the use of global Needle-
man-Wunsch algorithm and semi-global algorithm, its focus is on local the Smith-Waterman
algorithm. In comparison with other parallelized implementations of the Smith-Waterman
algorithms for sequence similarity search, this implementation is additionally optimised for
multiple queries rendering it significantly faster than both the state-of-the-art CUDASW++
[5–7] GPU enabled database search tool and SIMD-optimized tools such as SSEARCH [8] and
SSW [9]. It also supports multiple GPU cards and could be run on clusters. Although GPU
implementations of the BLAST algorithm exist (i.e. GPU-BLAST and CUDA-BLASTP) it was
shown that they perform worse than original NCBI BLAST on multi-core architectures [10].
Therefore we do not include them in the comparison.

Although the running times of SW#db for searching the whole database are comparable
with those of the BLAST family of tools, our main intention here is to provide an open source
library for the alignment step of the database search tools. Our motivation was to give the
researchers control over which and how many of target sequences interest them. For this rea-
son we provide functionality of choosing a subset of seed sequences from which to generate
exact alignments—enabling researchers to experiment and tailor the results to their need.
SW#db is optimised for simultaneous computation of the alignments and due to its architec-
ture; it is much faster than the implementations of alignment phases used in BLAST tools. The
library could be used not only for protein database search based on the local protein alignment,
but it could be also be used for the global or semi-global alignment of both protein and nucleo-
tide queries on databases. Due to quadratic complexity of the dynamic programming algo-
rithms, we do not recommend it being used for searching nucleotide databases with long
sequences.

Methods
The Smith-Waterman algorithm provides the alignment score and the optimal alignment path
for a pair of sequences, with quadratic complexity both in time and memory. The implementa-
tion of the Smith-Waterman algorithm for sequence similarity search can divided into two
phases: (i) Scoring phase which provides the alignment score with quadratic time and linear
memory complexity and (ii) Reconstruction phase which provides the alignment paths for n
best scored pairs. In practise n is significantly smaller than the number of sequences in the
database which has focused most of the optimization efforts on phase (i) Optimizations of the
scoring phase rely on hardware architecture that provides a way to score multiple pairs of
sequences in parallel. Two of the most popular hardware architectures that support paralleliza-
tion are CPUs and GPUs. Most modern CPU designs enables SIMD (single instruction multi-
ple data) instructions [11]. SIMD allows parallel execution of a single instruction on multiple
data. Amount of data that can be processed at a time depends on the size of the data and the
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SIMD version. The most dominant architecture and the framework to program GPUs is NVI-
DIA CUDA. CUDA GPU architecture allows massive multithreading and has been used to
optimize the Smith-Waterman scoring phase. CUDA cards with CUDA architecture 3.5 or
higher support SIMD usage on GPUs. In SW#, both of the afore mentioned architectures are
utilized if available on the system.

SW#db uses OPAL library [12] to utilize CPU SIMD architectures. OPAL enables fast
sequence similarity search using the Smith-Waterman algorithm. It works the most efficient
when it uses 8 bit arithmetic. Since the width of SIMD register file is up to 128 bits Opal can
calculate up to sixteen sequence alignments at a time. Since the signed arithmetic is used to pre-
vent overflow, the maximum possible score is 127. For overflow detection intrinsic SIMD func-
tions are used. They check whether the result is equal to 127. If the score reaches this
maximum value it is recalculated in 16 bits. Very rarely it is necessary to use 32 bit (four bytes)
arithmetic. In the cases when the recalculation is necessary, the SIMD parallelization is not
used what slowing down execution.

Execution time speedups offered by CUDA architecture depend on various factors, such as
branch divergence: if every CUDA thread runs exactly the same code, the speedup will be max-
imized. In the case of the Smith-Waterman algorithm branch divergence can be avoided only if
all of sequences in the database are the same length. With the increasing difference in database
sequence length, the CUDA parallelization overhead increases. Therefore, local alignment cal-
culation done by CUDA is divided into two parts, the part that handles database sequences of
similar length- called the short kernel, and the part that handles sequences with a large differ-
ence in length—the long kernel. Because the length difference is lower between shorter
sequences, sequences in a database are divided into short and long sequences by the predefined
length threshold, L. A disadvantage of this method is that it depends on the distribution of
sequence lengths in the input database. Usually most of the input sequences are shorter than
the predefined length threshold. The default threshold value is 2000.

