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ABSTRACT Bacillus altitudinis strain SGAir0031 (Firmicutes) was isolated from tropi-
cal air samples collected in Singapore. Its genome was assembled using short reads
and single-molecule real-time sequencing, comprising one chromosome with 3.81 Mb
and one plasmid with 32 kb. The genome consists of 3,820 protein-coding genes, 81
tRNAs, and 24 rRNAs.

Bacillus altitudinis is a Gram-positive, rod-shaped aerobic bacterium classified in the
phylum Firmicutes. It was first reported to be isolated from extreme UV-stressed air

samples collected in the stratosphere (1). Since then, B. altitudinis has been reported in
diverse habitats, including the southern Indian Ocean (2), deep freshwater of Manasbal
Lake (3), soil (4), and silt (5).

B. altitudinis strain SGAir0031 was isolated from an air sample collected in Singapore
(global position system [GPS] coordinates 1.346N, 103.680E) using the Andersen single-
stage impactor (SKC BioStage) with a median cutoff diameter of 0.6 �m. The air was
impacted onto Trypticase soy agar (TSA) (Becton Dickinson), and further isolation of
colonies was carried out by culturing on TSA at 30°C and in Luria-Bertani (LB) broth
overnight. Genomic DNA was purified using the Wizard genomic DNA purification kit
(Promega), according to the manufacturer’s protocol, with an additional RNase diges-
tion followed by phenol-chloroform cleanup and a final precipitation with isopropanol.
Single-molecule real-time (SMRT) sequencing was performed on a PacBio RSII (Pacific
Biosciences), using a concentration of 0.15 nM of the 8-kb genomic library loaded into
one SMRT cell (Pacific Biosciences). Short reads were generated on a MiSeq (Illumina)
300-bp paired-end run using whole-genome shotgun libraries constructed with the
TruSeq Nano DNA library preparation kit.

A total of 110,325 subreads were used for de novo assembly with Hierarchical
Genome Assembly Process (HGAP) version 3 (6) implemented in the PacBio SMRT
Analysis 2.3.0 package. The assembly was polished using Quiver (6) and error cor-
rected using Pilon version 1.16 (7) and 836,357 MiSeq paired-end reads. The consensus
assembly generated two contigs, one chromosome with 3,812,576 bp (173.78-fold
coverage) and one plasmid with 32,110 bp (244.41-fold coverage). The chromosomal
contig showed a mean G�C content of 41.4%, while the plasmid pSGAir0031 had
37.5% G�C content. Both the genome size and G�C content were similar to those of
other B. altitudinis assemblies available.
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Taxonomic identification at the species level was performed using Phyla-AMPHORA
(8). A total of 152 Firmicutes-specific marker genes were matched out of 168. In
addition, average nucleotide identity (ANI) analysis, performed with MiSI (Microbial
Species Identifier) (9), showed 98.81% identity to B. altitudinis strain DSM 26896.

The genome was annotated using NCBI’s Prokaryotic Genome Annotation Pipeline
(PGAP) version 4.2 (10). A total of 3,982 genes were predicted with 3,820 protein-coding
genes (PCGs), 24 rRNA operons (5S, 16S, and 23S rRNAs), 81 tRNAs, 5 noncoding RNAs,
and 52 pseudogenes. The average G�C content of the plasmid pSGAir0031 is 37.5%,
with 33 PCGs and no tRNA or rRNA genes. Functional annotation performed with Rapid
Annotations using Subsystems Technology (RAST) (11–13) showed that most genes
were associated with carbohydrate metabolism (439 genes) and amino acid and
derivative metabolism (436 genes). The strain SGAir0031 potentially forms spores, since
120 genes were found to be related to dormancy and sporulation. Sporulation could be
a potential mechanism for the dispersal and survival of B. altitudinis in tropical air.

Accession number(s). The complete genome sequences of Bacillus altitudinis

SGAir0031 and the plasmid pSGAir0031 have been deposited in DDBJ/EMBL/GenBank
under the accession numbers CP022319 and CP022320, respectively.
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