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Abstract: In this paper, we review three-dimensional (3D) photon counting imaging with axially
distributed sensing. Under severely photon-starved conditions, we have proposed various imaging
and algorithmic approaches to reconstruct a scene in 3D, which are not possible by using conventional
imaging system due to lack of sufficient number of photons. In this paper, we present an overview of
optical sensing and imaging system along with dedicated algorithms for reconstructing 3D scenes
by photon counting axially distributed sensing, which may be implemented by moving a single
image sensor along its optical axis. To visualize the 3D image, statistical estimation methods and
computational reconstruction of axially distributed sensing is applied.

Keywords: axially distributed sensing; photon counting imaging; statistical estimation;
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1. Introduction

Under severely photon-starved conditions, scenes recorded optically may not be properly
reconstructed by conventional imaging systems. In many fields, such as noninvasive microscopy,
night vision, astronomy, military applications, etc., image acquisition or visualization may be carried
out in a low light level environment. Recently, many approaches for three-dimensional (3D) photon
counting imaging have been reported [1–6]. For example, 3D information can be recorded and
reconstructed under photon-starved conditions with photon counting integral imaging [7–13]. In 3D
photon counting imaging, 3D images can be visualized by statistical estimations, such as maximum
likelihood estimation [2] and Bayesian approaches [4]. Photon counting detection under such
conditions can be modeled using a Poisson distribution since photon events may occur rarely in unit
time and space [14]. Using this mathematical photon counting imaging model, 3D visualization and
object recognition can be performed under photon-starved conditions. Additionally, optical encryption
with improved security level has been accomplished photon counting imaging properties [15–17].

In photon counting imaging, the visual quality of the recorded image or the reconstructed image
depends on the number of photons from the scene. To enhance its visual quality, some techniques
have been proposed [2–4]. Three-dimensional photon counting imaging captures multiple 2D images
from the scenes using a lenslet array or moving camera. The statistical properties of the optical rays,
as well as photon counting, are used and the visual quality of the reconstructed image can be enhanced.

To obtain the 3D information with high resolution from the scenes and remove the requirement
of lateral parallax of image sensor by integral imaging [11], axially distributed sensing (ADS) may
be used [12]. In order to obtain the 3D information, ADS uses only a single camera moving along its
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optical axis. We show that photon counting with ADS [5] can be used to obtain the 3D information of
the scenes under photon-starved conditions. We can obtain the depth map of the 3D objects. Thus,
we can create the 3D profile of the object and regenerate elemental images for multiple viewing points
for 3D display [18–21].

In this paper, we present an overview of the basic concept of photon counting imaging, and our
work on 3D reconstruction using 3D photon counting ADS along with some experiments to illustrate
3D photon counting imaging with ADS.

2. 3D Photon Counting Imaging

2.1. Mathematical Model of Photon Counting Detection

Photon counting detection may be modeled by Poisson distribution because the photon events
occur rarely in unit time and space under photon-starved conditions [14]. The photon counting
detection fundamental steps are illustrated in Figure 1. For computational simplicity, the image has
only one-dimension. Using the following equation, the photon counting image can be constructed [2].

λx “
Ix

řNx
x“1 Ix

(1)

Cx
ˇ

ˇλx „ Poisson
`

Npλx
˘

(2)

where Ix is the light intensity of the image at pixel x, Nx is the total number of pixels in the image, λx is
the normalized irradiance at pixel x, Np is the extracted number of photons from the image, Cx is the
number of photons at pixel x, respectively. Here, the total energy of λx is unity.
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In integral imaging, 3D information can be recorded through a lenslet array or a camera array. Here, 
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Figure 1. Mathematical model of photon counting detector.

Now, we have 2D photon-limited images, which are generated from Equations (1) and (2).
When Np is very small or the scenes are under severely photon-starved conditions, the image cannot
be visualized or recognized. We have shown that passive 3D imaging technique such as integral
imaging [1–4] can enhance the visual quality of these photon-limited images and obtain the 3D
information. In integral imaging, 3D information can be recorded through a lenslet array or a camera
array. Here, multiple 2D images with different perspectives can be acquired. These images are referred
to as elemental images. To obtain high lateral and depth resolutions, synthetic aperture integral
imaging (SAII) [11], which uses multiple cameras can be used. Then, using computational integral
imaging reconstruction (CIIR) [13], 3D images with enhanced visual quality can be reconstructed. In 3D
photon counting integral imaging, to estimate 3D information from multiple photon-limited images,
statistical estimations such as maximum likelihood estimation (MLE) [2] may be used, as well as
computational reconstruction [13].
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2.2. Photon Counting Axially Distributed Sensing (ADS)

To remove lateral movement of image sensor required by SAII, axially distributed sensing has
been reported [12]. It can capture multiple 2D images with slightly different perspectives by moving
single image sensor along its optical axis. Thus, we can adopt this technique to 3D photon counting
imaging. Figure 2 shows the basic concept of 3D photon counting imaging with ADS for pickup
and reconstruction.

Sensors 2016, 16, 1184 3 of 8 

 

photon counting integral imaging, to estimate 3D information from multiple photon-limited images, 
statistical estimations such as maximum likelihood estimation (MLE) [2] may be used, as well as 
computational reconstruction [13].  