The number of CUDA blocks and threads will be denoted as B and T, respectively. Short
kernel scores B × T sequence pairs at a time, each CUDA thread scores single input query
sequence with a database sequence. Memory complexity of the short kernel is 2 × n ×m, where
n is the number of short sequences in the database, andm is the length of the longest short
sequence. Long kernel scores B sequences at a time, each CUDA block scores a single pair of
sequences with T threads. Long kernel has memory complexity of 9 × n, where n is the sum of
lengths of long database sequences. The method used in long kernel is similar to the method
used in [13] for the pairwise Smith-Waterman alignment parallelization. Each thread in the
block solves four rows at a time in an antidiagonal, wavefront manner (Fig 1). When thread Ti
solves a row, and there are still unsolved rows left, it starts to solve row i + T � 4, where T is the
number of threads in the block. Conversely, in [5] every thread solves n

T
rows, where n is the

sequence length. SW#DB uses optimized CUDA four vector elements which require a lower
number of CUDA registers and therefore lower execution time.

Since the efficiency of both GPU and CPU algorithm is heavily dependent on sequence
lengths, we applied a scalable alignment method (Fig 2). In the preprocessing step the
sequences in the database are sorted by their length. Short kernel starts by scoring the shortest
sequences. CPU part (OPAL) starts by scoring the longest sequences. Additionally, another
instance of OPAL starts scoring sequences shorter than L Short kernel stops when it reaches
sequences already scored by the second instance of OPAL. The first OPAL instance stops when
it scores all sequences longer than L, or it is stopped when short kernel ends. If short kernel
ends before the first OPAL instance, all sequences longer than L and not solved by the first
OPAL instance are solved by the long kernel. This approach scales well with different CPU

SW#db

PLOSONE | DOI:10.1371/journal.pone.0145857 December 31, 2015 3 / 11



speeds, the number of CPU cores and the performances of available GPUs. This kind of
dynamic work delegation, which does not depend on any predefined parameters, minimizes
thread waiting times and significantly reduces the execution time. This method scales very well
on multi-query database alignments. The pseudo code and detailed flowchart of this method
are presented in S1 Algorithm and S1 Fig, respectively.

When CUDA cards with CUDA architecture 3.5 are available, the previously explained
scoring process is run twice. In the first run, scores are limited to 127, single byte arithmetic
is forced, to maximize the SIMD speedup for both CPU and GPU SIMD architectures. In the
second run SIMD is disabled and only sequences with the score equal to 127 are recalculated.
Very often it is necessary to score a subset of database sequences. This approach can be used

Fig 1. GPU long kernel execution. Each thread in SW#db long kernel solves four rows using optimized
CUDA structures.

doi:10.1371/journal.pone.0145857.g001

Fig 2. Database processing steps. Sequences in the database are sorted by their length and divided into
two partitions. In the both partitions GPU kernels (short and long) process from shorter to longer sequences
and OPAL (CPU implementation) processes in the opposite direction.

doi:10.1371/journal.pone.0145857.g002
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for sequence similarity database search when in the first step we reduce the number of candi-
date sequences. In that case we would need to prepare a new database for every query
sequence and load it in the GPU memory which would significantly increase execution time.
To allow scoring of only a subset of the database sequences, without preparing a new data-
base, we propose the usage of database indexes. Indexes are ordinal numbers of sequences in
the database. For a given input array of database sequences and the whole database prepared
in advanced, SW#DB scores only the sequences with given indexes. In the short kernel the
work delegation needs to be reconfigured to minimize the overhead produced by the differ-
ence in indexed sequence lengths. This is done by masking the thread to data fetching
method. When loading data via textures, not only is the requested data loaded in the working
memory, but also the data from the neighbouring memory address is loaded into cache.
Therefore, the only overhead is in the global memory texture cache misses, because of the
potential memory address distance between two neighbor indexed sequences. In this manner,
depending on the number and nature of indexed sequences, indexed solving is at least as fast
as the solving of the whole database. As the number of indexed sequences lowers, so does the
execution time. This method is used for score recalculation in the second pass of CUDA
SIMD scoring method.

SW#db is available as a library through a C API, as well as a standalone executable com-
mand-line tool. A standalone executable, which utilizes MPI for database alignment on multi-
ple CUDA powered nodes, is additionally provided in the package. SW#db MPI
implementation utilizes MPI nodes by dividing the database into smaller parts so that each
node solves only a part of the database. The main node afterwards gathers the results and com-
bines them. Databases are expected to exist on each of the MPI nodes. In this way the data
transfer is minimal, since only the end alignments are transferred between the nodes. Except
with the mentioned Smith-Waterman algorithm, SW#db library provides alignment using
Needleman-Wunsch [14] and semi-global alignment algorithms. Apart from proteins, SW#db
can also be used to align against the nucleotide databases. While the existing CUDA accelerated
database similarity search software is often focused only on providing alignment scores [5],
this library provides both scores and the full alignment paths. SW#db library is intended for
external usage in database aligning heuristics, as it provides simple, flexible and powerful API.
Dynamic delegation of work and dynamic CPU-GPU communication allows SW#db to signifi-
cantly lower the algorithm execution time. Another advantage of the API is GPU database
preparation in advance for multiple scoring, which in case of multi query database alignment
lowers the execution time significantly. Preparation in advance removes data preprocessing
and CPU to GPUmemory transfer overheads, since it is done only once for multiple queries.
Library also provides methods for database alignment with indexes, method for aligning only
the selected sequences from the database. These methods can be very useful when used with
heuristic database alignment solutions, since almost all of the heuristic solutions rely on
sequence alignment algorithms.

Results
To systematically compare the performance of SW#db with BLASTP, SSW, CUDASW++ (ver-
sions 2.0 and 3.1) and SSEARCH, we used a list of proteins of various lengths (Table 1) and the
ASTRAL dataset [15] as queries and Swiss-prot and Uniref90 as databases. Tests were per-
formed on two configurations: single-GPU (Intel1 Core™ i7-4770K CPU, 32 GB RAM, NVI-
DIA GeForce GTX 780, 256 GB SSD) and multi-GPU (2-socket Intel1 Xeon Haswell (E5-
2640 v3 @ 2.60GHz) server with 16 cores in total, 128 GB, equipped with 2x NVIDIA K80
GPU cards (4 GPUs in total)). For testing the performances of MPI implementation we used
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two multi-GPU servers. List of commands and parameters that were run for each program are
presented in S1 Text.

Although SW#db is primarily designed to be used for multiple sequence queries, we tested
its performances for single queries as well. The results in Fig 3 and Fig 4 show that while for
shorter queries, up to 600 residues long, CPU based tools BLASTP and SSEARCH are faster,
for longer queries GPU based tools are comparable to BLASTP and up to 4 times faster than
SSEARCH. The slower running times for shorter queries are expected due to the latency in
transferring database to GPU. Additionally, the parallelization for shorter queries is not as effi-
cient as for longer ones. In all tests with the Swiss-prot database SW#db outperforms
CUDASW++. For tests with the Uniref90 database we could not run CUDASW++ because
this database was too big. We tried running both CUDASW++ v.2.0 and v.3.1. Unfortunately
we could not run tests on v.3.1 due to the segmentation fault. We managed to run this version
on a configuration with older NVIDIA GTX690 cards and although it running times were sim-
ilar to the running times of SW#db almost for all protein lengths, except for the lengths longer
than 20000 residues where it was slightly faster (S2 Fig). Fig 3 and Fig 4 do not include results
achieved by SSW, because it was much slower than other tools. It was 3 to 15 times slower than
the second slowest tool, SSEARCH. We repeated each test 5 times and the presented results are
the averages of running times. For each test the standard deviation was below 3%.

The real power of parallelization starts to show for multiple sequence queries. We used all of
the above mentioned programs to align the ASTRAL database against the UniprotKB/Swiss-
prot and Uniref90 databases. The results are presented in Table 2. It shows that the running
times for BLASTP and SW#db are comparable. For the smaller database (Swiss-prot) they are
almost equal, while for the longer one (Uniref90) BLASTp is 1.7 times faster. In comparison
with other similarity search algorithms based on the Smith-Waterman algorithm, SW#db is
faster. It is 4–5 times faster than SSEARCH, 6–25 times faster than CUDASW++ v.2.0 and
more than 20 times faster than SSW. In addition we managed to run CUDASW++ v.3.1 on a

Table 1. The list of Uniprot IDs and lengths of proteins used in performance testing.

Uniprot ID Length (residues)

O74807 110

P19930 195

B8E1A7 299

Q3ZAI3 390

P18080 513

O84416 607

A9BIH4 727

Q2LR26 804

B4KLY7 980

Q5R7Y0 1465

Q700K0 5124

P0C6V8 6733

P0C6W9 7094

O01761 8081

Q6GGX3 10746

Q9I7U4 18141

Q8WXI7 22152

Q3ASY8 36805

doi:10.1371/journal.pone.0145857.t001
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Fig 3. Comparison of SW#db against BLASTP, CUDASW++ v. 2.0, CUDASW++ v. 3.1 and SSEARCH
for single-sequence queries of different length on the Swiss-prot database. The insets show detailed
results for shorter queries. The upper graph shows results for single-GPUmachine (Nvidia GeForce GTX
780). The lower graph shows results for multiple-GPUmachine (2 × Tesla K80).

doi:10.1371/journal.pone.0145857.g003
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configuration with older Nvidia GTX 690 cards. CUDASW++ v3.1 was only a slightly faster
than version v.2.0 (The results for all tools for this configuration are presented in S1 Table).