2.2. Photon Counting Axially Distributed Sensing (ADS) 

To remove lateral movement of image sensor required by SAII, axially distributed sensing has 
been reported [12]. It can capture multiple 2D images with slightly different perspectives by moving 
single image sensor along its optical axis. Thus, we can adopt this technique to 3D photon counting 
imaging. Figure 2 shows the basic concept of 3D photon counting imaging with ADS for pickup and 
reconstruction.  

 
Figure 2. Photon counting imaging with ADS. (a) Image sensing; (b) Computational reconstruction, 
k is the number of recorded images by ADS. 

In the pickup process, by moving single photon counting camera along its optical axis, multiple 
2D images with slightly different perspectives can be recorded as shown in Figure 2a. Computational 
reconstruction of ADS can be implemented by considering slightly different magnification ratio for 
each photon-limited image as the following equation [5]: 

  r
k r

r

z k zM z
z
 

  (3) 

where z is the moving step for single camera along its optical axis, zr is the reconstruction depth, 
and k is the index of the recorded images by ADS, respectively. Since magnification causes the 
degradation of the reconstructed 3D image quality by the image interpolation method, in this paper, 
demagnification is used. Then, using MLE process [2], computational reconstruction of photon 
counting ADS as shown in Figure 2b can be implemented by follows [5]: 

   
1 !

k
p k

C N
K

p k

p k k
k k

N e
L N C

C








  (4) 

   
1

log
K

p k k k p k p k
k

l N C C N N  


     (5) 

  ˆ0,
p k k k

k
k p

N C C
N







 


 (6) 

Figure 2. Photon counting imaging with ADS. (a) Image sensing; (b) Computational reconstruction,
k is the number of recorded images by ADS.

In the pickup process, by moving single photon counting camera along its optical axis, multiple
2D images with slightly different perspectives can be recorded as shown in Figure 2a. Computational
reconstruction of ADS can be implemented by considering slightly different magnification ratio for
each photon-limited image as the following equation [5]:

Mk pzrq “
zr ´ k∆z

zr
(3)

where ∆z is the moving step for single camera along its optical axis, zr is the reconstruction depth, and k
is the index of the recorded images by ADS, respectively. Since magnification causes the degradation of
the reconstructed 3D image quality by the image interpolation method, in this paper, demagnification
is used. Then, using MLE process [2], computational reconstruction of photon counting ADS as shown
in Figure 2b can be implemented by follows [5]:
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where L(¨|¨ ) and l(¨|¨ ) are the likelihood function and log-likelihood function, Ck is the kth
photon-limited elemental image by ADS and K is the total number of the captured photon-limited
elemental images, respectively.

3. Experimental Results

3.1. Photon Counting Imaging with Axially Distributed Sensing

3.1.1. Experimental Setup

Experimental setup for photon counting ADS is illustrated in Figure 3a. In this setup, the focal
length of the camera lens is 50 mm. The camera has 1000 (H) ˆ 1000 (V) pixels and axial separation
between moving image sensor, ∆z, is 2 mm. We used a 3D car model in Figure 3b as the 3D object.
Its location is zr = 320 mm. Finally, we recorded 50 multiple images using ADS. In this experiment,
we use both non-occluded and occluded 3D objects as shown in Figure 3b,c. The photon counting
images are obtained digitally by applying the Poisson model (Equations (1) and (2)) to the digitally
captured elemental images.
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Figure 3. (a) Experimental setup for ADS; (b) Non-occluded 3D object; (c) Partially occluded 3D object.

Figure 4 shows conventional elemental images by ADS for non-occluded 3D object and occluded
3D object. It is noticed that slightly different perspectives between farthest and closest images
exist. Thus, using these perspectives and computational reconstruction of ADS, we can reconstruct
3D images.
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Figure 4. Conventional elemental images with slightly different perspectives by ADS, for:
(a,b) non-occluded object; (c,d) occluded object, respectively.

3.1.2. Results

Figure 5 shows photon-limited elemental images for photon counting ADS of non-occluded and
occluded objects at farthest and closest positions, which are obtained by using Equations (1) and (2)
applied to the digitally captured images. Since the number of photons is low, that is Np = 10,000
(0.01 photons/pixel), its visual quality is low and the objects are not well recognized. However,
using computational reconstruction of ADS, as depicted in Equations (3)–(7), the visual quality of
the reconstructed image can be improved, as shown in Figure 6. To evaluate the visual quality
of the reconstructed 3D images, we calculate the peak signal to noise ratio (PSNR) between the
original reconstructed Three-dimensional images using conventional ADS and the experimental
results as shown in Figure 7. The plot has some fluctuations because photons are generated by Poisson
random process.

Using multiple images obtained by ADS, we can regenerate the elemental images for 3D
multi-view display [18]. Then, the depth map of the 3D objects can be extracted by 3D profilometry [19].
In [19], the extracted depth with contours of equal depth is shown. The errors of the estimated depth
may occur due to the specular reflection off of the glossy surface, which departs from the Lambertian
assumption. In addition, in [19], the computational reconstruction results of the 3D objects by slicing
them in a certain depth range are shown.
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