In addition, we have compared BLASTP with SW#db on the Astral/SCOP compendium
database, version 2.04 [16]. For this testing, we created a query set from the subset of Astral
sequences. The query set was created by sorting the SCOP domains in a lexicographic order
and selecting even numbered sequences as queries. The database consisted of 13042 sequences
while the query set contained 6114 sequences. Curves denoting the number of true positives vs.
the number of false positives for each algorithm are plotted in Fig 5. The results show that
SW#db as an implementation of the Smith-Waterman algorithms is more sensitive than
BLAST.

To prove correctness we made the comparison of scores achieved with SW#db and
SSEARCH. We randomly selected 100 proteins and aligned them against Swiss-prot database
and compared the 10 best scored alignments achieved with these tools. The results in all cases
were identical.

Availability and Future Directions
The source code can be obtained from http://sourceforge.net/projects/swsharp/ and the tool is
documented and rigorously tested. We provide both Windows and Linux releases. The mini-
mal recommended architecture is a dual core CPU, over 2.0GHX, 2GB RAM and NVIDIA
GPU with Fermi (v2.0) or newer architecture. The further development of SW#db will be
focused on the better utilization of parallelization capabilities of both GPU and CPU and on
the better load balancing between GPU and CPU.

Conclusion
In this paper we present the SW#db tool, a parallelised version of exact database search algo-
rithms optimised for multiple queries. Although the emphasis is on the Smith-Waterman algo-
rithm, other exact algorithms such as global and semi-global alignment are provided as well.
SW#db is parallelized on both GPU and CPU and it can run on multiple GPUs or on a cluster.
The running times for large databases are comparable to the times achieved by BLASTP and at
least four times faster than the state-of-the-art parallelized tools used for the same purposes
such as SSEARCH, CUDASW++ and SSW. Although it could be used for the protein database
search instead of BLASTP when the high sensitivity is required, our main intention was to

Fig 4. Comparison of SW#db against BLASTP and SSEARCH for queries of different length for UniRef90 database. The insets show detailed results
for shorter queries. The upper graph shows results for single-GPUmachine (Nvidia GeForce GTX 780). The lower graph shows results for multiple-GPU
machine (2 × Nvidia Tesla K80).

doi:10.1371/journal.pone.0145857.g004

Table 2. Comparison of running times for SW#db, BLASTP, CUDASW++ v2.0, SSW and SSEARCH using ASTRAL database as a query file. We
could not run CUDASW++ 3.1 on the both machines (segmentation fault). Both versions of CUDASW++ could not run on Uniref90 due to the size of data-
base. We did not measure running time of SSW for Uniprot90 because it would last too long.

Database Configuration Running time (s)

SW#db BLASTP SSEARCH CudaSW++ v2.0 SSW

Swiss-prot Single-GPU; Nvidia GeForce GTX 780 card 3523 3494 15123 23795 87118

Uniref90 Single-GPU; Nvidia GeForce GTX 780 card 123581 73117 490543 - -

Swiss-prot Multi-GPU; 2×Nvidia Tesla K80 cards 1264 2210 6063 30174 -

Uniref90 Multi_GPU; 2×Nvidia Tesla K80 cards 41019 29597 164188 - -

doi:10.1371/journal.pone.0145857.t002
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build a library that could provide fast and exact alignment between queries and a reduced data-
base for various bioinformatics tools.

Supporting Information
S1 Algorithm. Database processing.
(DOCX)

S1 Fig. Flowchart.
(TIFF)

S2 Fig. Comparison of SW#DB with BLASTP and SSEARCH for queries of different length
and Swiss-prot database. The inset shows detailed results for shorter queries. The results are
achieve on a multi-gpu server (Intel1 Core(TM) i7-3770 CPU, 16 GB RAM, 2 � NVIDIA
GeForce GTX 690, 256 GB SSD).
(TIFF)

S1 Table. Comparison of running times for SW#db, BLASTP, CUDASW++ v2.0,
CUDASW++ v3.0, SSW and SSEARCH using ASTRAL database as a query file and the
Swis-Prot database as target. The results are achieve on a multi-gpu server (Intel1 Core(TM)
i7-3770 CPU, 16 GB RAM, 2 � NVIDIA GeForce GTX 690, 256 GB SSD).
(DOCX)

S1 Text. List of commands and parameters that were run for each program.
(DOCX)

Fig 5. Comparison of sensitivity of BLASTP and SW#db on the Astral/SCOP database.

doi:10.1371/journal.pone.0145857.g005
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